| OLD | NEW |
| (Empty) |
| 1 // Copyright 2012 The Chromium Authors. All rights reserved. | |
| 2 // Use of this source code is governed by a BSD-style license that can be | |
| 3 // found in the LICENSE file. | |
| 4 | |
| 5 #define _USE_MATH_DEFINES | |
| 6 #include <math.h> | |
| 7 | |
| 8 #include "testing/gtest/include/gtest/gtest.h" | |
| 9 #include "third_party/WebKit/Source/Platform/chromium/public/WebTransformationMa
trix.h" | |
| 10 | |
| 11 #define EXPECT_ROW1_EQ(a, b, c, d, matrix) \ | |
| 12 EXPECT_FLOAT_EQ((a), (matrix).m11()); \ | |
| 13 EXPECT_FLOAT_EQ((b), (matrix).m21()); \ | |
| 14 EXPECT_FLOAT_EQ((c), (matrix).m31()); \ | |
| 15 EXPECT_FLOAT_EQ((d), (matrix).m41()); | |
| 16 | |
| 17 #define EXPECT_ROW2_EQ(a, b, c, d, matrix) \ | |
| 18 EXPECT_FLOAT_EQ((a), (matrix).m12()); \ | |
| 19 EXPECT_FLOAT_EQ((b), (matrix).m22()); \ | |
| 20 EXPECT_FLOAT_EQ((c), (matrix).m32()); \ | |
| 21 EXPECT_FLOAT_EQ((d), (matrix).m42()); | |
| 22 | |
| 23 #define EXPECT_ROW3_EQ(a, b, c, d, matrix) \ | |
| 24 EXPECT_FLOAT_EQ((a), (matrix).m13()); \ | |
| 25 EXPECT_FLOAT_EQ((b), (matrix).m23()); \ | |
| 26 EXPECT_FLOAT_EQ((c), (matrix).m33()); \ | |
| 27 EXPECT_FLOAT_EQ((d), (matrix).m43()); | |
| 28 | |
| 29 #define EXPECT_ROW4_EQ(a, b, c, d, matrix) \ | |
| 30 EXPECT_FLOAT_EQ((a), (matrix).m14()); \ | |
| 31 EXPECT_FLOAT_EQ((b), (matrix).m24()); \ | |
| 32 EXPECT_FLOAT_EQ((c), (matrix).m34()); \ | |
| 33 EXPECT_FLOAT_EQ((d), (matrix).m44()); | |
| 34 | |
| 35 #define EXPECT_WEB_TRANSFORMATION_MATRIX_EQ(expected, actual) \ | |
| 36 EXPECT_FLOAT_EQ((expected).m11(), (actual).m11()); \ | |
| 37 EXPECT_FLOAT_EQ((expected).m12(), (actual).m12()); \ | |
| 38 EXPECT_FLOAT_EQ((expected).m13(), (actual).m13()); \ | |
| 39 EXPECT_FLOAT_EQ((expected).m14(), (actual).m14()); \ | |
| 40 EXPECT_FLOAT_EQ((expected).m21(), (actual).m21()); \ | |
| 41 EXPECT_FLOAT_EQ((expected).m22(), (actual).m22()); \ | |
| 42 EXPECT_FLOAT_EQ((expected).m23(), (actual).m23()); \ | |
| 43 EXPECT_FLOAT_EQ((expected).m24(), (actual).m24()); \ | |
| 44 EXPECT_FLOAT_EQ((expected).m31(), (actual).m31()); \ | |
| 45 EXPECT_FLOAT_EQ((expected).m32(), (actual).m32()); \ | |
| 46 EXPECT_FLOAT_EQ((expected).m33(), (actual).m33()); \ | |
| 47 EXPECT_FLOAT_EQ((expected).m34(), (actual).m34()); \ | |
| 48 EXPECT_FLOAT_EQ((expected).m41(), (actual).m41()); \ | |
| 49 EXPECT_FLOAT_EQ((expected).m42(), (actual).m42()); \ | |
| 50 EXPECT_FLOAT_EQ((expected).m43(), (actual).m43()); \ | |
| 51 EXPECT_FLOAT_EQ((expected).m44(), (actual).m44()); | |
| 52 | |
| 53 // Checking float values for equality close to zero is not robust using EXPECT_F
LOAT_EQ | |
| 54 // (see gtest documentation). So, to verify rotation matrices, we must use a loo
ser | |
| 55 // absolute error threshold in some places. | |
| 56 #define EXPECT_ROW1_NEAR(a, b, c, d, matrix, error_threshold) \ | |
| 57 EXPECT_NEAR((a), (matrix).m11(), (error_threshold)); \ | |
| 58 EXPECT_NEAR((b), (matrix).m21(), (error_threshold)); \ | |
| 59 EXPECT_NEAR((c), (matrix).m31(), (error_threshold)); \ | |
| 60 EXPECT_NEAR((d), (matrix).m41(), (error_threshold)); | |
| 61 | |
| 62 #define EXPECT_ROW2_NEAR(a, b, c, d, matrix, error_threshold) \ | |
| 63 EXPECT_NEAR((a), (matrix).m12(), (error_threshold)); \ | |
| 64 EXPECT_NEAR((b), (matrix).m22(), (error_threshold)); \ | |
| 65 EXPECT_NEAR((c), (matrix).m32(), (error_threshold)); \ | |
| 66 EXPECT_NEAR((d), (matrix).m42(), (error_threshold)); | |
| 67 | |
| 68 #define EXPECT_ROW3_NEAR(a, b, c, d, matrix, error_threshold) \ | |
| 69 EXPECT_NEAR((a), (matrix).m13(), (error_threshold)); \ | |
| 70 EXPECT_NEAR((b), (matrix).m23(), (error_threshold)); \ | |
| 71 EXPECT_NEAR((c), (matrix).m33(), (error_threshold)); \ | |
| 72 EXPECT_NEAR((d), (matrix).m43(), (error_threshold)); | |
| 73 | |
| 74 #define ERROR_THRESHOLD 1e-14 | |
| 75 #define LOOSE_ERROR_THRESHOLD 1e-7 | |
| 76 | |
| 77 using namespace WebKit; | |
| 78 | |
| 79 namespace { | |
| 80 | |
| 81 static void initializeTestMatrix(WebTransformationMatrix& transform) { | |
| 82 transform.setM11(10); | |
| 83 transform.setM12(11); | |
| 84 transform.setM13(12); | |
| 85 transform.setM14(13); | |
| 86 transform.setM21(14); | |
| 87 transform.setM22(15); | |
| 88 transform.setM23(16); | |
| 89 transform.setM24(17); | |
| 90 transform.setM31(18); | |
| 91 transform.setM32(19); | |
| 92 transform.setM33(20); | |
| 93 transform.setM34(21); | |
| 94 transform.setM41(22); | |
| 95 transform.setM42(23); | |
| 96 transform.setM43(24); | |
| 97 transform.setM44(25); | |
| 98 | |
| 99 // Sanity check | |
| 100 EXPECT_ROW1_EQ(10, 14, 18, 22, transform); | |
| 101 EXPECT_ROW2_EQ(11, 15, 19, 23, transform); | |
| 102 EXPECT_ROW3_EQ(12, 16, 20, 24, transform); | |
| 103 EXPECT_ROW4_EQ(13, 17, 21, 25, transform); | |
| 104 } | |
| 105 | |
| 106 static void initializeTestMatrix2(WebTransformationMatrix& transform) { | |
| 107 transform.setM11(30); | |
| 108 transform.setM12(31); | |
| 109 transform.setM13(32); | |
| 110 transform.setM14(33); | |
| 111 transform.setM21(34); | |
| 112 transform.setM22(35); | |
| 113 transform.setM23(36); | |
| 114 transform.setM24(37); | |
| 115 transform.setM31(38); | |
| 116 transform.setM32(39); | |
| 117 transform.setM33(40); | |
| 118 transform.setM34(41); | |
| 119 transform.setM41(42); | |
| 120 transform.setM42(43); | |
| 121 transform.setM43(44); | |
| 122 transform.setM44(45); | |
| 123 | |
| 124 // Sanity check | |
| 125 EXPECT_ROW1_EQ(30, 34, 38, 42, transform); | |
| 126 EXPECT_ROW2_EQ(31, 35, 39, 43, transform); | |
| 127 EXPECT_ROW3_EQ(32, 36, 40, 44, transform); | |
| 128 EXPECT_ROW4_EQ(33, 37, 41, 45, transform); | |
| 129 } | |
| 130 | |
| 131 TEST(WebTransformationMatrixTest, DefaultConstructorCreatesIdentityMatrix) { | |
| 132 WebTransformationMatrix A; | |
| 133 EXPECT_ROW1_EQ(1, 0, 0, 0, A); | |
| 134 EXPECT_ROW2_EQ(0, 1, 0, 0, A); | |
| 135 EXPECT_ROW3_EQ(0, 0, 1, 0, A); | |
| 136 EXPECT_ROW4_EQ(0, 0, 0, 1, A); | |
| 137 EXPECT_TRUE(A.isIdentity()); | |
| 138 } | |
| 139 | |
| 140 TEST(WebTransformationMatrixTest, ConstructorFor2dElements) { | |
| 141 WebTransformationMatrix A(1, 2, 3, 4, 5, 6); | |
| 142 EXPECT_ROW1_EQ(1, 3, 0, 5, A); | |
| 143 EXPECT_ROW2_EQ(2, 4, 0, 6, A); | |
| 144 EXPECT_ROW3_EQ(0, 0, 1, 0, A); | |
| 145 EXPECT_ROW4_EQ(0, 0, 0, 1, A); | |
| 146 } | |
