| OLD | NEW |
| (Empty) |
| 1 /* | |
| 2 * Copyright 2015 Google Inc. | |
| 3 * | |
| 4 * Use of this source code is governed by a BSD-style license that can be | |
| 5 * found in the LICENSE file. | |
| 6 */ | |
| 7 | |
| 8 #ifndef Sk4pxXfermode_DEFINED | |
| 9 #define Sk4pxXfermode_DEFINED | |
| 10 | |
| 11 #include "Sk4px.h" | |
| 12 #include "SkPMFloat.h" | |
| 13 #include "SkXfermode_proccoeff.h" | |
| 14 | |
| 15 // This file is possibly included into multiple .cpp files. | |
| 16 // Each gets its own independent instantiation by wrapping in an anonymous names
pace. | |
| 17 namespace { | |
| 18 | |
| 19 #if defined(SK_CPU_ARM32) && !defined(SK_ARM_HAS_NEON) | |
| 20 // Signals SkXfermode.cpp to look for runtime-detected NEON. | |
| 21 static SkProcCoeffXfermode* SkCreate4pxXfermode(const ProcCoeff& rec, SkXfer
mode::Mode mode) { | |
| 22 return nullptr; | |
| 23 } | |
| 24 #else | |
| 25 | |
| 26 // Most xfermodes can be done most efficiently 4 pixels at a time in 8 or 16-bit
fixed point. | |
| 27 #define XFERMODE(Name) static Sk4px SK_VECTORCALL Name(Sk4px s, Sk4px d) | |
| 28 | |
| 29 XFERMODE(Clear) { return Sk4px::DupPMColor(0); } | |
| 30 XFERMODE(Src) { return s; } | |
| 31 XFERMODE(Dst) { return d; } | |
| 32 XFERMODE(SrcIn) { return s.approxMulDiv255(d.alphas() ); } | |
| 33 XFERMODE(SrcOut) { return s.approxMulDiv255(d.alphas().inv()); } | |
| 34 XFERMODE(SrcOver) { return s + d.approxMulDiv255(s.alphas().inv()); } | |
| 35 XFERMODE(DstIn) { return SrcIn (d,s); } | |
| 36 XFERMODE(DstOut) { return SrcOut (d,s); } | |
| 37 XFERMODE(DstOver) { return SrcOver(d,s); } | |
| 38 | |
| 39 // [ S * Da + (1 - Sa) * D] | |
| 40 XFERMODE(SrcATop) { return (s * d.alphas() + d * s.alphas().inv()).div255(); } | |
| 41 XFERMODE(DstATop) { return SrcATop(d,s); } | |
| 42 //[ S * (1 - Da) + (1 - Sa) * D ] | |
| 43 XFERMODE(Xor) { return (s * d.alphas().inv() + d * s.alphas().inv()).div255(); } | |
| 44 // [S + D ] | |
| 45 XFERMODE(Plus) { return s.saturatedAdd(d); } | |
| 46 // [S * D ] | |
| 47 XFERMODE(Modulate) { return s.approxMulDiv255(d); } | |
| 48 // [S + D - S * D] | |
| 49 XFERMODE(Screen) { | |
| 50 // Doing the math as S + (1-S)*D or S + (D - S*D) means the add and subtract
can be done | |
| 51 // in 8-bit space without overflow. S + (1-S)*D is a touch faster because i
nv() is cheap. | |
| 52 return s + d.approxMulDiv255(s.inv()); | |
| 53 } | |
| 54 XFERMODE(Multiply) { return (s * d.alphas().inv() + d * s.alphas().inv() + s*d).
