Index: src/core/Sk4pxXfermode.h |
diff --git a/src/core/Sk4pxXfermode.h b/src/core/Sk4pxXfermode.h |
deleted file mode 100644 |
index ad822edb8b609f32d7db0e29e0e7ef796258af1e..0000000000000000000000000000000000000000 |
--- a/src/core/Sk4pxXfermode.h |
+++ /dev/null |
@@ -1,330 +0,0 @@ |
-/* |
- * Copyright 2015 Google Inc. |
- * |
- * Use of this source code is governed by a BSD-style license that can be |
- * found in the LICENSE file. |
- */ |
- |
-#ifndef Sk4pxXfermode_DEFINED |
-#define Sk4pxXfermode_DEFINED |
- |
-#include "Sk4px.h" |
-#include "SkPMFloat.h" |
-#include "SkXfermode_proccoeff.h" |
- |
-// This file is possibly included into multiple .cpp files. |
-// Each gets its own independent instantiation by wrapping in an anonymous namespace. |
-namespace { |
- |
-#if defined(SK_CPU_ARM32) && !defined(SK_ARM_HAS_NEON) |
- // Signals SkXfermode.cpp to look for runtime-detected NEON. |
- static SkProcCoeffXfermode* SkCreate4pxXfermode(const ProcCoeff& rec, SkXfermode::Mode mode) { |
- return nullptr; |
- } |
-#else |
- |
-// Most xfermodes can be done most efficiently 4 pixels at a time in 8 or 16-bit fixed point. |
-#define XFERMODE(Name) static Sk4px SK_VECTORCALL Name(Sk4px s, Sk4px d) |
- |
-XFERMODE(Clear) { return Sk4px::DupPMColor(0); } |
-XFERMODE(Src) { return s; } |
-XFERMODE(Dst) { return d; } |
-XFERMODE(SrcIn) { return s.approxMulDiv255(d.alphas() ); } |
-XFERMODE(SrcOut) { return s.approxMulDiv255(d.alphas().inv()); } |
-XFERMODE(SrcOver) { return s + d.approxMulDiv255(s.alphas().inv()); } |
-XFERMODE(DstIn) { return SrcIn (d,s); } |
-XFERMODE(DstOut) { return SrcOut (d,s); } |
-XFERMODE(DstOver) { return SrcOver(d,s); } |
- |
-// [ S * Da + (1 - Sa) * D] |
-XFERMODE(SrcATop) { return (s * d.alphas() + d * s.alphas().inv()).div255(); } |
-XFERMODE(DstATop) { return SrcATop(d,s); } |
-//[ S * (1 - Da) + (1 - Sa) * D ] |
-XFERMODE(Xor) { return (s * d.alphas().inv() + d * s.alphas().inv()).div255(); } |
-// [S + D ] |
-XFERMODE(Plus) { return s.saturatedAdd(d); } |
-// [S * D ] |
-XFERMODE(Modulate) { return s.approxMulDiv255(d); } |
-// [S + D - S * D] |
-XFERMODE(Screen) { |
- // Doing the math as S + (1-S)*D or S + (D - S*D) means the add and subtract can be done |
- // in 8-bit space without overflow. S + (1-S)*D is a touch faster because inv() is cheap. |
- return s + d.approxMulDiv255(s.inv()); |
-} |
-XFERMODE(Multiply) { return (s * d.alphas().inv() + d * s.alphas().inv() + s*d).div255(); } |
-// [ Sa + Da - Sa*Da, Sc + Dc - 2*min(Sc*Da, Dc*Sa) ] (And notice Sa*Da == min(Sa*Da, Da*Sa).) |
-XFERMODE(Difference) { |
- auto m = Sk4px::Wide::Min(s * d.alphas(), d * s.alphas()).div255(); |
- // There's no chance of underflow, and if we subtract m before adding s+d, no overflow. |
- return (s - m) + (d - m.zeroAlphas()); |