| 147 | |
| 148 TEST(WebTransformationMatrixTest, ConstructorForAllElements) { | |
| 149 WebTransformationMatrix A( | |
| 150 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16); | |
| 151 EXPECT_ROW1_EQ(1, 5, 9, 13, A); | |
| 152 EXPECT_ROW2_EQ(2, 6, 10, 14, A); | |
| 153 EXPECT_ROW3_EQ(3, 7, 11, 15, A); | |
| 154 EXPECT_ROW4_EQ(4, 8, 12, 16, A); | |
| 155 } | |
| 156 | |
| 157 TEST(WebTransformationMatrixTest, CopyConstructor) { | |
| 158 WebTransformationMatrix A; | |
| 159 initializeTestMatrix(A); | |
| 160 | |
| 161 // Copy constructor should produce exact same elements as matrix A. | |
| 162 WebTransformationMatrix B(A); | |
| 163 EXPECT_ROW1_EQ(10, 14, 18, 22, B); | |
| 164 EXPECT_ROW2_EQ(11, 15, 19, 23, B); | |
| 165 EXPECT_ROW3_EQ(12, 16, 20, 24, B); | |
| 166 EXPECT_ROW4_EQ(13, 17, 21, 25, B); | |
| 167 } | |
| 168 | |
| 169 TEST(WebTransformationMatrixTest, MatrixInversion) { | |
| 170 // Invert a translation | |
| 171 WebTransformationMatrix translation; | |
| 172 translation.translate3d(2, 3, 4); | |
| 173 EXPECT_TRUE(translation.isInvertible()); | |
| 174 | |
| 175 WebTransformationMatrix inverse_translation = translation.inverse(); | |
| 176 EXPECT_ROW1_EQ(1, 0, 0, -2, inverse_translation); | |
| 177 EXPECT_ROW2_EQ(0, 1, 0, -3, inverse_translation); | |
| 178 EXPECT_ROW3_EQ(0, 0, 1, -4, inverse_translation); | |
| 179 EXPECT_ROW4_EQ(0, 0, 0, 1, inverse_translation); | |
| 180 | |
| 181 // Note that inversion should not have changed the original matrix. | |
| 182 EXPECT_ROW1_EQ(1, 0, 0, 2, translation); | |
| 183 EXPECT_ROW2_EQ(0, 1, 0, 3, translation); | |
| 184 EXPECT_ROW3_EQ(0, 0, 1, 4, translation); | |
| 185 EXPECT_ROW4_EQ(0, 0, 0, 1, translation); | |
| 186 | |
| 187 // Invert a non-uniform scale | |
| 188 WebTransformationMatrix scale; | |
| 189 scale.scale3d(4, 10, 100); | |
| 190 EXPECT_TRUE(scale.isInvertible()); | |
| 191 | |
| 192 WebTransformationMatrix inverse_scale = scale.inverse(); | |
| 193 EXPECT_ROW1_EQ(0.25, 0, 0, 0, inverse_scale); | |
| 194 EXPECT_ROW2_EQ(0, .1f, 0, 0, inverse_scale); | |
| 195 EXPECT_ROW3_EQ(0, 0, .01f, 0, inverse_scale); | |
| 196 EXPECT_ROW4_EQ(0, 0, 0, 1, inverse_scale); | |
| 197 | |
| 198 // Try to invert a matrix that is not invertible. | |
| 199 // The inverse() function should simply return an identity matrix. | |
| 200 WebTransformationMatrix not_invertible; | |
| 201 not_invertible.setM11(0); | |
| 202 not_invertible.setM22(0); | |
| 203 not_invertible.setM33(0); | |
| 204 not_invertible.setM44(0); | |
| 205 EXPECT_FALSE(not_invertible.isInvertible()); | |
| 206 | |
| 207 WebTransformationMatrix inverse_of_not_invertible; | |
| 208 initializeTestMatrix( | |
| 209 inverse_of_not_invertible); // initialize this to something non-identity,
to make sure that assignment below actually took place. | |
| 210 inverse_of_not_invertible = not_invertible.inverse(); | |
| 211 EXPECT_TRUE(inverse_of_not_invertible.isIdentity()); | |
| 212 } | |
| 213 | |
| 214 TEST(WebTransformationMatrixTest, To2DTransform) { | |
| 215 WebTransformationMatrix A; | |
| 216 initializeTestMatrix(A); | |
| 217 | |
| 218 WebTransformationMatrix B = A.to2dTransform(); | |
| 219 | |
| 220 EXPECT_ROW1_EQ(10, 14, 0, 22, B); | |
| 221 EXPECT_ROW2_EQ(11, 15, 0, 23, B); | |
| 222 EXPECT_ROW3_EQ(0, 0, 1, 0, B); | |
| 223 EXPECT_ROW4_EQ(13, 17, 0, 25, B); | |
| 224 | |
| 225 // Note that to2DTransform should not have changed the original matrix. | |
| 226 EXPECT_ROW1_EQ(10, 14, 18, 22, A); | |
| 227 EXPECT_ROW2_EQ(11, 15, 19, 23, A); | |
| 228 EXPECT_ROW3_EQ(12, 16, 20, 24, A); | |
| 229 EXPECT_ROW4_EQ(13, 17, 21, 25, A); | |
| 230 } | |
| 231 | |
| 232 TEST(WebTransformationMatrixTest, AssignmentOperator) { | |
| 233 WebTransformationMatrix A; | |
| 234 initializeTestMatrix(A); | |
| 235 WebTransformationMatrix B; | |
| 236 initializeTestMatrix2(B); | |
| 237 WebTransformationMatrix C; | |
| 238 initializeTestMatrix2(C); | |
| 239 C = B = A; | |
| 240 | |
| 241 // Both B and C should now have been re-assigned to the value of A. | |
| 242 EXPECT_ROW1_EQ(10, 14, 18, 22, B); | |
| 243 EXPECT_ROW2_EQ(11, 15, 19, 23, B); | |
| 244 EXPECT_ROW3_EQ(12, 16, 20, 24, B); | |
| 245 EXPECT_ROW4_EQ(13, 17, 21, 25, B); | |
| 246 | |
| 247 EXPECT_ROW1_EQ(10, 14, 18, 22, C); | |
| 248 EXPECT_ROW2_EQ(11, 15, 19, 23, C); | |
| 249 EXPECT_ROW3_EQ(12, 16, 20, 24, C); | |
| 250 EXPECT_ROW4_EQ(13, 17, 21, 25, C); | |
| 251 } | |
| 252 | |
| 253 TEST(WebTransformationMatrixTest, EqualsBooleanOperator) { | |
| 254 WebTransformationMatrix A; | |
| 255 initializeTestMatrix(A); | |
| 256 | |
| 257 WebTransformationMatrix B; | |
| 258 initializeTestMatrix(B); | |
| 259 EXPECT_TRUE(A == B); | |
| 260 | |
| 261 // Modifying multiple elements should cause equals operator to return false. | |
| 262 WebTransformationMatrix C; | |
| 263 initializeTestMatrix2(C); | |
| 264 EXPECT_FALSE(A == C); | |
| 265 | |
| 266 // Modifying any one individual element should cause equals operator to return
false. | |
| 267 WebTransformationMatrix D; | |
| 268 D = A; | |
| 269 D.setM11(0); | |
| 270 EXPECT_FALSE(A == D); | |
| 271 | |
| 272 D = A; | |
| 273 D.setM12(0); | |
| 274 EXPECT_FALSE(A == D); | |
| 275 | |
| 276 D = A; | |
| 277 D.setM13(0); | |
| 278 EXPECT_FALSE(A == D); | |
| 279 | |
| 280 D = A; | |
| 281 D.setM14(0); | |
| 282 EXPECT_FALSE(A == D); | |
| 283 | |
| 284 D = A; | |
| 285 D.setM21(0); | |
| 286 EXPECT_FALSE(A == D); | |
| 287 | |
| 288 D = A; | |
| 289 D.setM22(0); | |
| 290 EXPECT_FALSE(A == D); | |
| 291 | |
| 292 D = A; | |
| 293 D.setM23(0); | |
| 294 EXPECT_FALSE(A == D); | |
| 295 | |
| 296 D = A; | |
| 297 D.setM24(0); | |
| 298 EXPECT_FALSE(A == D); | |
| 299 | |
| 300 D = A; | |
| 301 D.setM31(0); | |
| 302 EXPECT_FALSE(A == D); | |
| 303 | |
| 304 D = A; | |
| 305 D.setM32(0); | |
| 306 EXPECT_FALSE(A == D); | |
| 307 | |
| 308 D = A; | |
| 309 D.setM33(0); | |
| 310 EXPECT_FALSE(A == D); | |
| 311 | |
| 312 D = A; | |
| 313 D.setM34(0); | |
| 314 EXPECT_FALSE(A == D); | |
| 315 | |
| 316 D = A; | |
| 317 D.setM41(0); | |
| 318 EXPECT_FALSE(A == D); | |
| 319 | |
| 320 D = A; | |
| 321 D.setM42(0); | |
| 322 EXPECT_FALSE(A == D); | |
| 323 | |
| 324 D = A; | |
| 325 D.setM43(0); | |
| 326 EXPECT_FALSE(A == D); | |
| 327 | |
| 328 D = A; | |
| 329 D.setM44(0); | |
| 330 EXPECT_FALSE(A == D); | |
| 331 } | |