div255(); } | |
| 55 // [ Sa + Da - Sa*Da, Sc + Dc - 2*min(Sc*Da, Dc*Sa) ] (And notice Sa*Da == min(
Sa*Da, Da*Sa).) | |
| 56 XFERMODE(Difference) { | |
| 57 auto m = Sk4px::Wide::Min(s * d.alphas(), d * s.alphas()).div255(); | |
| 58 // There's no chance of underflow, and if we subtract m before adding s+d, n
o overflow. | |
| 59 return (s - m) + (d - m.zeroAlphas()); | |
| 60 } | |
| 61 // [ Sa + Da - Sa*Da, Sc + Dc - 2*Sc*Dc ] | |
| 62 XFERMODE(Exclusion) { | |
| 63 auto p = s.approxMulDiv255(d); | |
| 64 // There's no chance of underflow, and if we subtract p before adding src+ds
t, no overflow. | |
| 65 return (s - p) + (d - p.zeroAlphas()); | |
| 66 } | |
| 67 | |
| 68 // We take care to use exact math for these next few modes where alphas | |
| 69 // and colors are calculated using significantly different math. We need | |
| 70 // to preserve premul invariants, and exact math makes this easier. | |
| 71 // | |
| 72 // TODO: Some of these implementations might be able to be sped up a bit | |
| 73 // while maintaining exact math, but let's follow up with that. | |
| 74 | |
| 75 XFERMODE(HardLight) { | |
| 76 auto sa = s.alphas(), | |
| 77 da = d.alphas(); | |
| 78 | |
| 79 auto srcover = s + (d * sa.inv()).div255(); | |
| 80 | |
| 81 auto isLite = ((sa-s) < s).widenLoHi(); | |
| 82 | |
| 83 auto lite = sa*da - ((da-d)*(sa-s) << 1), | |
| 84 dark = s*d << 1, | |
| 85 both = s*da.inv() + d*sa.inv(); | |
| 86 | |
| 87 auto alphas = srcover; | |
| 88 auto colors = (both + isLite.thenElse(lite, dark)).div255(); | |
| 89 return alphas.zeroColors() + colors.zeroAlphas(); | |
| 90 } | |
| 91 XFERMODE(Overlay) { return HardLight(d,s); } | |
| 92 | |
| 93 XFERMODE(Darken) { | |
| 94 auto sa = s.alphas(), | |
| 95 da = d.alphas(); | |
| 96 | |
| 97 auto sda = (s*da).div255(), | |
| 98 dsa = (d*sa).div255(); | |
| 99 | |
| 100 auto srcover = s + (d * sa.inv()).div255(), | |
| 101 dstover = d + (s * da.inv()).div255(); | |
| 102 auto alphas = srcover, | |
| 103 colors = (sda < dsa).thenElse(srcover, dstover); | |
| 104 return alphas.zeroColors() + colors.zeroAlphas(); | |
| 105 } | |
| 106 XFERMODE(Lighten) { | |
| 107 auto sa = s.alphas(), | |
| 108 da = d.alphas(); | |
| 109 | |
| 110 auto sda = (s*da).div255(), | |
| 111 dsa = (d*sa).div255(); | |
| 112 | |
| 113 auto srcover = s + (d * sa.inv()).div255(), | |
| 114 dstover = d + (s * da.inv()).div255(); | |
| 115 auto alphas = srcover, | |
| 116 colors = (dsa < sda).thenElse(srcover, dstover); | |
| 117 return alphas.zeroColors() + colors.zeroAlphas(); | |
| 118 } | |
| 119 #undef XFERMODE | |
| 120 | |
| 121 // Some xfermodes use math like divide or sqrt that's best done in floats 1 pixe
l at a time. | |
| 122 #define XFERMODE(Name) static SkPMFloat SK_VECTORCALL Name(SkPMFloat s, SkPMFloa
t d) | |
| 123 | |
| 124 XFERMODE(ColorDodge) { | |
| 125 auto sa = s.alphas(), | |
| 126 da = d.alphas(), | |
| 127 isa = Sk4f(1)-sa, | |
| 128 ida = Sk4f(1)-da; | |
| 129 | |
| 130 auto srcover = s + d*isa, | |
| 131 dstover = d + s*ida, | |
| 132 otherwise = sa * Sk4f::Min(da, (d*sa)*(sa-s).approxInvert()) + s*ida +
d*isa; | |
| 133 | |
| 134 // Order matters here, preferring d==0 over s==sa. | |
| 135 auto colors = (d == Sk4f(0)).thenElse(dstover, | |
| 136 (s == sa).thenElse(srcover, | |
| 137 otherwise)); | |
| 138 return srcover * SkPMFloat(1,0,0,0) + colors * SkPMFloat(0,1,1,1); | |
| 139 } | |
| 140 XFERMODE(ColorBurn) { | |
| 141 auto sa = s.alphas(), | |
