Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(37)

Unified Diff: infra_libs/ts_mon/metrics.py

Issue 1260293009: make version of ts_mon compatible with appengine (Closed) Base URL: https://chromium.googlesource.com/infra/infra.git@master
Patch Set: take out deleted utils methods Created 5 years, 4 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
Index: infra_libs/ts_mon/metrics.py
diff --git a/infra_libs/ts_mon/metrics.py b/infra_libs/ts_mon/metrics.py
deleted file mode 100644
index fa986e6e115441c8eaaf97f57c1577658d5e0337..0000000000000000000000000000000000000000
--- a/infra_libs/ts_mon/metrics.py
+++ /dev/null
@@ -1,434 +0,0 @@
-# Copyright 2015 The Chromium Authors. All rights reserved.
-# Use of this source code is governed by a BSD-style license that can be
-# found in the LICENSE file.
-
-"""Classes representing individual metrics that can be sent."""
-
-
-import copy
-import threading
-import time
-
-from monacq.proto import metrics_pb2
-
-from infra_libs.ts_mon import distribution
-from infra_libs.ts_mon import errors
-from infra_libs.ts_mon import interface
-
-
-MICROSECONDS_PER_SECOND = 1000000
-
-
-class Metric(object):
- """Abstract base class for a metric.
-
- A Metric is an attribute that may be monitored across many targets. Examples
- include disk usage or the number of requests a server has received. A single
- process may keep track of many metrics.
-
- Note that Metric objects may be initialized at any time (for example, at the
- top of a library), but cannot be sent until the underlying Monitor object
- has been set up (usually by the top-level process parsing the command line).
-
- A Metric can actually store multiple values that are identified by a set of
- fields (which are themselves key-value pairs). Fields can be passed to the
- set() or increment() methods to modify a particular value, or passed to the
- constructor in which case they will be used as the defaults for this Metric.
-
- Do not directly instantiate an object of this class.
- Use the concrete child classes instead:
- * StringMetric for metrics with string value
- * BooleanMetric for metrics with boolean values
- * CounterMetric for metrics with monotonically increasing integer values
- * GaugeMetric for metrics with arbitrarily varying integer values
- * CumulativeMetric for metrics with monotonically increasing float values
- * FloatMetric for metrics with arbitrarily varying float values
- """
-
- _initial_value = None
-
- def __init__(self, name, target=None, fields=None):
- """Create an instance of a Metric.
-
- Args:
- name (str): the file-like name of this metric
- fields (dict): a set of key-value pairs to be set as default metric fields
- target (Target): a Target to be used with this metric. This should be
- specified only rarely; usually the library's default
- Target will be used (set up by the top-level process).
- """
- self._name = name.lstrip('/')
- self._values = {}
- self._target = target
- fields = fields or {}
- if len(fields) > 7:
- raise errors.MonitoringTooManyFieldsError(self._name, fields)
- self._fields = fields
- self._normalized_fields = self._normalize_fields(self._fields)
- self._thread_lock = threading.Lock()
-
- interface.register(self)
-
- def unregister(self):
- interface.unregister(self)
-
- def serialize_to(self, collection_pb, default_target=None, loop_action=None):
- """Generate metrics_pb2.MetricsData messages for this metric.
-
- Args:
- collection_pb (metrics_pb2.MetricsCollection): protocol buffer into which
- to add the current metric values.
- default_target (Target): a Target to use if self._target is not set.
- loop_action (function(metrics_pb2.MetricsCollection)): a function that we
- must call with the collection_pb every loop iteration.
-
- Raises:
- MonitoringNoConfiguredTargetError: if neither self._target nor
- default_target is set
- """
-
- for fields, value in self._values.iteritems():
- if callable(loop_action):
- loop_action(collection_pb)
- metric_pb = collection_pb.data.add()
- metric_pb.metric_name_prefix = '/chrome/infra/'
- metric_pb.name = self._name
-
- self._populate_value(metric_pb, value)
- self._populate_fields(metric_pb, fields)
-
- if self._target:
- self._target._populate_target_pb(metric_pb)
- elif default_target:
- default_target._populate_target_pb(metric_pb)
- else:
- raise errors.MonitoringNoConfiguredTargetError(self._name)
-
- def _populate_fields(self, metric, fields):
- """Fill in the fields attribute of a metric protocol buffer.
-
- Args:
- metric (metrics_pb2.MetricsData): a metrics protobuf to populate
- fields (list of (key, value) tuples): normalized metric fields
-
- Raises:
- MonitoringInvalidFieldTypeError: if a field has a value of unknown type
- """
- for key, value in fields:
- field = metric.fields.add()
- field.name = key
- if isinstance(value, basestring):
- field.type = metrics_pb2.MetricsField.STRING
- field.string_value = value
- elif isinstance(value, bool):
- field.type = metrics_pb2.MetricsField.BOOL
- field.bool_value = value
- elif isinstance(value, int):
- field.type = metrics_pb2.MetricsField.INT
- field.int_value = value
- else:
- raise errors.MonitoringInvalidFieldTypeError(self._name, key, value)
-
- def _normalize_fields(self, fields):
- """Merges the fields with the default fields and returns something hashable.