| 332 | |
| 333 TEST(WebTransformationMatrixTest, MultiplyOperator) { | |
| 334 WebTransformationMatrix A; | |
| 335 initializeTestMatrix(A); | |
| 336 | |
| 337 WebTransformationMatrix B; | |
| 338 initializeTestMatrix2(B); | |
| 339 | |
| 340 WebTransformationMatrix C = A * B; | |
| 341 EXPECT_ROW1_EQ(2036, 2292, 2548, 2804, C); | |
| 342 EXPECT_ROW2_EQ(2162, 2434, 2706, 2978, C); | |
| 343 EXPECT_ROW3_EQ(2288, 2576, 2864, 3152, C); | |
| 344 EXPECT_ROW4_EQ(2414, 2718, 3022, 3326, C); | |
| 345 | |
| 346 // Just an additional sanity check; matrix multiplication is not commutative. | |
| 347 EXPECT_FALSE(A * B == B * A); | |
| 348 } | |
| 349 | |
| 350 TEST(WebTransformationMatrixTest, MatrixMultiplication) { | |
| 351 WebTransformationMatrix A; | |
| 352 initializeTestMatrix(A); | |
| 353 | |
| 354 WebTransformationMatrix B; | |
| 355 initializeTestMatrix2(B); | |
| 356 | |
| 357 A.multiply(B); | |
| 358 EXPECT_ROW1_EQ(2036, 2292, 2548, 2804, A); | |
| 359 EXPECT_ROW2_EQ(2162, 2434, 2706, 2978, A); | |
| 360 EXPECT_ROW3_EQ(2288, 2576, 2864, 3152, A); | |
| 361 EXPECT_ROW4_EQ(2414, 2718, 3022, 3326, A); | |
| 362 } | |
| 363 | |
| 364 TEST(WebTransformationMatrixTest, MakeIdentiy) { | |
| 365 WebTransformationMatrix A; | |
| 366 initializeTestMatrix(A); | |
| 367 A.makeIdentity(); | |
| 368 EXPECT_ROW1_EQ(1, 0, 0, 0, A); | |
| 369 EXPECT_ROW2_EQ(0, 1, 0, 0, A); | |
| 370 EXPECT_ROW3_EQ(0, 0, 1, 0, A); | |
| 371 EXPECT_ROW4_EQ(0, 0, 0, 1, A); | |
| 372 EXPECT_TRUE(A.isIdentity()); | |
| 373 } | |
| 374 | |
| 375 TEST(WebTransformationMatrixTest, Translate) { | |
| 376 WebTransformationMatrix A; | |
| 377 A.translate(2, 3); | |
| 378 EXPECT_ROW1_EQ(1, 0, 0, 2, A); | |
| 379 EXPECT_ROW2_EQ(0, 1, 0, 3, A); | |
| 380 EXPECT_ROW3_EQ(0, 0, 1, 0, A); | |
| 381 EXPECT_ROW4_EQ(0, 0, 0, 1, A); | |
| 382 | |
| 383 // Verify that translate() post-multiplies the existing matrix. | |
| 384 A.makeIdentity(); | |
| 385 A.scale(5); | |
| 386 A.translate(2, 3); | |
| 387 EXPECT_ROW1_EQ(5, 0, 0, 10, A); | |
| 388 EXPECT_ROW2_EQ(0, 5, 0, 15, A); | |
| 389 EXPECT_ROW3_EQ(0, 0, 1, 0, A); | |
| 390 EXPECT_ROW4_EQ(0, 0, 0, 1, A); | |
| 391 } | |
| 392 | |
| 393 TEST(WebTransformationMatrixTest, Translate3d) { | |
| 394 WebTransformationMatrix A; | |
| 395 A.translate3d(2, 3, 4); | |
| 396 EXPECT_ROW1_EQ(1, 0, 0, 2, A); | |
| 397 EXPECT_ROW2_EQ(0, 1, 0, 3, A); | |
| 398 EXPECT_ROW3_EQ(0, 0, 1, 4, A); | |
| 399 EXPECT_ROW4_EQ(0, 0, 0, 1, A); | |
| 400 | |
| 401 // Verify that translate3d() post-multiplies the existing matrix. | |
| 402 A.makeIdentity(); | |
| 403 A.scale3d(6, 7, 8); | |
| 404 A.translate3d(2, 3, 4); | |
| 405 EXPECT_ROW1_EQ(6, 0, 0, 12, A); | |
| 406 EXPECT_ROW2_EQ(0, 7, 0, 21, A); | |
| 407 EXPECT_ROW3_EQ(0, 0, 8, 32, A); | |
| 408 EXPECT_ROW4_EQ(0, 0, 0, 1, A); | |
| 409 } | |
| 410 | |
| 411 TEST(WebTransformationMatrixTest, TranslateRight3d) { | |
| 412 WebTransformationMatrix A; | |
| 413 A.translateRight3d(2, 3, 4); | |
| 414 EXPECT_ROW1_EQ(1, 0, 0, 2, A); | |
| 415 EXPECT_ROW2_EQ(0, 1, 0, 3, A); | |
| 416 EXPECT_ROW3_EQ(0, 0, 1, 4, A); | |
| 417 EXPECT_ROW4_EQ(0, 0, 0, 1, A); | |
| 418 | |
| 419 // Note carefully, all other operations do post-multiply, this one is unique. | |
| 420 // Verify that translateRight3d() PRE-multiplies the existing matrix. | |
| 421 A.makeIdentity(); | |
| 422 A.scale3d(6, 7, 8); | |
| 423 A.translateRight3d(2, 3, 4); | |
| 424 EXPECT_ROW1_EQ(6, 0, 0, 2, A); | |
| 425 EXPECT_ROW2_EQ(0, 7, 0, 3, A); | |
| 426 EXPECT_ROW3_EQ(0, 0, 8, 4, A); | |
| 427 EXPECT_ROW4_EQ(0, 0, 0, 1, A); | |
| 428 } | |
| 429 | |
| 430 TEST(WebTransformationMatrixTest, Scale) { | |
| 431 WebTransformationMatrix A; | |
| 432 A.scale(5); | |
| 433 EXPECT_ROW1_EQ(5, 0, 0, 0, A); | |
| 434 EXPECT_ROW2_EQ(0, 5, 0, 0, A); | |
| 435 EXPECT_ROW3_EQ(0, 0, 1, 0, A); | |
| 436 EXPECT_ROW4_EQ(0, 0, 0, 1, A); | |
| 437 | |
| 438 // Verify that scale() post-multiplies the existing matrix. | |
| 439 A.makeIdentity(); | |
| 440 A.translate3d(2, 3, 4); | |
| 441 A.scale(5); | |
| 442 EXPECT_ROW1_EQ(5, 0, 0, 2, A); | |
| 443 EXPECT_ROW2_EQ(0, 5, 0, 3, A); | |
| 444 EXPECT_ROW3_EQ(0, 0, 1, 4, A); | |
| 445 EXPECT_ROW4_EQ(0, 0, 0, 1, A); | |
| 446 } | |
| 447 | |
| 448 TEST(WebTransformationMatrixTest, NonUniformScale) { | |
| 449 WebTransformationMatrix A; | |
| 450 A.scaleNonUniform(6, 7); | |
| 451 EXPECT_ROW1_EQ(6, 0, 0, 0, A); | |
| 452 EXPECT_ROW2_EQ(0, 7, 0, 0, A); | |
| 453 EXPECT_ROW3_EQ(0, 0, 1, 0, A); | |
| 454 EXPECT_ROW4_EQ(0, 0, 0, 1, A); | |
| 455 | |
| 456 // Verify that scaleNonUniform() post-multiplies the existing matrix. | |
| 457 A.makeIdentity(); | |
| 458 A.translate3d(2, 3, 4); | |
| 459 A.scaleNonUniform(6, 7); | |
| 460 EXPECT_ROW1_EQ(6, 0, 0, 2, A); | |
| 461 EXPECT_ROW2_EQ(0, 7, 0, 3, A); | |
| 462 EXPECT_ROW3_EQ(0, 0, 1, 4, A); | |
| 463 EXPECT_ROW4_EQ(0, 0, 0, 1, A); | |
| 464 } | |
| 465 | |
| 466 TEST(WebTransformationMatrixTest, Scale3d) { | |
| 467 WebTransformationMatrix A; | |
| 468 A.scale3d(6, 7, 8); | |
| 469 EXPECT_ROW1_EQ(6, 0, 0, 0, A); | |
| 470 EXPECT_ROW2_EQ(0, 7, 0, 0, A); | |
| 471 EXPECT_ROW3_EQ(0, 0, 8, 0, A); | |
| 472 EXPECT_ROW4_EQ(0, 0, 0, 1, A); | |
| 473 | |
| 474 // Verify that scale3d() post-multiplies the existing matrix. | |
| 475 A.makeIdentity(); | |
| 476 A.translate3d(2, 3, 4); | |
| 477 A.scale3d(6, 7, 8); | |
| 478 EXPECT_ROW1_EQ(6, 0, 0, 2, A); | |
| 479 EXPECT_ROW2_EQ(0, 7, 0, 3, A); | |
| 480 EXPECT_ROW3_EQ(0, 0, 8, 4, A); | |
| 481 EXPECT_ROW4_EQ(0, 0, 0, 1, A); | |
| 482 } | |
| 483 | |
| 484 TEST(WebTransformationMatrixTest, Rotate) { | |
| 485 WebTransformationMatrix A; | |
| 486 A.rotate(90); | |
| 487 EXPECT_ROW1_NEAR(0, -1, 0, 0, A, ERROR_THRESHOLD); | |
| 488 EXPECT_ROW2_NEAR(1, 0, 0, 0, A, ERROR_THRESHOLD); | |
| 489 EXPECT_ROW3_EQ(0, 0, 1, 0, A); | |
| 490 EXPECT_ROW4_EQ(0, 0, 0, 1, A); | |
| 491 | |
| 492 // Verify that rotate() post-multiplies the existing matrix. | |
| 493 A.makeIdentity(); | |
| 494 A.scale3d(6, 7, 8); | |
| 495 A.rotate(90); | |
| 496 EXPECT_ROW1_NEAR(0, -6, 0, 0, A, ERROR_THRESHOLD); | |
| 497 EXPECT_ROW2_NEAR(7, 0, 0, 0, A, ERROR_THRESHOLD); | |
| 498 EXPECT_ROW3_EQ(0, 0, 8, 0, A); | |
| 499 EXPECT_ROW4_EQ(0, 0, 0, 1, A); | |
| 500 } | |
| 501 | |
| 502 TEST(WebTransformationMatrixTest, Rotate3d) { | |
| 503 WebTransformationMatrix A; | |
