| Index: src/core/Sk4pxXfermode.h
|
| diff --git a/src/core/Sk4pxXfermode.h b/src/core/Sk4pxXfermode.h
|
| deleted file mode 100644
|
| index ad822edb8b609f32d7db0e29e0e7ef796258af1e..0000000000000000000000000000000000000000
|
| --- a/src/core/Sk4pxXfermode.h
|
| +++ /dev/null
|
| @@ -1,330 +0,0 @@
|
| -/*
|
| - * Copyright 2015 Google Inc.
|
| - *
|
| - * Use of this source code is governed by a BSD-style license that can be
|
| - * found in the LICENSE file.
|
| - */
|
| -
|
| -#ifndef Sk4pxXfermode_DEFINED
|
| -#define Sk4pxXfermode_DEFINED
|
| -
|
| -#include "Sk4px.h"
|
| -#include "SkPMFloat.h"
|
| -#include "SkXfermode_proccoeff.h"
|
| -
|
| -// This file is possibly included into multiple .cpp files.
|
| -// Each gets its own independent instantiation by wrapping in an anonymous namespace.
|
| -namespace {
|
| -
|
| -#if defined(SK_CPU_ARM32) && !defined(SK_ARM_HAS_NEON)
|
| - // Signals SkXfermode.cpp to look for runtime-detected NEON.
|
| - static SkProcCoeffXfermode* SkCreate4pxXfermode(const ProcCoeff& rec, SkXfermode::Mode mode) {
|
| - return nullptr;
|
| - }
|
| -#else
|
| -
|
| -// Most xfermodes can be done most efficiently 4 pixels at a time in 8 or 16-bit fixed point.
|
| -#define XFERMODE(Name) static Sk4px SK_VECTORCALL Name(Sk4px s, Sk4px d)
|
| -
|
| -XFERMODE(Clear) { return Sk4px::DupPMColor(0); }
|
| -XFERMODE(Src) { return s; }
|
| -XFERMODE(Dst) { return d; }
|
| -XFERMODE(SrcIn) { return s.approxMulDiv255(d.alphas() ); }
|
| -XFERMODE(SrcOut) { return s.approxMulDiv255(d.alphas().inv()); }
|
| -XFERMODE(SrcOver) { return s + d.approxMulDiv255(s.alphas().inv()); }
|
| -XFERMODE(DstIn) { return SrcIn (d,s); }
|
| -XFERMODE(DstOut) { return SrcOut (d,s); }
|
| -XFERMODE(DstOver) { return SrcOver(d,s); }
|
| -
|
| -// [ S * Da + (1 - Sa) * D]
|
| -XFERMODE(SrcATop) { return (s * d.alphas() + d * s.alphas().inv()).div255(); }
|
| -XFERMODE(DstATop) { return SrcATop(d,s); }
|
| -//[ S * (1 - Da) + (1 - Sa) * D ]
|
| -XFERMODE(Xor) { return (s * d.alphas().inv() + d * s.alphas().inv()).div255(); }
|
| -// [S + D ]
|
| -XFERMODE(Plus) { return s.saturatedAdd(d); }
|
| -// [S * D ]
|
| -XFERMODE(Modulate) { return s.approxMulDiv255(d); }
|
| -// [S + D - S * D]
|
| -XFERMODE(Screen) {
|
| - // Doing the math as S + (1-S)*D or S + (D - S*D) means the add and subtract can be done
|
| - // in 8-bit space without overflow. S + (1-S)*D is a touch faster because inv() is cheap.
|
| - return s + d.approxMulDiv255(s.inv());
|
| -}
|
| -XFERMODE(Multiply) { return (s * d.alphas().inv() + d * s.alphas().inv() + s*d).div255(); }
|
| -// [ Sa + Da - Sa*Da, Sc + Dc - 2*min(Sc*Da, Dc*Sa) ] (And notice Sa*Da == min(Sa*Da, Da*Sa).)
|
| -XFERMODE(Difference) {
|
| - auto m = Sk4px::Wide::Min(s * d.alphas(), d * s.alphas()).div255();
|
| - // There's no chance of underflow, and if we subtract m before adding s+d, no overflow.
|
| - return (s - m) + (d - m.zeroAlphas());
|
| -}
|
| -// [ Sa + Da - Sa*Da, Sc + Dc - 2*Sc*Dc ]
|
| -XFERMODE(Exclusion) {
|
| - auto p = s.approxMulDiv255(d);
|
| - // There's no chance of underflow, and if we subtract p before adding src+dst, no overflow.