-
- Args:
- fields (dict): A dict of fields passed by the user, or None.
-
- Returns:
- A tuple of (key, value) tuples, ordered by key. This whole tuple is used
- as the key in the self._values dict to identify the cell for a value.
-
- Raises:
- MonitoringTooManyFieldsError: if there are more than seven metric fields
- """
- if fields is None:
- return self._normalized_fields
-
- all_fields = copy.copy(self._fields)
- all_fields.update(fields)
-
- if len(all_fields) > 7:
- raise errors.MonitoringTooManyFieldsError(self._name, all_fields)
-
- return tuple(sorted(all_fields.iteritems()))
-
- def _set_and_send_value(self, value, fields):
- """Called by subclasses to set a new value for this metric.
-
- Args:
- value (see concrete class): the value of the metric to be set
- fields (dict): additional metric fields to complement those on self
- """
- self._values[self._normalize_fields(fields)] = value
- interface.send(self)
-
- def _populate_value(self, metric, value):
- """Fill in the the data values of a metric protocol buffer.
-
- Args:
- metric (metrics_pb2.MetricsData): a metrics protobuf to populate
- value (see concrete class): the value of the metric to be set
- """
- raise NotImplementedError()
-
- def set(self, value, fields=None):
- """Set a new value for this metric. Results in sending a new value.
-
- The subclass should do appropriate type checking on value and then call
- self._set_and_send_value.
-
- Args:
- value (see concrete class): the value of the metric to be set
- fields (dict): additional metric fields to complement those on self
- """
- raise NotImplementedError()
-
- def get(self, fields=None):
- """Returns the current value for this metric."""
- return self._values.get(self._normalize_fields(fields), self._initial_value)
-
- def reset(self):
- """Resets the current values for this metric to 0. Useful for tests."""
- self._values = {}
-
-
-class StringMetric(Metric):
- """A metric whose value type is a string."""
-
- def _populate_value(self, metric, value):
- metric.string_value = value
-
- def set(self, value, fields=None):
- if not isinstance(value, basestring):
- raise errors.MonitoringInvalidValueTypeError(self._name, value)
- self._set_and_send_value(value, fields)
-
-
-class BooleanMetric(Metric):
- """A metric whose value type is a boolean."""
-
- def _populate_value(self, metric, value):
- metric.boolean_value = value
-
- def set(self, value, fields=None):
- if not isinstance(value, bool):
- raise errors.MonitoringInvalidValueTypeError(self._name, value)
- self._set_and_send_value(value, fields)
-
- def toggle(self, fields=None):
- self.set(not self.get(fields), fields)
-
-
-class NumericMetric(Metric): # pylint: disable=abstract-method
- """Abstract base class for numeric (int or float) metrics."""
- #TODO(agable): Figure out if there's a way to send units with these metrics.
-
- def increment(self, fields=None):
- self.increment_by(1, fields)
-
- def increment_by(self, step, fields=None):
- if self.get(fields) is None:
- raise errors.MonitoringIncrementUnsetValueError(self._name)
- with self._thread_lock:
- self.set(self.get(fields) + step, fields)
-
-
-class CounterMetric(NumericMetric):
- """A metric whose value type is a monotonically increasing integer."""
-
- _initial_value = 0
-
- def __init__(
- self, name, target=None, fields=None, start_time=None, time_fn=time.time):
- super(CounterMetric, self).__init__(name, target=target, fields=fields)
- self._start_time = start_time or int(time_fn() * MICROSECONDS_PER_SECOND)
-
- def _populate_value(self, metric, value):
- metric.counter = value
- metric.start_timestamp_us = self._start_time
-
- def set(self, value, fields=None):
- if not isinstance(value, (int, long)):
- raise errors.MonitoringInvalidValueTypeError(self._name, value)
- if value < self.get(fields):
- raise errors.MonitoringDecreasingValueError(
- self._name, self.get(fields), value)
- self._set_and_send_value(value, fields)
-
-
-class GaugeMetric(NumericMetric):
- """A metric whose value type is an integer."""
-
- def _populate_value(self, metric, value):
- metric.gauge = value
-
- def set(self, value, fields=None):
- if not isinstance(value, (int, long)):
- raise errors.MonitoringInvalidValueTypeError(self._name, value)
- self._set_and_send_value(value, fields)
-
-
-class CumulativeMetric(NumericMetric):
- """A metric whose value type is a monotonically increasing float."""