| 504 | |
| 505 // Check rotation about z-axis | |
| 506 A.makeIdentity(); | |
| 507 A.rotate3d(0, 0, 90); | |
| 508 EXPECT_ROW1_NEAR(0, -1, 0, 0, A, ERROR_THRESHOLD); | |
| 509 EXPECT_ROW2_NEAR(1, 0, 0, 0, A, ERROR_THRESHOLD); | |
| 510 EXPECT_ROW3_EQ(0, 0, 1, 0, A); | |
| 511 EXPECT_ROW4_EQ(0, 0, 0, 1, A); | |
| 512 | |
| 513 // Check rotation about x-axis | |
| 514 A.makeIdentity(); | |
| 515 A.rotate3d(90, 0, 0); | |
| 516 EXPECT_ROW1_EQ(1, 0, 0, 0, A); | |
| 517 EXPECT_ROW2_NEAR(0, 0, -1, 0, A, ERROR_THRESHOLD); | |
| 518 EXPECT_ROW3_NEAR(0, 1, 0, 0, A, ERROR_THRESHOLD); | |
| 519 EXPECT_ROW4_EQ(0, 0, 0, 1, A); | |
| 520 | |
| 521 // Check rotation about y-axis. | |
| 522 // Note carefully, the expected pattern is inverted compared to rotating about
x axis or z axis. | |
| 523 A.makeIdentity(); | |
| 524 A.rotate3d(0, 90, 0); | |
| 525 EXPECT_ROW1_NEAR(0, 0, 1, 0, A, ERROR_THRESHOLD); | |
| 526 EXPECT_ROW2_EQ(0, 1, 0, 0, A); | |
| 527 EXPECT_ROW3_NEAR(-1, 0, 0, 0, A, ERROR_THRESHOLD); | |
| 528 EXPECT_ROW4_EQ(0, 0, 0, 1, A); | |
| 529 | |
| 530 // Verify that rotate3d(rx, ry, rz) post-multiplies the existing matrix. | |
| 531 A.makeIdentity(); | |
| 532 A.scale3d(6, 7, 8); | |
| 533 A.rotate3d(0, 0, 90); | |
| 534 EXPECT_ROW1_NEAR(0, -6, 0, 0, A, ERROR_THRESHOLD); | |
| 535 EXPECT_ROW2_NEAR(7, 0, 0, 0, A, ERROR_THRESHOLD); | |
| 536 EXPECT_ROW3_EQ(0, 0, 8, 0, A); | |
| 537 EXPECT_ROW4_EQ(0, 0, 0, 1, A); | |
| 538 } | |
| 539 | |
| 540 TEST(WebTransformationMatrixTest, Rotate3dOrderOfCompositeRotations) { | |
| 541 // Rotate3d(degreesX, degreesY, degreesZ) is actually composite transform cons
iting of | |
| 542 // three primitive rotations. This test verifies that the ordering of those th
ree | |
| 543 // transforms is the intended ordering. | |
| 544 // | |
| 545 // The correct ordering for this test case should be: | |
| 546 // 1. rotate by 30 degrees about z-axis | |
| 547 // 2. rotate by 20 degrees about y-axis | |
| 548 // 3. rotate by 10 degrees about x-axis | |
| 549 // | |
| 550 // Note: there are 6 possible orderings of 3 transforms. For the specific tran
sforms | |
| 551 // used in this test, all 6 combinations produce a unique matrix that is diffe
rent | |
| 552 // from the other orderings. That way, this test verifies the exact ordering. | |
| 553 | |
| 554 WebTransformationMatrix A; | |
| 555 A.makeIdentity(); | |
| 556 A.rotate3d(10, 20, 30); | |
| 557 | |
| 558 EXPECT_ROW1_NEAR(0.8137976813493738026394908, | |
| 559 -0.4409696105298823720630708, | |
| 560 0.3785223063697923939763257, | |
| 561 0, | |
| 562 A, | |
| 563 ERROR_THRESHOLD); | |
| 564 EXPECT_ROW2_NEAR(0.4698463103929541584413698, | |
| 565 0.8825641192593856043657752, | |
| 566 0.0180283112362972230968694, | |
| 567 0, | |
| 568 A, | |
| 569 ERROR_THRESHOLD); | |
| 570 EXPECT_ROW3_NEAR(-0.3420201433256686573969318, | |
| 571 0.1631759111665348205288950, | |
| 572 0.9254165783983233639631294, | |
| 573 0, | |
| 574 A, | |
| 575 ERROR_THRESHOLD); | |
| 576 EXPECT_ROW4_EQ(0, 0, 0, 1, A); | |
| 577 } | |
| 578 | |
| 579 TEST(WebTransformationMatrixTest, RotateAxisAngle3d) { | |
| 580 WebTransformationMatrix A; | |
| 581 | |
| 582 // Check rotation about z-axis | |
| 583 A.makeIdentity(); | |
| 584 A.rotate3d(0, 0, 1, 90); | |
| 585 EXPECT_ROW1_NEAR(0, -1, 0, 0, A, ERROR_THRESHOLD); | |
| 586 EXPECT_ROW2_NEAR(1, 0, 0, 0, A, ERROR_THRESHOLD); | |
| 587 EXPECT_ROW3_EQ(0, 0, 1, 0, A); | |
| 588 EXPECT_ROW4_EQ(0, 0, 0, 1, A); | |
| 589 | |
| 590 // Check rotation about x-axis | |
| 591 A.makeIdentity(); | |
| 592 A.rotate3d(1, 0, 0, 90); | |
| 593 EXPECT_ROW1_EQ(1, 0, 0, 0, A); | |
| 594 EXPECT_ROW2_NEAR(0, 0, -1, 0, A, ERROR_THRESHOLD); | |
| 595 EXPECT_ROW3_NEAR(0, 1, 0, 0, A, ERROR_THRESHOLD); | |
| 596 EXPECT_ROW4_EQ(0, 0, 0, 1, A); | |
| 597 | |
| 598 // Check rotation about y-axis. | |
| 599 // Note carefully, the expected pattern is inverted compared to rotating about
x axis or z axis. | |
| 600 A.makeIdentity(); | |
| 601 A.rotate3d(0, 1, 0, 90); | |
| 602 EXPECT_ROW1_NEAR(0, 0, 1, 0, A, ERROR_THRESHOLD); | |
| 603 EXPECT_ROW2_EQ(0, 1, 0, 0, A); | |
| 604 EXPECT_ROW3_NEAR(-1, 0, 0, 0, A, ERROR_THRESHOLD); | |
| 605 EXPECT_ROW4_EQ(0, 0, 0, 1, A); | |
| 606 | |
| 607 // Verify that rotate3d(axis, angle) post-multiplies the existing matrix. | |
| 608 A.makeIdentity(); | |
| 609 A.scale3d(6, 7, 8); | |
| 610 A.rotate3d(0, 0, 1, 90); | |
| 611 EXPECT_ROW1_NEAR(0, -6, 0, 0, A, ERROR_THRESHOLD); | |
| 612 EXPECT_ROW2_NEAR(7, 0, 0, 0, A, ERROR_THRESHOLD); | |
| 613 EXPECT_ROW3_EQ(0, 0, 8, 0, A); | |
| 614 EXPECT_ROW4_EQ(0, 0, 0, 1, A); | |
| 615 } | |
| 616 | |
| 617 TEST(WebTransformationMatrixTest, RotateAxisAngle3dForArbitraryAxis) { | |
| 618 // Check rotation about an arbitrary non-axis-aligned vector. | |
| 619 WebTransformationMatrix A; | |
| 620 A.rotate3d(1, 1, 1, 90); | |
| 621 EXPECT_ROW1_NEAR(0.3333333333333334258519187, | |
| 622 -0.2440169358562924717404030, | |
| 623 0.9106836025229592124219380, | |
| 624 0, | |
| 625 A, | |
| 626 ERROR_THRESHOLD); | |
| 627 EXPECT_ROW2_NEAR(0.9106836025229592124219380, | |
| 628 0.3333333333333334258519187, | |
| 629 -0.2440169358562924717404030, | |
| 630 0, | |
| 631 A, | |
| 632 ERROR_THRESHOLD); | |
| 633 EXPECT_ROW3_NEAR(-0.2440169358562924717404030, | |
| 634 0.9106836025229592124219380, | |
| 635 0.3333333333333334258519187, | |
| 636 0, | |
| 637 A, | |
| 638 ERROR_THRESHOLD); | |
| 639 EXPECT_ROW4_EQ(0, 0, 0, 1, A); | |
| 640 } | |
| 641 | |
| 642 TEST(WebTransformationMatrixTest, RotateAxisAngle3dForDegenerateAxis) { | |
| 643 // Check rotation about a degenerate zero vector. | |
| 644 // It is expected to skip applying the rotation. | |
| 645 WebTransformationMatrix A; | |
| 646 | |
| 647 A.rotate3d(0, 0, 0, 45); | |
| 648 // Verify that A remains unchanged. | |
| 649 EXPECT_TRUE(A.isIdentity()); | |
| 650 | |
| 651 initializeTestMatrix(A); | |
| 652 A.rotate3d(0, 0, 0, 35); | |
| 653 | |
| 654 // Verify that A remains unchanged. | |
| 655 EXPECT_ROW1_EQ(10, 14, 18, 22, A); | |
| 656 EXPECT_ROW2_EQ(11, 15, 19, 23, A); | |
| 657 EXPECT_ROW3_EQ(12, 16, 20, 24, A); | |
| 658 EXPECT_ROW4_EQ(13, 17, 21, 25, A); | |
| 659 } | |
| 660 | |
| 661 TEST(WebTransformationMatrixTest, SkewX) { | |
| 662 WebTransformationMatrix A; | |
| 663 A.skewX(45); | |
| 664 EXPECT_ROW1_EQ(1, 1, 0, 0, A); | |