|
| - return (s - p) + (d - p.zeroAlphas());
|
| -}
|
| -
|
| -// We take care to use exact math for these next few modes where alphas
|
| -// and colors are calculated using significantly different math. We need
|
| -// to preserve premul invariants, and exact math makes this easier.
|
| -//
|
| -// TODO: Some of these implementations might be able to be sped up a bit
|
| -// while maintaining exact math, but let's follow up with that.
|
| -
|
| -XFERMODE(HardLight) {
|
| - auto sa = s.alphas(),
|
| - da = d.alphas();
|
| -
|
| - auto srcover = s + (d * sa.inv()).div255();
|
| -
|
| - auto isLite = ((sa-s) < s).widenLoHi();
|
| -
|
| - auto lite = sa*da - ((da-d)*(sa-s) << 1),
|
| - dark = s*d << 1,
|
| - both = s*da.inv() + d*sa.inv();
|
| -
|
| - auto alphas = srcover;
|
| - auto colors = (both + isLite.thenElse(lite, dark)).div255();
|
| - return alphas.zeroColors() + colors.zeroAlphas();
|
| -}
|
| -XFERMODE(Overlay) { return HardLight(d,s); }
|
| -
|
| -XFERMODE(Darken) {
|
| - auto sa = s.alphas(),
|
| - da = d.alphas();
|
| -
|
| - auto sda = (s*da).div255(),
|
| - dsa = (d*sa).div255();
|
| -
|
| - auto srcover = s + (d * sa.inv()).div255(),
|
| - dstover = d + (s * da.inv()).div255();
|
| - auto alphas = srcover,
|
| - colors = (sda < dsa).thenElse(srcover, dstover);
|
| - return alphas.zeroColors() + colors.zeroAlphas();
|
| -}
|
| -XFERMODE(Lighten) {
|
| - auto sa = s.alphas(),
|
| - da = d.alphas();
|
| -
|
| - auto sda = (s*da).div255(),
|
| - dsa = (d*sa).div255();
|
| -
|
| - auto srcover = s + (d * sa.inv()).div255(),
|
| - dstover = d + (s * da.inv()).div255();
|
| - auto alphas = srcover,
|
| - colors = (dsa < sda).thenElse(srcover, dstover);
|
| - return alphas.zeroColors() + colors.zeroAlphas();
|
| -}
|
| -#undef XFERMODE
|
| -
|
| -// Some xfermodes use math like divide or sqrt that's best done in floats 1 pixel at a time.
|
| -#define XFERMODE(Name) static SkPMFloat SK_VECTORCALL Name(SkPMFloat s, SkPMFloat d)
|
| -
|
| -XFERMODE(ColorDodge) {
|
| - auto sa = s.alphas(),
|
| - da = d.alphas(),
|
| - isa = Sk4f(1)-sa,
|
| - ida = Sk4f(1)-da;
|
| -
|
| - auto srcover = s + d*isa,
|
| - dstover = d + s*ida,
|
| - otherwise = sa * Sk4f::Min(da, (d*sa)*(sa-s).approxInvert()) + s*ida + d*isa;
|
| -
|
| - // Order matters here, preferring d==0 over s==sa.
|
| - auto colors = (d == Sk4f(0)).thenElse(dstover,
|
| - (s == sa).thenElse(srcover,
|
| - otherwise));
|
| - return srcover * SkPMFloat(1,0,0,0) + colors * SkPMFloat(0,1,1,1);
|
| -}
|
| -XFERMODE(ColorBurn) {
|
| - auto sa = s.alphas(),
|
| - da = d.alphas(),
|
| - isa = Sk4f(1)-sa,
|
| - ida = Sk4f(1)-da;
|
| -
|
| - auto srcover = s + d*isa,
|
| - dstover = d + s*ida,
|
| - otherwise = sa*(da-Sk4f::Min(da, (da-d)*sa*s.approxInvert())) + s*ida + d*isa;
|
| -
|
| - // Order matters here, preferring d==da over s==0.
|
| - auto colors = (d == da).thenElse(dstover,
|
| - (s == Sk4f(0)).thenElse(srcover,
|
| - otherwise));
|
| - return srcover * SkPMFloat(1,0,0,0) + colors * SkPMFloat(0,1,1,1);
|
| -}
|
| -XFERMODE(SoftLight) {
|
| - auto sa = s.alphas(),
|
| - da = d.alphas(),
|
| - isa = Sk4f(1)-sa,
|
| - ida = Sk4f(1)-da;
|
| -
|
| - // Some common terms.