-} |
-// [ Sa + Da - Sa*Da, Sc + Dc - 2*Sc*Dc ] |
-XFERMODE(Exclusion) { |
- auto p = s.approxMulDiv255(d); |
- // There's no chance of underflow, and if we subtract p before adding src+dst, no overflow. |
- return (s - p) + (d - p.zeroAlphas()); |
-} |
- |
-// We take care to use exact math for these next few modes where alphas |
-// and colors are calculated using significantly different math. We need |
-// to preserve premul invariants, and exact math makes this easier. |
-// |
-// TODO: Some of these implementations might be able to be sped up a bit |
-// while maintaining exact math, but let's follow up with that. |
- |
-XFERMODE(HardLight) { |
- auto sa = s.alphas(), |
- da = d.alphas(); |
- |
- auto srcover = s + (d * sa.inv()).div255(); |
- |
- auto isLite = ((sa-s) < s).widenLoHi(); |
- |
- auto lite = sa*da - ((da-d)*(sa-s) << 1), |
- dark = s*d << 1, |
- both = s*da.inv() + d*sa.inv(); |
- |
- auto alphas = srcover; |
- auto colors = (both + isLite.thenElse(lite, dark)).div255(); |
- return alphas.zeroColors() + colors.zeroAlphas(); |
-} |
-XFERMODE(Overlay) { return HardLight(d,s); } |
- |
-XFERMODE(Darken) { |
- auto sa = s.alphas(), |
- da = d.alphas(); |
- |
- auto sda = (s*da).div255(), |
- dsa = (d*sa).div255(); |
- |
- auto srcover = s + (d * sa.inv()).div255(), |
- dstover = d + (s * da.inv()).div255(); |
- auto alphas = srcover, |
- colors = (sda < dsa).thenElse(srcover, dstover); |
- return alphas.zeroColors() + colors.zeroAlphas(); |
-} |
-XFERMODE(Lighten) { |
- auto sa = s.alphas(), |
- da = d.alphas(); |
- |
- auto sda = (s*da).div255(), |
- dsa = (d*sa).div255(); |
- |
- auto srcover = s + (d * sa.inv()).div255(), |
- dstover = d + (s * da.inv()).div255(); |
- auto alphas = srcover, |
- colors = (dsa < sda).thenElse(srcover, dstover); |
- return alphas.zeroColors() + colors.zeroAlphas(); |
-} |
-#undef XFERMODE |
- |
-// Some xfermodes use math like divide or sqrt that's best done in floats 1 pixel at a time. |
-#define XFERMODE(Name) static SkPMFloat SK_VECTORCALL Name(SkPMFloat s, SkPMFloat d) |
- |
-XFERMODE(ColorDodge) { |
- auto sa = s.alphas(), |
- da = d.alphas(), |
- isa = Sk4f(1)-sa, |
- ida = Sk4f(1)-da; |
- |
- auto srcover = s + d*isa, |
- dstover = d + s*ida, |
- otherwise = sa * Sk4f::Min(da, (d*sa)*(sa-s).approxInvert()) + s*ida + d*isa; |
- |
- // Order matters here, preferring d==0 over s==sa. |
- auto colors = (d == Sk4f(0)).thenElse(dstover, |
- (s == sa).thenElse(srcover, |
- otherwise)); |
- return srcover * SkPMFloat(1,0,0,0) + colors * SkPMFloat(0,1,1,1); |
-} |
-XFERMODE(ColorBurn) { |
- auto sa = s.alphas(), |
- da = d.alphas(), |
- isa = Sk4f(1)-sa, |
- ida = Sk4f(1)-da; |
- |
- auto srcover = s + d*isa, |
- dstover = d + s*ida, |
- otherwise = sa*(da-Sk4f::Min(da, (da-d)*sa*s.approxInvert())) + s*ida + d*isa; |