| 665 EXPECT_ROW2_EQ(0, 1, 0, 0, A); | |
| 666 EXPECT_ROW3_EQ(0, 0, 1, 0, A); | |
| 667 EXPECT_ROW4_EQ(0, 0, 0, 1, A); | |
| 668 | |
| 669 // Verify that skewX() post-multiplies the existing matrix. | |
| 670 // Row 1, column 2, would incorrectly have value "7" if the matrix is pre-mult
iplied instead of post-multiplied. | |
| 671 A.makeIdentity(); | |
| 672 A.scale3d(6, 7, 8); | |
| 673 A.skewX(45); | |
| 674 EXPECT_ROW1_EQ(6, 6, 0, 0, A); | |
| 675 EXPECT_ROW2_EQ(0, 7, 0, 0, A); | |
| 676 EXPECT_ROW3_EQ(0, 0, 8, 0, A); | |
| 677 EXPECT_ROW4_EQ(0, 0, 0, 1, A); | |
| 678 } | |
| 679 | |
| 680 TEST(WebTransformationMatrixTest, SkewY) { | |
| 681 WebTransformationMatrix A; | |
| 682 A.skewY(45); | |
| 683 EXPECT_ROW1_EQ(1, 0, 0, 0, A); | |
| 684 EXPECT_ROW2_EQ(1, 1, 0, 0, A); | |
| 685 EXPECT_ROW3_EQ(0, 0, 1, 0, A); | |
| 686 EXPECT_ROW4_EQ(0, 0, 0, 1, A); | |
| 687 | |
| 688 // Verify that skewY() post-multiplies the existing matrix. | |
| 689 // Row 2, column 1, would incorrectly have value "6" if the matrix is pre-mult
iplied instead of post-multiplied. | |
| 690 A.makeIdentity(); | |
| 691 A.scale3d(6, 7, 8); | |
| 692 A.skewY(45); | |
| 693 EXPECT_ROW1_EQ(6, 0, 0, 0, A); | |
| 694 EXPECT_ROW2_EQ(7, 7, 0, 0, A); | |
| 695 EXPECT_ROW3_EQ(0, 0, 8, 0, A); | |
| 696 EXPECT_ROW4_EQ(0, 0, 0, 1, A); | |
| 697 } | |
| 698 | |
| 699 TEST(WebTransformationMatrixTest, ApplyPerspective) { | |
| 700 WebTransformationMatrix A; | |
| 701 A.applyPerspective(1); | |
| 702 EXPECT_ROW1_EQ(1, 0, 0, 0, A); | |
| 703 EXPECT_ROW2_EQ(0, 1, 0, 0, A); | |
| 704 EXPECT_ROW3_EQ(0, 0, 1, 0, A); | |
| 705 EXPECT_ROW4_EQ(0, 0, -1, 1, A); | |
| 706 | |
| 707 // Verify that applyPerspective() post-multiplies the existing matrix. | |
| 708 A.makeIdentity(); | |
| 709 A.translate3d(2, 3, 4); | |
| 710 A.applyPerspective(1); | |
| 711 EXPECT_ROW1_EQ(1, 0, -2, 2, A); | |
| 712 EXPECT_ROW2_EQ(0, 1, -3, 3, A); | |
| 713 EXPECT_ROW3_EQ(0, 0, -3, 4, A); | |
| 714 EXPECT_ROW4_EQ(0, 0, -1, 1, A); | |
| 715 } | |
| 716 | |
| 717 TEST(WebTransformationMatrixTest, HasPerspective) { | |
| 718 WebTransformationMatrix A; | |
| 719 A.applyPerspective(1); | |
| 720 EXPECT_TRUE(A.hasPerspective()); | |
| 721 | |
| 722 A.makeIdentity(); | |
| 723 A.applyPerspective(0); | |
| 724 EXPECT_FALSE(A.hasPerspective()); | |
| 725 | |
| 726 A.makeIdentity(); | |
| 727 A.setM34(-0.3); | |
| 728 EXPECT_TRUE(A.hasPerspective()); | |
| 729 | |
| 730 // FIXME: WebCore only checkes m34() for perspective, but that is probably | |
| 731 // wrong. https://bugs.webkit.org/show_bug.cgi?id=83088. For now, this
test | |
| 732 // case expects the exact behavior as implemented by WebCore, but this
should | |
| 733 // probably be changed so that if the entire bottom row is not exactly | |
| 734 // (0, 0, 0, 1), then hasPerspective should return true. | |
| 735 | |
| 736 A.makeIdentity(); | |
| 737 A.setM14(-1); | |
| 738 EXPECT_FALSE(A.hasPerspective()); | |
| 739 | |
| 740 A.makeIdentity(); | |
| 741 A.setM24(-1); | |
| 742 EXPECT_FALSE(A.hasPerspective()); | |
| 743 | |
| 744 A.makeIdentity(); | |
| 745 A.setM44(0.5); | |
| 746 EXPECT_FALSE(A.hasPerspective()); | |
| 747 } | |
| 748 | |
| 749 TEST(WebTransformationMatrixTest, IsInvertible) { | |
| 750 WebTransformationMatrix A; | |
| 751 | |
| 752 // Translations, rotations, scales, skews and arbitrary combinations of them a
re invertible. | |
| 753 A.makeIdentity(); | |
| 754 EXPECT_TRUE(A.isInvertible()); | |
| 755 | |
| 756 A.makeIdentity(); | |
| 757 A.translate3d(2, 3, 4); | |
| 758 EXPECT_TRUE(A.isInvertible()); | |
| 759 | |
| 760 A.makeIdentity(); | |
| 761 A.scale3d(6, 7, 8); | |
| 762 EXPECT_TRUE(A.isInvertible()); | |
| 763 | |
| 764 A.makeIdentity(); | |
| 765 A.rotate3d(10, 20, 30); | |
| 766 EXPECT_TRUE(A.isInvertible()); | |
| 767 | |
| 768 A.makeIdentity(); | |
| 769 A.skewX(45); | |
| 770 EXPECT_TRUE(A.isInvertible()); | |
| 771 | |
| 772 // A perspective matrix (projection plane at z=0) is invertible. The intuitive | |
| 773 // explanation is that perspective is eqivalent to a skew of the w-axis; skews
are | |
| 774 // invertible. | |
| 775 A.makeIdentity(); | |
| 776 A.applyPerspective(1); | |
| 777 EXPECT_TRUE(A.isInvertible()); | |
| 778 | |
| 779 // A "pure" perspective matrix derived by similar triangles, with m44() set to
zero | |
| 780 // (i.e. camera positioned at the origin), is not invertible. | |
| 781 A.makeIdentity(); | |
| 782 A.applyPerspective(1); | |
| 783 A.setM44(0); | |
| 784 EXPECT_FALSE(A.isInvertible()); | |
| 785 | |
| 786 // Adding more to a non-invertible matrix will not make it invertible in the g
eneral case. | |
| 787 A.makeIdentity(); | |
| 788 A.applyPerspective(1); | |
| 789 A.setM44(0); | |
| 790 A.scale3d(6, 7, 8); | |
| 791 A.rotate3d(10, 20, 30); | |
| 792 A.translate3d(6, 7, 8); | |
| 793 EXPECT_FALSE(A.isInvertible()); | |
| 794 | |
| 795 // A degenerate matrix of all zeros is not invertible. | |
| 796 A.makeIdentity(); | |
| 797 A.setM11(0); | |
| 798 A.setM22(0); | |
| 799 A.setM33(0); | |
| 800 A.setM44(0); | |
| 801 EXPECT_FALSE(A.isInvertible()); | |
| 802 } | |
| 803 | |
| 804 TEST(WebTransformationMatrixTest, IsIdentity) { | |
| 805 WebTransformationMatrix A; | |
| 806 | |
| 807 initializeTestMatrix(A); | |
| 808 EXPECT_FALSE(A.isIdentity()); | |
| 809 | |
| 810 A.makeIdentity(); | |
| 811 EXPECT_TRUE(A.isIdentity()); | |
| 812 | |
| 813 // Modifying any one individual element should cause the matrix to no longer b
e identity. | |
| 814 A.makeIdentity(); | |
| 815 A.setM11(2); | |
| 816 EXPECT_FALSE(A.isIdentity()); | |
| 817 | |
| 818 A.makeIdentity(); | |
| 819 A.setM12(2); | |
| 820 EXPECT_FALSE(A.isIdentity()); | |
| 821 | |
| 822 A.makeIdentity(); | |
| 823 A.setM13(2); | |
| 824 EXPECT_FALSE(A.isIdentity()); | |
| 825 | |
| 826 A.makeIdentity(); | |
| 827 A.setM14(2); | |
| 828 EXPECT_FALSE(A.isIdentity()); | |
| 829 | |
| 830 A.makeIdentity(); | |
| 831 A.setM21(2); | |
| 832 EXPECT_FALSE(A.isIdentity()); | |
| 833 | |
| 834 A.makeIdentity(); | |
| 835 A.setM22(2); | |
| 836 EXPECT_FALSE(A.isIdentity()); | |
| 837 | |
| 838 A.makeIdentity(); | |
| 839 A.setM23(2); | |
| 840 EXPECT_FALSE(A.isIdentity()); | |
| 841 | |
| 842 A.makeIdentity(); | |
| 843 A.setM24(2); | |
| 844 EXPECT_FALSE(A.isIdentity()); | |
| 845 | |
| 846 A.makeIdentity(); | |