|
| - auto m = (da > Sk4f(0)).thenElse(d / da, Sk4f(0)),
|
| - s2 = Sk4f(2)*s,
|
| - m4 = Sk4f(4)*m;
|
| -
|
| - // The logic forks three ways:
|
| - // 1. dark src?
|
| - // 2. light src, dark dst?
|
| - // 3. light src, light dst?
|
| - auto darkSrc = d*(sa + (s2 - sa)*(Sk4f(1) - m)), // Used in case 1.
|
| - darkDst = (m4*m4 + m4)*(m - Sk4f(1)) + Sk4f(7)*m, // Used in case 2.
|
| - liteDst = m.sqrt() - m, // Used in case 3.
|
| - liteSrc = d*sa + da*(s2-sa)*(Sk4f(4)*d <= da).thenElse(darkDst, liteDst); // Case 2 or 3?
|
| -
|
| - auto alpha = s + d*isa;
|
| - auto colors = s*ida + d*isa + (s2 <= sa).thenElse(darkSrc, liteSrc); // Case 1 or 2/3?
|
| -
|
| - return alpha * SkPMFloat(1,0,0,0) + colors * SkPMFloat(0,1,1,1);
|
| -}
|
| -#undef XFERMODE
|
| -
|
| -// A reasonable fallback mode for doing AA is to simply apply the transfermode first,
|
| -// then linearly interpolate the AA.
|
| -template <Sk4px (SK_VECTORCALL *Mode)(Sk4px, Sk4px)>
|
| -static Sk4px SK_VECTORCALL xfer_aa(Sk4px s, Sk4px d, Sk4px aa) {
|
| - Sk4px bw = Mode(s, d);
|
| - return (bw * aa + d * aa.inv()).div255();
|
| -}
|
| -
|
| -// For some transfermodes we specialize AA, either for correctness or performance.
|
| -#define XFERMODE_AA(Name) \
|
| - template <> Sk4px SK_VECTORCALL xfer_aa<Name>(Sk4px s, Sk4px d, Sk4px aa)
|
| -
|
| -// Plus' clamp needs to happen after AA. skia:3852
|
| -XFERMODE_AA(Plus) { // [ clamp( (1-AA)D + (AA)(S+D) ) == clamp(D + AA*S) ]
|
| - return d.saturatedAdd(s.approxMulDiv255(aa));
|
| -}
|
| -
|
| -#undef XFERMODE_AA
|
| -
|
| -class Sk4pxXfermode : public SkProcCoeffXfermode {
|
| -public:
|
| - typedef Sk4px (SK_VECTORCALL *Proc4)(Sk4px, Sk4px);
|
| - typedef Sk4px (SK_VECTORCALL *AAProc4)(Sk4px, Sk4px, Sk4px);
|
| -
|
| - Sk4pxXfermode(const ProcCoeff& rec, SkXfermode::Mode mode, Proc4 proc4, AAProc4 aaproc4)
|
| - : INHERITED(rec, mode)
|
| - , fProc4(proc4)
|
| - , fAAProc4(aaproc4) {}
|
| -
|
| - void xfer32(SkPMColor dst[], const SkPMColor src[], int n, const SkAlpha aa[]) const override {
|
| - if (NULL == aa) {
|
| - Sk4px::MapDstSrc(n, dst, src, [&](const Sk4px& dst4, const Sk4px& src4) {
|
| - return fProc4(src4, dst4);
|
| - });
|
| - } else {
|
| - Sk4px::MapDstSrcAlpha(n, dst, src, aa,
|
| - [&](const Sk4px& dst4, const Sk4px& src4, const Sk4px& alpha) {
|
| - return fAAProc4(src4, dst4, alpha);
|
| - });
|
| - }
|
| - }
|
| -
|
| - void xfer16(uint16_t dst[], const SkPMColor src[], int n, const SkAlpha aa[]) const override {
|
| - if (NULL == aa) {
|
| - Sk4px::MapDstSrc(n, dst, src, [&](const Sk4px& dst4, const Sk4px& src4) {
|
| - return fProc4(src4, dst4);
|
| - });
|
| - } else {
|
| - Sk4px::MapDstSrcAlpha(n, dst, src, aa,
|
| - [&](const Sk4px& dst4, const Sk4px& src4, const Sk4px& alpha) {