- |
- // Order matters here, preferring d==da over s==0. |
- auto colors = (d == da).thenElse(dstover, |
- (s == Sk4f(0)).thenElse(srcover, |
- otherwise)); |
- return srcover * SkPMFloat(1,0,0,0) + colors * SkPMFloat(0,1,1,1); |
-} |
-XFERMODE(SoftLight) { |
- auto sa = s.alphas(), |
- da = d.alphas(), |
- isa = Sk4f(1)-sa, |
- ida = Sk4f(1)-da; |
- |
- // Some common terms. |
- auto m = (da > Sk4f(0)).thenElse(d / da, Sk4f(0)), |
- s2 = Sk4f(2)*s, |
- m4 = Sk4f(4)*m; |
- |
- // The logic forks three ways: |
- // 1. dark src? |
- // 2. light src, dark dst? |
- // 3. light src, light dst? |
- auto darkSrc = d*(sa + (s2 - sa)*(Sk4f(1) - m)), // Used in case 1. |
- darkDst = (m4*m4 + m4)*(m - Sk4f(1)) + Sk4f(7)*m, // Used in case 2. |
- liteDst = m.sqrt() - m, // Used in case 3. |
- liteSrc = d*sa + da*(s2-sa)*(Sk4f(4)*d <= da).thenElse(darkDst, liteDst); // Case 2 or 3? |
- |
- auto alpha = s + d*isa; |
- auto colors = s*ida + d*isa + (s2 <= sa).thenElse(darkSrc, liteSrc); // Case 1 or 2/3? |
- |
- return alpha * SkPMFloat(1,0,0,0) + colors * SkPMFloat(0,1,1,1); |
-} |
-#undef XFERMODE |
- |
-// A reasonable fallback mode for doing AA is to simply apply the transfermode first, |
-// then linearly interpolate the AA. |
-template <Sk4px (SK_VECTORCALL *Mode)(Sk4px, Sk4px)> |
-static Sk4px SK_VECTORCALL xfer_aa(Sk4px s, Sk4px d, Sk4px aa) { |
- Sk4px bw = Mode(s, d); |
- return (bw * aa + d * aa.inv()).div255(); |
-} |
- |
-// For some transfermodes we specialize AA, either for correctness or performance. |
-#define XFERMODE_AA(Name) \ |
- template <> Sk4px SK_VECTORCALL xfer_aa<Name>(Sk4px s, Sk4px d, Sk4px aa) |
- |
-// Plus' clamp needs to happen after AA. skia:3852 |
-XFERMODE_AA(Plus) { // [ clamp( (1-AA)D + (AA)(S+D) ) == clamp(D + AA*S) ] |
- return d.saturatedAdd(s.approxMulDiv255(aa)); |
-} |
- |
-#undef XFERMODE_AA |
- |
-class Sk4pxXfermode : public SkProcCoeffXfermode { |
-public: |
- typedef Sk4px (SK_VECTORCALL *Proc4)(Sk4px, Sk4px); |
- typedef Sk4px (SK_VECTORCALL *AAProc4)(Sk4px, Sk4px, Sk4px); |
- |
- Sk4pxXfermode(const ProcCoeff& rec, SkXfermode::Mode mode, Proc4 proc4, AAProc4 aaproc4) |
- : INHERITED(rec, mode) |
- , fProc4(proc4) |
- , fAAProc4(aaproc4) {} |
- |
- void xfer32(SkPMColor dst[], const SkPMColor src[], int n, const SkAlpha aa[]) const override { |
- if (NULL == aa) { |
- Sk4px::MapDstSrc(n, dst, src, [&](const Sk4px& dst4, const Sk4px& src4) { |
- return fProc4(src4, dst4); |
- }); |
- } else { |
- Sk4px::MapDstSrcAlpha(n, dst, src, aa, |
- [&](const Sk4px& dst4, const Sk4px& src4, const Sk4px& alpha) { |
- return fAAProc4(src4, dst4, alpha); |
- }); |
- } |
- } |
- |
- void xfer16(uint16_t dst[], const SkPMColor src[], int n, const SkAlpha aa[]) const override { |
- if (NULL == aa) { |