| 847 A.setM31(2); | |
| 848 EXPECT_FALSE(A.isIdentity()); | |
| 849 | |
| 850 A.makeIdentity(); | |
| 851 A.setM32(2); | |
| 852 EXPECT_FALSE(A.isIdentity()); | |
| 853 | |
| 854 A.makeIdentity(); | |
| 855 A.setM33(2); | |
| 856 EXPECT_FALSE(A.isIdentity()); | |
| 857 | |
| 858 A.makeIdentity(); | |
| 859 A.setM34(2); | |
| 860 EXPECT_FALSE(A.isIdentity()); | |
| 861 | |
| 862 A.makeIdentity(); | |
| 863 A.setM41(2); | |
| 864 EXPECT_FALSE(A.isIdentity()); | |
| 865 | |
| 866 A.makeIdentity(); | |
| 867 A.setM42(2); | |
| 868 EXPECT_FALSE(A.isIdentity()); | |
| 869 | |
| 870 A.makeIdentity(); | |
| 871 A.setM43(2); | |
| 872 EXPECT_FALSE(A.isIdentity()); | |
| 873 | |
| 874 A.makeIdentity(); | |
| 875 A.setM44(2); | |
| 876 EXPECT_FALSE(A.isIdentity()); | |
| 877 } | |
| 878 | |
| 879 TEST(WebTransformationMatrixTest, IsIdentityOrTranslation) { | |
| 880 WebTransformationMatrix A; | |
| 881 | |
| 882 initializeTestMatrix(A); | |
| 883 EXPECT_FALSE(A.isIdentityOrTranslation()); | |
| 884 | |
| 885 A.makeIdentity(); | |
| 886 EXPECT_TRUE(A.isIdentityOrTranslation()); | |
| 887 | |
| 888 // Modifying any non-translation components should cause isIdentityOrTranslati
on() to | |
| 889 // return false. NOTE: m41(), m42(), and m43() are the translation components,
so | |
| 890 // modifying them should still return true for isIdentityOrTranslation(). | |
| 891 A.makeIdentity(); | |
| 892 A.setM11(2); | |
| 893 EXPECT_FALSE(A.isIdentityOrTranslation()); | |
| 894 | |
| 895 A.makeIdentity(); | |
| 896 A.setM12(2); | |
| 897 EXPECT_FALSE(A.isIdentityOrTranslation()); | |
| 898 | |
| 899 A.makeIdentity(); | |
| 900 A.setM13(2); | |
| 901 EXPECT_FALSE(A.isIdentityOrTranslation()); | |
| 902 | |
| 903 A.makeIdentity(); | |
| 904 A.setM14(2); | |
| 905 EXPECT_FALSE(A.isIdentityOrTranslation()); | |
| 906 | |
| 907 A.makeIdentity(); | |
| 908 A.setM21(2); | |
| 909 EXPECT_FALSE(A.isIdentityOrTranslation()); | |
| 910 | |
| 911 A.makeIdentity(); | |
| 912 A.setM22(2); | |
| 913 EXPECT_FALSE(A.isIdentityOrTranslation()); | |
| 914 | |
| 915 A.makeIdentity(); | |
| 916 A.setM23(2); | |
| 917 EXPECT_FALSE(A.isIdentityOrTranslation()); | |
| 918 | |
| 919 A.makeIdentity(); | |
| 920 A.setM24(2); | |
| 921 EXPECT_FALSE(A.isIdentityOrTranslation()); | |
| 922 | |
| 923 A.makeIdentity(); | |
| 924 A.setM31(2); | |
| 925 EXPECT_FALSE(A.isIdentityOrTranslation()); | |
| 926 | |
| 927 A.makeIdentity(); | |
| 928 A.setM32(2); | |
| 929 EXPECT_FALSE(A.isIdentityOrTranslation()); | |
| 930 | |
| 931 A.makeIdentity(); | |
| 932 A.setM33(2); | |
| 933 EXPECT_FALSE(A.isIdentityOrTranslation()); | |
| 934 | |
| 935 A.makeIdentity(); | |
| 936 A.setM34(2); | |
| 937 EXPECT_FALSE(A.isIdentityOrTranslation()); | |
| 938 | |
| 939 // Note carefully - expecting true here. | |
| 940 A.makeIdentity(); | |
| 941 A.setM41(2); | |
| 942 EXPECT_TRUE(A.isIdentityOrTranslation()); | |
| 943 | |
| 944 // Note carefully - expecting true here. | |
| 945 A.makeIdentity(); | |
| 946 A.setM42(2); | |
| 947 EXPECT_TRUE(A.isIdentityOrTranslation()); | |
| 948 | |
| 949 // Note carefully - expecting true here. | |
| 950 A.makeIdentity(); | |
| 951 A.setM43(2); | |
| 952 EXPECT_TRUE(A.isIdentityOrTranslation()); | |
| 953 | |
| 954 A.makeIdentity(); | |
| 955 A.setM44(2); | |
| 956 EXPECT_FALSE(A.isIdentityOrTranslation()); | |
| 957 } | |
| 958 | |
| 959 TEST(WebTransformationMatrixTest, IsIntegerTranslation) { | |
| 960 WebTransformationMatrix A; | |
| 961 | |
| 962 A.makeIdentity(); | |
| 963 A.translate(2, 3); | |
| 964 EXPECT_TRUE(A.isIntegerTranslation()); | |
| 965 | |
| 966 A.makeIdentity(); | |
| 967 A.translate(2, 3); | |
| 968 EXPECT_TRUE(A.isIntegerTranslation()); | |
| 969 | |
| 970 A.makeIdentity(); | |
| 971 A.translate(2.00001, 3); | |
| 972 EXPECT_FALSE(A.isIntegerTranslation()); | |
| 973 | |
| 974 A.makeIdentity(); | |
| 975 A.translate(2, 2.99999); | |
| 976 EXPECT_FALSE(A.isIntegerTranslation()); | |
| 977 | |
| 978 // Stacking many integer translations should ideally not accumulate any precis
ion error. | |
| 979 A.makeIdentity(); | |
| 980 for (int i = 0; i < 100000; ++i) | |
| 981 A.translate(2, 3); | |
| 982 EXPECT_TRUE(A.isIntegerTranslation()); | |
| 983 } | |
| 984 | |
| 985 TEST(WebTransformationMatrixTest, BlendForTranslation) { | |
| 986 WebTransformationMatrix from; | |
| 987 from.translate3d(100, 200, 100); | |
| 988 | |
| 989 WebTransformationMatrix to; | |
| 990 | |
| 991 to.makeIdentity(); | |
| 992 to.translate3d(200, 100, 300); | |
| 993 to.blend(from, 0); | |
| 994 EXPECT_WEB_TRANSFORMATION_MATRIX_EQ(from, to); | |
| 995 | |
| 996 to.makeIdentity(); | |
| 997 to.translate3d(200, 100, 300); | |
| 998 to.blend(from, 0.25); | |
| 999 EXPECT_ROW1_EQ(1, 0, 0, 125, to); | |
| 1000 EXPECT_ROW2_EQ(0, 1, 0, 175, to); | |
| 1001 EXPECT_ROW3_EQ(0, 0, 1, 150, to); | |
| 1002 EXPECT_ROW4_EQ(0, 0, 0, 1, to); | |
| 1003 | |
| 1004 to.makeIdentity(); | |
| 1005 to.translate3d(200, 100, 300); | |
| 1006 to.blend(from, 0.5); | |
| 1007 EXPECT_ROW1_EQ(1, 0, 0, 150, to); | |
| 1008 EXPECT_ROW2_EQ(0, 1, 0, 150, to); | |
| 1009 EXPECT_ROW3_EQ(0, 0, 1, 200, to); | |
| 1010 EXPECT_ROW4_EQ(0, 0, 0, 1, to); | |
| 1011 | |
| 1012 to.makeIdentity(); | |
| 1013 to.translate3d(200, 100, 300); | |
| 1014 to.blend(from, 1); | |
| 1015 EXPECT_ROW1_EQ(1, 0, 0, 200, to); | |
| 1016 EXPECT_ROW2_EQ(0, 1, 0, 100, to); | |
| 1017 EXPECT_ROW3_EQ(0, 0, 1, 300, to); | |
| 1018 EXPECT_ROW4_EQ(0, 0, 0, 1, to); | |
| 1019 } | |
| 1020 | |
| 1021 TEST(WebTransformationMatrixTest, BlendForScale) { | |
| 1022 WebTransformationMatrix from; | |
| 1023 from.scale3d(100, 200, 100); | |
| 1024 | |
| 1025 WebTransformationMatrix to; | |
| 1026 | |
| 1027 to.makeIdentity(); | |
| 1028 to.scale3d(200, 100, 300); | |
| 1029 to.blend(from, 0); | |
| 1030 EXPECT_WEB_TRANSFORMATION_MATRIX_EQ(from, to); | |
| 1031 | |
| 1032 to.makeIdentity(); | |
| 1033 to.scale3d(200, 100, 300); | |
| 1034 to.blend(from, 0.25); | |
| 1035 EXPECT_ROW1_EQ(125, 0, 0, 0, to); | |
| 1036 EXPECT_ROW2_EQ(0, 175, 0, 0, to); | |
| 1037 EXPECT_ROW3_EQ(0, 0, 150, 0, to); | |
| 1038 EXPECT_ROW4_EQ(0, 0, 0, 1, to); | |
| 1039 | |
| 1040 to.makeIdentity(); | |
| 1041 to.scale3d(200, 100, 300); | |
| 1042 to.blend(from, 0.5); | |
| 1043 EXPECT_ROW1_EQ(150, 0, 0, 0, to); | |
| 1044 EXPECT_ROW2_EQ(0, 150, 0, 0, to); | |