| 142 da = d.alphas(), | |
| 143 isa = Sk4f(1)-sa, | |
| 144 ida = Sk4f(1)-da; | |
| 145 | |
| 146 auto srcover = s + d*isa, | |
| 147 dstover = d + s*ida, | |
| 148 otherwise = sa*(da-Sk4f::Min(da, (da-d)*sa*s.approxInvert())) + s*ida +
d*isa; | |
| 149 | |
| 150 // Order matters here, preferring d==da over s==0. | |
| 151 auto colors = (d == da).thenElse(dstover, | |
| 152 (s == Sk4f(0)).thenElse(srcover, | |
| 153 otherwise)); | |
| 154 return srcover * SkPMFloat(1,0,0,0) + colors * SkPMFloat(0,1,1,1); | |
| 155 } | |
| 156 XFERMODE(SoftLight) { | |
| 157 auto sa = s.alphas(), | |
| 158 da = d.alphas(), | |
| 159 isa = Sk4f(1)-sa, | |
| 160 ida = Sk4f(1)-da; | |
| 161 | |
| 162 // Some common terms. | |
| 163 auto m = (da > Sk4f(0)).thenElse(d / da, Sk4f(0)), | |
| 164 s2 = Sk4f(2)*s, | |
| 165 m4 = Sk4f(4)*m; | |
| 166 | |
| 167 // The logic forks three ways: | |
| 168 // 1. dark src? | |
| 169 // 2. light src, dark dst? | |
| 170 // 3. light src, light dst? | |
| 171 auto darkSrc = d*(sa + (s2 - sa)*(Sk4f(1) - m)), // Used in case 1. | |
| 172 darkDst = (m4*m4 + m4)*(m - Sk4f(1)) + Sk4f(7)*m, // Used in case 2. | |
| 173 liteDst = m.sqrt() - m, // Used in case 3. | |
| 174 liteSrc = d*sa + da*(s2-sa)*(Sk4f(4)*d <= da).thenElse(darkDst, liteDst
); // Case 2 or 3? | |
| 175 | |
| 176 auto alpha = s + d*isa; | |
| 177 auto colors = s*ida + d*isa + (s2 <= sa).thenElse(darkSrc, liteSrc);
// Case 1 or 2/3? | |
| 178 | |
| 179 return alpha * SkPMFloat(1,0,0,0) + colors * SkPMFloat(0,1,1,1); | |
| 180 } | |
| 181 #undef XFERMODE | |
| 182 | |
| 183 // A reasonable fallback mode for doing AA is to simply apply the transfermode f
irst, | |
| 184 // then linearly interpolate the AA. | |
| 185 template <Sk4px (SK_VECTORCALL *Mode)(Sk4px, Sk4px)> | |
| 186 static Sk4px SK_VECTORCALL xfer_aa(Sk4px s, Sk4px d, Sk4px aa) { | |
| 187 Sk4px bw = Mode(s, d); | |
| 188 return (bw * aa + d * aa.inv()).div255(); | |
| 189 } | |
| 190 | |
| 191 // For some transfermodes we specialize AA, either for correctness or performanc
e. | |
| 192 #define XFERMODE_AA(Name) \ | |
| 193 template <> Sk4px SK_VECTORCALL xfer_aa<Name>(Sk4px s, Sk4px d, Sk4px aa) | |
| 194 | |
| 195 // Plus' clamp needs to happen after AA. skia:3852 | |
| 196 XFERMODE_AA(Plus) { // [ clamp( (1-AA)D + (AA)(S+D) ) == clamp(D + AA*S) ] | |
| 197 return d.saturatedAdd(s.approxMulDiv255(aa)); | |
| 198 } | |
| 199 | |
| 200 #undef XFERMODE_AA | |
| 201 | |
| 202 class Sk4pxXfermode : public SkProcCoeffXfermode { | |
| 203 public: | |
| 204 typedef Sk4px (SK_VECTORCALL *Proc4)(Sk4px, Sk4px); | |
| 205 typedef Sk4px (SK_VECTORCALL *AAProc4)(Sk4px, Sk4px, Sk4px); | |
| 206 | |
| 207 Sk4pxXfermode(const ProcCoeff& rec, SkXfermode::Mode mode, Proc4 proc4, AAPr
oc4 aaproc4) | |
| 208 : INHERITED(rec, mode) | |
| 209 , fProc4(proc4) | |
| 210 , fAAProc4(aaproc4) {} | |
| 211 | |
| 212 void xfer32(SkPMColor dst[], const SkPMColor src[], int n, const SkAlpha aa[
]) const override { | |
| 213 if (NULL == aa) { | |
| 214 Sk4px::MapDstSrc(n, dst, src, [&](const Sk4px& dst4, const Sk4px& sr
c4) { | |
| 215 return fProc4(src4, dst4); | |
| 216 }); | |
| 217 } else { | |
| 218 Sk4px::MapDstSrcAlpha(n, dst, src, aa, | |
| 219 [&](const Sk4px& dst4, const Sk4px& src4, const Sk4px& alpha
) { | |
| 220 return fAAProc4(src4, dst4, alpha); | |
| 221 }); | |
| 222 } | |
| 223 } | |
| 224 | |
| 225 void xfer16(uint16_t dst[], const SkPMColor src[], int n, const SkAlpha aa[]
) const override { | |