- Sk4px::MapDstSrc(n, dst, src, [&](const Sk4px& dst4, const Sk4px& src4) { |
- return fProc4(src4, dst4); |
- }); |
- } else { |
- Sk4px::MapDstSrcAlpha(n, dst, src, aa, |
- [&](const Sk4px& dst4, const Sk4px& src4, const Sk4px& alpha) { |
- return fAAProc4(src4, dst4, alpha); |
- }); |
- } |
- } |
- |
-private: |
- Proc4 fProc4; |
- AAProc4 fAAProc4; |
- typedef SkProcCoeffXfermode INHERITED; |
-}; |
- |
-class SkPMFloatXfermode : public SkProcCoeffXfermode { |
-public: |
- typedef SkPMFloat (SK_VECTORCALL *ProcF)(SkPMFloat, SkPMFloat); |
- SkPMFloatXfermode(const ProcCoeff& rec, SkXfermode::Mode mode, ProcF procf) |
- : INHERITED(rec, mode) |
- , fProcF(procf) {} |
- |
- void xfer32(SkPMColor dst[], const SkPMColor src[], int n, const SkAlpha aa[]) const override { |
- for (int i = 0; i < n; i++) { |
- dst[i] = aa ? this->xfer32(dst[i], src[i], aa[i]) |
- : this->xfer32(dst[i], src[i]); |
- } |
- } |
- |
- void xfer16(uint16_t dst[], const SkPMColor src[], int n, const SkAlpha aa[]) const override { |
- for (int i = 0; i < n; i++) { |
- SkPMColor dst32 = SkPixel16ToPixel32(dst[i]); |
- dst32 = aa ? this->xfer32(dst32, src[i], aa[i]) |
- : this->xfer32(dst32, src[i]); |
- dst[i] = SkPixel32ToPixel16(dst32); |
- } |
- } |
- |
-private: |
- inline SkPMColor xfer32(SkPMColor dst, SkPMColor src) const { |
- return fProcF(SkPMFloat(src), SkPMFloat(dst)).round(); |
- } |
- |
- inline SkPMColor xfer32(SkPMColor dst, SkPMColor src, SkAlpha aa) const { |
- SkPMFloat s(src), |
- d(dst), |
- b(fProcF(s,d)); |
- // We do aa in full float precision before going back down to bytes, because we can! |
- SkPMFloat a = Sk4f(aa) * Sk4f(1.0f/255); |
- b = b*a + d*(Sk4f(1)-a); |
- return b.round(); |
- } |
- |
- ProcF fProcF; |
- typedef SkProcCoeffXfermode INHERITED; |
-}; |
- |
-static SkProcCoeffXfermode* SkCreate4pxXfermode(const ProcCoeff& rec, SkXfermode::Mode mode) { |
- switch (mode) { |
- #define CASE(Mode) case SkXfermode::k##Mode##_Mode: \ |
- return SkNEW_ARGS(Sk4pxXfermode, (rec, mode, &Mode, &xfer_aa<Mode>)) |
- CASE(Clear); |
- CASE(Src); |
- CASE(Dst); |
- CASE(SrcOver); |
- CASE(DstOver); |
- CASE(SrcIn); |
- CASE(DstIn); |
- CASE(SrcOut); |
- CASE(DstOut); |
- CASE(SrcATop); |
- CASE(DstATop); |
- CASE(Xor); |
- CASE(Plus); |
- CASE(Modulate); |
- CASE(Screen); |
- CASE(Multiply); |
- CASE(Difference); |
- CASE(Exclusion); |
- CASE(HardLight); |
- CASE(Overlay); |
- CASE(Darken); |
- CASE(Lighten); |
- #undef CASE |
- |
- #define CASE(Mode) case SkXfermode::k##Mode##_Mode: \ |
- return SkNEW_ARGS(SkPMFloatXfermode, (rec, mode, &Mode)) |
- CASE(ColorDodge); |
- CASE(ColorBurn); |
- CASE(SoftLight); |
- #undef CASE |
- |
- default: break; |
- } |
- return nullptr; |
-} |
- |
-#endif |
- |
-} // namespace |
- |
-#endif//Sk4pxXfermode_DEFINED |