| 1045 EXPECT_ROW3_EQ(0, 0, 200, 0, to); | |
| 1046 EXPECT_ROW4_EQ(0, 0, 0, 1, to); | |
| 1047 | |
| 1048 to.makeIdentity(); | |
| 1049 to.scale3d(200, 100, 300); | |
| 1050 to.blend(from, 1); | |
| 1051 EXPECT_ROW1_EQ(200, 0, 0, 0, to); | |
| 1052 EXPECT_ROW2_EQ(0, 100, 0, 0, to); | |
| 1053 EXPECT_ROW3_EQ(0, 0, 300, 0, to); | |
| 1054 EXPECT_ROW4_EQ(0, 0, 0, 1, to); | |
| 1055 } | |
| 1056 | |
| 1057 TEST(WebTransformationMatrixTest, BlendForSkewX) { | |
| 1058 WebTransformationMatrix from; | |
| 1059 from.skewX(0); | |
| 1060 | |
| 1061 WebTransformationMatrix to; | |
| 1062 | |
| 1063 to.makeIdentity(); | |
| 1064 to.skewX(45); | |
| 1065 to.blend(from, 0); | |
| 1066 EXPECT_WEB_TRANSFORMATION_MATRIX_EQ(from, to); | |
| 1067 | |
| 1068 to.makeIdentity(); | |
| 1069 to.skewX(45); | |
| 1070 to.blend(from, 0.5); | |
| 1071 EXPECT_ROW1_EQ(1, 0.5, 0, 0, to); | |
| 1072 EXPECT_ROW2_EQ(0, 1, 0, 0, to); | |
| 1073 EXPECT_ROW3_EQ(0, 0, 1, 0, to); | |
| 1074 EXPECT_ROW4_EQ(0, 0, 0, 1, to); | |
| 1075 | |
| 1076 to.makeIdentity(); | |
| 1077 to.skewX(45); | |
| 1078 to.blend(from, 0.25); | |
| 1079 EXPECT_ROW1_EQ(1, 0.25, 0, 0, to); | |
| 1080 EXPECT_ROW2_EQ(0, 1, 0, 0, to); | |
| 1081 EXPECT_ROW3_EQ(0, 0, 1, 0, to); | |
| 1082 EXPECT_ROW4_EQ(0, 0, 0, 1, to); | |
| 1083 | |
| 1084 to.makeIdentity(); | |
| 1085 to.skewX(45); | |
| 1086 to.blend(from, 1); | |
| 1087 EXPECT_ROW1_EQ(1, 1, 0, 0, to); | |
| 1088 EXPECT_ROW2_EQ(0, 1, 0, 0, to); | |
| 1089 EXPECT_ROW3_EQ(0, 0, 1, 0, to); | |
| 1090 EXPECT_ROW4_EQ(0, 0, 0, 1, to); | |
| 1091 } | |
| 1092 | |
| 1093 TEST(WebTransformationMatrixTest, BlendForSkewY) { | |
| 1094 // NOTE CAREFULLY: Decomposition of skew and rotation terms of the matrix is | |
| 1095 // inherently underconstrained, and so it does not always compute the original
ly | |
| 1096 // intended skew parameters. The current implementation uses QR decomposition,
which | |
| 1097 // decomposes the shear into a rotation + non-uniform scale. | |
| 1098 // | |
| 1099 // It is unlikely that the decomposition implementation will need to change ve
ry | |
| 1100 // often, so to get any test coverage, the compromise is to verify the exact m
atrix | |
| 1101 // that the blend() operation produces. | |
| 1102 // | |
| 1103 // This problem also potentially exists for skewX, but the current QR decompos
ition | |
| 1104 // implementation just happens to decompose those test matrices intuitively. | |
| 1105 | |
| 1106 WebTransformationMatrix from; | |
| 1107 from.skewY(0); | |
| 1108 | |
| 1109 WebTransformationMatrix to; | |
| 1110 | |
| 1111 to.makeIdentity(); | |
| 1112 to.skewY(45); | |
| 1113 to.blend(from, 0); | |
| 1114 EXPECT_WEB_TRANSFORMATION_MATRIX_EQ(from, to); | |
| 1115 | |
| 1116 to.makeIdentity(); | |
| 1117 to.skewY(45); | |
| 1118 to.blend(from, 0.25); | |
| 1119 EXPECT_ROW1_NEAR(1.0823489449280947471976333, | |
| 1120 0.0464370719145053845178239, | |
| 1121 0, | |
| 1122 0, | |
| 1123 to, | |
| 1124 LOOSE_ERROR_THRESHOLD); | |
| 1125 EXPECT_ROW2_NEAR(0.2152925909665224513123150, | |
| 1126 0.9541702441750861130032035, | |
| 1127 0, | |
| 1128 0, | |
| 1129 to, | |
| 1130 LOOSE_ERROR_THRESHOLD); | |
| 1131 EXPECT_ROW3_EQ(0, 0, 1, 0, to); | |
| 1132 EXPECT_ROW4_EQ(0, 0, 0, 1, to); | |
| 1133 | |
| 1134 to.makeIdentity(); | |
| 1135 to.skewY(45); | |
| 1136 to.blend(from, 0.5); | |
| 1137 EXPECT_ROW1_NEAR(1.1152212925809066312865525, | |
| 1138 0.0676495144007326631996335, | |
| 1139 0, | |
| 1140 0, | |
| 1141 to, | |
| 1142 LOOSE_ERROR_THRESHOLD); | |
| 1143 EXPECT_ROW2_NEAR(0.4619397844342648662419037, | |
| 1144 0.9519009045724774464858342, | |
| 1145 0, | |
| 1146 0, | |
| 1147 to, | |
| 1148 LOOSE_ERROR_THRESHOLD); | |
| 1149 EXPECT_ROW3_EQ(0, 0, 1, 0, to); | |
| 1150 EXPECT_ROW4_EQ(0, 0, 0, 1, to); | |
| 1151 | |
| 1152 // Unfortunately, this case suffers from uncomfortably large precision error. | |
| 1153 to.makeIdentity(); | |
| 1154 to.skewY(45); | |
| 1155 to.blend(from, 1); | |
| 1156 EXPECT_ROW1_NEAR(1, 0, 0, 0, to, LOOSE_ERROR_THRESHOLD); | |
| 1157 EXPECT_ROW2_NEAR(1, 1, 0, 0, to, LOOSE_ERROR_THRESHOLD); | |
| 1158 EXPECT_ROW3_EQ(0, 0, 1, 0, to); | |
| 1159 EXPECT_ROW4_EQ(0, 0, 0, 1, to); | |
| 1160 } | |
| 1161 | |
| 1162 TEST(WebTransformationMatrixTest, BlendForRotationAboutX) { | |
| 1163 // Even though blending uses quaternions, axis-aligned rotations should blend
the same | |
| 1164 // with quaternions or Euler angles. So we can test rotation blending by compa
ring | |
| 1165 // against manually specified matrices from Euler angles. | |
| 1166 | |
| 1167 WebTransformationMatrix from; | |
| 1168 from.rotate3d(1, 0, 0, 0); | |
| 1169 | |
| 1170 WebTransformationMatrix to; | |
| 1171 | |
| 1172 to.makeIdentity(); | |
| 1173 to.rotate3d(1, 0, 0, 90); | |
| 1174 to.blend(from, 0); | |
| 1175 EXPECT_WEB_TRANSFORMATION_MATRIX_EQ(from, to); | |
| 1176 | |
| 1177 double expected_rotation_angle = 22.5 * M_PI / 180.0; | |
| 1178 to.makeIdentity(); | |
| 1179 to.rotate3d(1, 0, 0, 90); | |
| 1180 to.blend(from, 0.25); | |
| 1181 EXPECT_ROW1_NEAR(1, 0, 0, 0, to, ERROR_THRESHOLD); | |
| 1182 EXPECT_ROW2_NEAR(0, | |
| 1183 cos(expected_rotation_angle), | |
| 1184 -sin(expected_rotation_angle), | |
| 1185 0, | |
| 1186 to, | |
| 1187 ERROR_THRESHOLD); | |
| 1188 EXPECT_ROW3_NEAR(0, | |
| 1189 sin(expected_rotation_angle), | |
| 1190 cos(expected_rotation_angle), | |
| 1191 0, | |
| 1192 to, | |
| 1193 ERROR_THRESHOLD); | |
| 1194 EXPECT_ROW4_EQ(0, 0, 0, 1, to); | |
| 1195 | |
| 1196 expected_rotation_angle = 45 * M_PI / 180.0; | |
| 1197 to.makeIdentity(); | |
| 1198 to.rotate3d(1, 0, 0, 90); | |
| 1199 to.blend(from, 0.5); | |
| 1200 EXPECT_ROW1_NEAR(1, 0, 0, 0, to, ERROR_THRESHOLD); | |
| 1201 EXPECT_ROW2_NEAR(0, | |
| 1202 cos(expected_rotation_angle), | |
| 1203 -sin(expected_rotation_angle), | |
| 1204 0, | |
| 1205 to, | |
| 1206 ERROR_THRESHOLD); | |
| 1207 EXPECT_ROW3_NEAR(0, | |
| 1208 sin(expected_rotation_angle), | |
| 1209 cos(expected_rotation_angle), | |
| 1210 0, | |
| 1211 to, | |
| 1212 ERROR_THRESHOLD); | |
| 1213 EXPECT_ROW4_EQ(0, 0, 0, 1, to); | |
| 1214 | |
| 1215 to.makeIdentity(); | |
| 1216 to.rotate3d(1, 0, 0, 90); | |
| 1217 to.blend(from, 1); | |
| 1218 EXPECT_ROW1_NEAR(1, 0, 0, 0, to, ERROR_THRESHOLD); | |
| 1219 EXPECT_ROW2_NEAR(0, 0, -1, 0, to, ERROR_THRESHOLD); | |