| 226 if (NULL == aa) { | |
| 227 Sk4px::MapDstSrc(n, dst, src, [&](const Sk4px& dst4, const Sk4px& sr
c4) { | |
| 228 return fProc4(src4, dst4); | |
| 229 }); | |
| 230 } else { | |
| 231 Sk4px::MapDstSrcAlpha(n, dst, src, aa, | |
| 232 [&](const Sk4px& dst4, const Sk4px& src4, const Sk4px& alpha
) { | |
| 233 return fAAProc4(src4, dst4, alpha); | |
| 234 }); | |
| 235 } | |
| 236 } | |
| 237 | |
| 238 private: | |
| 239 Proc4 fProc4; | |
| 240 AAProc4 fAAProc4; | |
| 241 typedef SkProcCoeffXfermode INHERITED; | |
| 242 }; | |
| 243 | |
| 244 class SkPMFloatXfermode : public SkProcCoeffXfermode { | |
| 245 public: | |
| 246 typedef SkPMFloat (SK_VECTORCALL *ProcF)(SkPMFloat, SkPMFloat); | |
| 247 SkPMFloatXfermode(const ProcCoeff& rec, SkXfermode::Mode mode, ProcF procf) | |
| 248 : INHERITED(rec, mode) | |
| 249 , fProcF(procf) {} | |
| 250 | |
| 251 void xfer32(SkPMColor dst[], const SkPMColor src[], int n, const SkAlpha aa[
]) const override { | |
| 252 for (int i = 0; i < n; i++) { | |
| 253 dst[i] = aa ? this->xfer32(dst[i], src[i], aa[i]) | |
| 254 : this->xfer32(dst[i], src[i]); | |
| 255 } | |
| 256 } | |
| 257 | |
| 258 void xfer16(uint16_t dst[], const SkPMColor src[], int n, const SkAlpha aa[]
) const override { | |
| 259 for (int i = 0; i < n; i++) { | |
| 260 SkPMColor dst32 = SkPixel16ToPixel32(dst[i]); | |
| 261 dst32 = aa ? this->xfer32(dst32, src[i], aa[i]) | |
| 262 : this->xfer32(dst32, src[i]); | |
| 263 dst[i] = SkPixel32ToPixel16(dst32); | |
| 264 } | |
| 265 } | |
| 266 | |
| 267 private: | |
| 268 inline SkPMColor xfer32(SkPMColor dst, SkPMColor src) const { | |
| 269 return fProcF(SkPMFloat(src), SkPMFloat(dst)).round(); | |
| 270 } | |
| 271 | |
| 272 inline SkPMColor xfer32(SkPMColor dst, SkPMColor src, SkAlpha aa) const { | |
| 273 SkPMFloat s(src), | |
| 274 d(dst), | |
| 275 b(fProcF(s,d)); | |
| 276 // We do aa in full float precision before going back down to bytes, bec
ause we can! | |
| 277 SkPMFloat a = Sk4f(aa) * Sk4f(1.0f/255); | |
| 278 b = b*a + d*(Sk4f(1)-a); | |
| 279 return b.round(); | |
| 280 } | |
| 281 | |
| 282 ProcF fProcF; | |
| 283 typedef SkProcCoeffXfermode INHERITED; | |
| 284 }; | |
| 285 | |
| 286 static SkProcCoeffXfermode* SkCreate4pxXfermode(const ProcCoeff& rec, SkXfermode
::Mode mode) { | |
| 287 switch (mode) { | |
| 288 #define CASE(Mode) case SkXfermode::k##Mode##_Mode: \ | |
| 289 return SkNEW_ARGS(Sk4pxXfermode, (rec, mode, &Mode, &xfer_aa<Mode>)) | |
| 290 CASE(Clear); | |
| 291 CASE(Src); | |
| 292 CASE(Dst); | |
| 293 CASE(SrcOver); | |
| 294 CASE(DstOver); | |
| 295 CASE(SrcIn); | |
| 296 CASE(DstIn); | |
| 297 CASE(SrcOut); | |
| 298 CASE(DstOut); | |
| 299 CASE(SrcATop); | |
| 300 CASE(DstATop); | |
| 301 CASE(Xor); | |
| 302 CASE(Plus); | |
| 303 CASE(Modulate); | |
| 304 CASE(Screen); | |
| 305 CASE(Multiply); | |
| 306 CASE(Difference); | |
| 307 CASE(Exclusion); | |
| 308 CASE(HardLight); | |
| 309 CASE(Overlay); | |
| 310 CASE(Darken); | |
| 311 CASE(Lighten); | |
| 312 #undef CASE | |
| 313 | |
| 314 #define CASE(Mode) case SkXfermode::k##Mode##_Mode: \ | |
| 315 return SkNEW_ARGS(SkPMFloatXfermode, (rec, mode, &Mode)) | |
| 316 CASE(ColorDodge); | |
| 317 CASE(ColorBurn); | |
| 318 CASE(SoftLight); | |
| 319 #undef CASE | |
| 320 | |
| 321 default: break; | |
| 322 } | |
| 323 return nullptr; | |
| 324 } | |
| 325 | |
| 326 #endif | |
| 327 | |
| 328 } // namespace | |
| 329 | |
| 330 #endif//Sk4pxXfermode_DEFINED | |
| OLD | NEW |