|
| - return fAAProc4(src4, dst4, alpha);
|
| - });
|
| - }
|
| - }
|
| -
|
| -private:
|
| - Proc4 fProc4;
|
| - AAProc4 fAAProc4;
|
| - typedef SkProcCoeffXfermode INHERITED;
|
| -};
|
| -
|
| -class SkPMFloatXfermode : public SkProcCoeffXfermode {
|
| -public:
|
| - typedef SkPMFloat (SK_VECTORCALL *ProcF)(SkPMFloat, SkPMFloat);
|
| - SkPMFloatXfermode(const ProcCoeff& rec, SkXfermode::Mode mode, ProcF procf)
|
| - : INHERITED(rec, mode)
|
| - , fProcF(procf) {}
|
| -
|
| - void xfer32(SkPMColor dst[], const SkPMColor src[], int n, const SkAlpha aa[]) const override {
|
| - for (int i = 0; i < n; i++) {
|
| - dst[i] = aa ? this->xfer32(dst[i], src[i], aa[i])
|
| - : this->xfer32(dst[i], src[i]);
|
| - }
|
| - }
|
| -
|
| - void xfer16(uint16_t dst[], const SkPMColor src[], int n, const SkAlpha aa[]) const override {
|
| - for (int i = 0; i < n; i++) {
|
| - SkPMColor dst32 = SkPixel16ToPixel32(dst[i]);
|
| - dst32 = aa ? this->xfer32(dst32, src[i], aa[i])
|
| - : this->xfer32(dst32, src[i]);
|
| - dst[i] = SkPixel32ToPixel16(dst32);
|
| - }
|
| - }
|
| -
|
| -private:
|
| - inline SkPMColor xfer32(SkPMColor dst, SkPMColor src) const {
|
| - return fProcF(SkPMFloat(src), SkPMFloat(dst)).round();
|
| - }
|
| -
|
| - inline SkPMColor xfer32(SkPMColor dst, SkPMColor src, SkAlpha aa) const {
|
| - SkPMFloat s(src),
|
| - d(dst),
|
| - b(fProcF(s,d));
|
| - // We do aa in full float precision before going back down to bytes, because we can!
|
| - SkPMFloat a = Sk4f(aa) * Sk4f(1.0f/255);
|
| - b = b*a + d*(Sk4f(1)-a);
|
| - return b.round();
|
| - }
|
| -
|
| - ProcF fProcF;
|
| - typedef SkProcCoeffXfermode INHERITED;
|
| -};
|
| -
|
| -static SkProcCoeffXfermode* SkCreate4pxXfermode(const ProcCoeff& rec, SkXfermode::Mode mode) {
|
| - switch (mode) {
|
| - #define CASE(Mode) case SkXfermode::k##Mode##_Mode: \
|
| - return SkNEW_ARGS(Sk4pxXfermode, (rec, mode, &Mode, &xfer_aa<Mode>))
|
| - CASE(Clear);
|
| - CASE(Src);
|
| - CASE(Dst);
|
| - CASE(SrcOver);
|
| - CASE(DstOver);
|
| - CASE(SrcIn);
|
| - CASE(DstIn);
|
| - CASE(SrcOut);
|
| - CASE(DstOut);
|
| - CASE(SrcATop);
|
| - CASE(DstATop);
|
| - CASE(Xor);
|
| - CASE(Plus);
|
| - CASE(Modulate);
|
| - CASE(Screen);
|
| - CASE(Multiply);
|
| - CASE(Difference);
|
| - CASE(Exclusion);
|
| - CASE(HardLight);
|
| - CASE(Overlay);
|
| - CASE(Darken);
|
| - CASE(Lighten);
|
| - #undef CASE
|
| -
|
| - #define CASE(Mode) case SkXfermode::k##Mode##_Mode: \
|
| - return SkNEW_ARGS(SkPMFloatXfermode, (rec, mode, &Mode))
|
| - CASE(ColorDodge);
|
| - CASE(ColorBurn);
|
| - CASE(SoftLight);
|
| - #undef CASE
|
| -
|
| - default: break;
|
| - }
|
| - return nullptr;
|
| -}
|
| -
|
| -#endif
|
| -
|
| -} // namespace
|
| -
|
| -#endif//Sk4pxXfermode_DEFINED
|
|
|