| 1220 EXPECT_ROW3_NEAR(0, 1, 0, 0, to, ERROR_THRESHOLD); | |
| 1221 EXPECT_ROW4_EQ(0, 0, 0, 1, to); | |
| 1222 } | |
| 1223 | |
| 1224 TEST(WebTransformationMatrixTest, BlendForRotationAboutY) { | |
| 1225 WebTransformationMatrix from; | |
| 1226 from.rotate3d(0, 1, 0, 0); | |
| 1227 | |
| 1228 WebTransformationMatrix to; | |
| 1229 | |
| 1230 to.makeIdentity(); | |
| 1231 to.rotate3d(0, 1, 0, 90); | |
| 1232 to.blend(from, 0); | |
| 1233 EXPECT_WEB_TRANSFORMATION_MATRIX_EQ(from, to); | |
| 1234 | |
| 1235 double expected_rotation_angle = 22.5 * M_PI / 180.0; | |
| 1236 to.makeIdentity(); | |
| 1237 to.rotate3d(0, 1, 0, 90); | |
| 1238 to.blend(from, 0.25); | |
| 1239 EXPECT_ROW1_NEAR(cos(expected_rotation_angle), | |
| 1240 0, | |
| 1241 sin(expected_rotation_angle), | |
| 1242 0, | |
| 1243 to, | |
| 1244 ERROR_THRESHOLD); | |
| 1245 EXPECT_ROW2_NEAR(0, 1, 0, 0, to, ERROR_THRESHOLD); | |
| 1246 EXPECT_ROW3_NEAR(-sin(expected_rotation_angle), | |
| 1247 0, | |
| 1248 cos(expected_rotation_angle), | |
| 1249 0, | |
| 1250 to, | |
| 1251 ERROR_THRESHOLD); | |
| 1252 EXPECT_ROW4_EQ(0, 0, 0, 1, to); | |
| 1253 | |
| 1254 expected_rotation_angle = 45 * M_PI / 180.0; | |
| 1255 to.makeIdentity(); | |
| 1256 to.rotate3d(0, 1, 0, 90); | |
| 1257 to.blend(from, 0.5); | |
| 1258 EXPECT_ROW1_NEAR(cos(expected_rotation_angle), | |
| 1259 0, | |
| 1260 sin(expected_rotation_angle), | |
| 1261 0, | |
| 1262 to, | |
| 1263 ERROR_THRESHOLD); | |
| 1264 EXPECT_ROW2_NEAR(0, 1, 0, 0, to, ERROR_THRESHOLD); | |
| 1265 EXPECT_ROW3_NEAR(-sin(expected_rotation_angle), | |
| 1266 0, | |
| 1267 cos(expected_rotation_angle), | |
| 1268 0, | |
| 1269 to, | |
| 1270 ERROR_THRESHOLD); | |
| 1271 EXPECT_ROW4_EQ(0, 0, 0, 1, to); | |
| 1272 | |
| 1273 to.makeIdentity(); | |
| 1274 to.rotate3d(0, 1, 0, 90); | |
| 1275 to.blend(from, 1); | |
| 1276 EXPECT_ROW1_NEAR(0, 0, 1, 0, to, ERROR_THRESHOLD); | |
| 1277 EXPECT_ROW2_NEAR(0, 1, 0, 0, to, ERROR_THRESHOLD); | |
| 1278 EXPECT_ROW3_NEAR(-1, 0, 0, 0, to, ERROR_THRESHOLD); | |
| 1279 EXPECT_ROW4_EQ(0, 0, 0, 1, to); | |
| 1280 } | |
| 1281 | |
| 1282 TEST(WebTransformationMatrixTest, BlendForRotationAboutZ) { | |
| 1283 WebTransformationMatrix from; | |
| 1284 from.rotate3d(0, 0, 1, 0); | |
| 1285 | |
| 1286 WebTransformationMatrix to; | |
| 1287 | |
| 1288 to.makeIdentity(); | |
| 1289 to.rotate3d(0, 0, 1, 90); | |
| 1290 to.blend(from, 0); | |
| 1291 EXPECT_WEB_TRANSFORMATION_MATRIX_EQ(from, to); | |
| 1292 | |
| 1293 double expected_rotation_angle = 22.5 * M_PI / 180.0; | |
| 1294 to.makeIdentity(); | |
| 1295 to.rotate3d(0, 0, 1, 90); | |
| 1296 to.blend(from, 0.25); | |
| 1297 EXPECT_ROW1_NEAR(cos(expected_rotation_angle), | |
| 1298 -sin(expected_rotation_angle), | |
| 1299 0, | |
| 1300 0, | |
| 1301 to, | |
| 1302 ERROR_THRESHOLD); | |
| 1303 EXPECT_ROW2_NEAR(sin(expected_rotation_angle), | |
| 1304 cos(expected_rotation_angle), | |
| 1305 0, | |
| 1306 0, | |
| 1307 to, | |
| 1308 ERROR_THRESHOLD); | |
| 1309 EXPECT_ROW3_NEAR(0, 0, 1, 0, to, ERROR_THRESHOLD); | |
| 1310 EXPECT_ROW4_EQ(0, 0, 0, 1, to); | |
| 1311 | |
| 1312 expected_rotation_angle = 45 * M_PI / 180.0; | |
| 1313 to.makeIdentity(); | |
| 1314 to.rotate3d(0, 0, 1, 90); | |
| 1315 to.blend(from, 0.5); | |
| 1316 EXPECT_ROW1_NEAR(cos(expected_rotation_angle), | |
| 1317 -sin(expected_rotation_angle), | |
| 1318 0, | |
| 1319 0, | |
| 1320 to, | |
| 1321 ERROR_THRESHOLD); | |
| 1322 EXPECT_ROW2_NEAR(sin(expected_rotation_angle), | |
| 1323 cos(expected_rotation_angle), | |
| 1324 0, | |
| 1325 0, | |
| 1326 to, | |
| 1327 ERROR_THRESHOLD); | |
| 1328 EXPECT_ROW3_NEAR(0, 0, 1, 0, to, ERROR_THRESHOLD); | |
| 1329 EXPECT_ROW4_EQ(0, 0, 0, 1, to); | |
| 1330 | |
| 1331 to.makeIdentity(); | |
| 1332 to.rotate3d(0, 0, 1, 90); | |
| 1333 to.blend(from, 1); | |
| 1334 EXPECT_ROW1_NEAR(0, -1, 0, 0, to, ERROR_THRESHOLD); | |
| 1335 EXPECT_ROW2_NEAR(1, 0, 0, 0, to, ERROR_THRESHOLD); | |
| 1336 EXPECT_ROW3_NEAR(0, 0, 1, 0, to, ERROR_THRESHOLD); | |
| 1337 EXPECT_ROW4_EQ(0, 0, 0, 1, to); | |
| 1338 } | |
| 1339 | |
| 1340 TEST(WebTransformationMatrixTest, BlendForCompositeTransform) { | |
| 1341 // Verify that the blending was done with a decomposition in correct order by
blending | |
| 1342 // a composite transform. | |
| 1343 // Using matrix x vector notation (Ax = b, where x is column vector), the orde
ring should be: | |
| 1344 // perspective * translation * rotation * skew * scale | |
| 1345 // | |
| 1346 // It is not as important (or meaningful) to check intermediate interpolations
; order | |
| 1347 // of operations will be tested well enough by the end cases that are easier t
o | |
| 1348 // specify. | |
| 1349 | |
| 1350 WebTransformationMatrix from; | |
| 1351 WebTransformationMatrix to; | |
| 1352 | |
| 1353 WebTransformationMatrix expected_end_of_animation; | |
| 1354 expected_end_of_animation.applyPerspective(1); | |
| 1355 expected_end_of_animation.translate3d(10, 20, 30); | |
| 1356 expected_end_of_animation.rotate3d(0, 0, 1, 25); | |
| 1357 expected_end_of_animation.skewY(45); | |
| 1358 expected_end_of_animation.scale3d(6, 7, 8); | |
| 1359 | |
| 1360 to = expected_end_of_animation; | |
| 1361 to.blend(from, 0); | |
| 1362 EXPECT_WEB_TRANSFORMATION_MATRIX_EQ(from, to); | |
| 1363 | |
| 1364 to = expected_end_of_animation; | |
| 1365 to.blend(from, 1); | |
| 1366 | |
| 1367 // Recomposing the matrix results in a normalized matrix, so to verify we need
to | |
| 1368 // normalize the expected_end_of_animation before comparing elements. Normaliz
ing means | |
| 1369 // dividing everything by expected_end_of_animation.m44(). | |
| 1370 WebTransformationMatrix normalized_expected_end_of_animation = | |
| 1371 expected_end_of_animation; | |
| 1372 WebTransformationMatrix normalization_matrix; | |
| 1373 normalization_matrix.setM11(1 / expected_end_of_animation.m44()); | |
| 1374 normalization_matrix.setM22(1 / expected_end_of_animation.m44()); | |
| 1375 normalization_matrix.setM33(1 / expected_end_of_animation.m44()); | |
| 1376 normalization_matrix.setM44(1 / expected_end_of_animation.m44()); | |
| 1377 normalized_expected_end_of_animation.multiply(normalization_matrix); | |
| 1378 | |
| 1379 EXPECT_WEB_TRANSFORMATION_MATRIX_EQ(normalized_expected_end_of_animation, to); | |
| 1380 } | |
| 1381 | |
| 1382 } // namespace | |
| OLD | NEW |