-
- _initial_value = 0.0
-
- def __init__(
- self, name, target=None, fields=None, start_time=None, time_fn=time.time):
- super(CumulativeMetric, self).__init__(name, target=target, fields=fields)
- self._start_time = start_time or int(time_fn() * MICROSECONDS_PER_SECOND)
-
- def _populate_value(self, metric, value):
- metric.cumulative_double_value = value
- metric.start_timestamp_us = self._start_time
-
- def set(self, value, fields=None):
- if not isinstance(value, (float, int)):
- raise errors.MonitoringInvalidValueTypeError(self._name, value)
- if value < self.get(fields):
- raise errors.MonitoringDecreasingValueError(
- self._name, self.get(fields), value)
- self._set_and_send_value(float(value), fields)
-
-
-class FloatMetric(NumericMetric):
- """A metric whose value type is a float."""
-
- def _populate_value(self, metric, value):
- metric.noncumulative_double_value = value
-
- def set(self, value, fields=None):
- if not isinstance(value, (float, int)):
- raise errors.MonitoringInvalidValueTypeError(self._name, value)
- self._set_and_send_value(float(value), fields)
-
-
-class DistributionMetric(Metric):
- """A metric that holds a distribution of values.
-
- By default buckets are chosen from a geometric progression, each bucket being
- approximately 1.59 times bigger than the last. In practice this is suitable
- for many kinds of data, but you may want to provide a FixedWidthBucketer or
- GeometricBucketer with different parameters."""
-
- CANONICAL_SPEC_TYPES = {
- 2: metrics_pb2.PrecomputedDistribution.CANONICAL_POWERS_OF_2,
- 10**0.2: metrics_pb2.PrecomputedDistribution.CANONICAL_POWERS_OF_10_P_0_2,
- 10: metrics_pb2.PrecomputedDistribution.CANONICAL_POWERS_OF_10,
- }
-
- def __init__(self, name, is_cumulative=True, bucketer=None, target=None,
- fields=None, start_time=None, time_fn=time.time):
- super(DistributionMetric, self).__init__(name, target, fields)
- self._start_time = start_time or int(time_fn() * MICROSECONDS_PER_SECOND)
-
- if bucketer is None:
- bucketer = distribution.GeometricBucketer()
-
- self.is_cumulative = is_cumulative
- self.bucketer = bucketer
-
- def _populate_value(self, metric, value):
- pb = metric.distribution
-
- pb.is_cumulative = self.is_cumulative
- metric.start_timestamp_us = self._start_time
-
- # Copy the bucketer params.
- if (value.bucketer.width == 0 and
- value.bucketer.growth_factor in self.CANONICAL_SPEC_TYPES):
- pb.spec_type = self.CANONICAL_SPEC_TYPES[value.bucketer.growth_factor]
- else:
- pb.spec_type = metrics_pb2.PrecomputedDistribution.CUSTOM_PARAMETERIZED
- pb.width = value.bucketer.width
- pb.growth_factor = value.bucketer.growth_factor
- pb.num_buckets = value.bucketer.num_finite_buckets
-
- # Copy the distribution bucket values. Only include the finite buckets, not
- # the overflow buckets on each end.
- pb.bucket.extend(self._running_zero_generator(
- value.buckets.get(i, 0) for i in
- xrange(1, value.bucketer.total_buckets - 1)))
-
- # Add the overflow buckets if present.
- if value.bucketer.underflow_bucket in value.buckets:
- pb.underflow = value.buckets[value.bucketer.underflow_bucket]
- if value.bucketer.overflow_bucket in value.buckets:
- pb.overflow = value.buckets[value.bucketer.overflow_bucket]
-
- if value.count != 0:
- pb.mean = float(value.sum) / value.count
-
- @staticmethod
- def _running_zero_generator(iterable):
- """Compresses sequences of zeroes in the iterable into negative zero counts.
-
- For example an input of [1, 0, 0, 0, 2] is converted to [1, -3, 2].
- """
-
- count = 0
-
- for value in iterable:
- if value == 0:
- count += 1
- else:
- if count != 0:
- yield -count
- count = 0
- yield value
-
- def add(self, value, fields=None):
- with self._thread_lock:
- dist = self.get(fields)
- if dist is None:
- dist = distribution.Distribution(self.bucketer)
-
- dist.add(value)
- self._set_and_send_value(dist, fields)
-
- def set(self, value, fields=None):
- """Replaces the distribution with the given fields with another one.
-
- This only makes sense on non-cumulative DistributionMetrics.
-
- Args:
- value: A infra_libs.ts_mon.Distribution.
- """
-
- if self.is_cumulative:
- raise TypeError(
- 'Cannot set() a cumulative DistributionMetric (use add() instead)')
-
- if not isinstance(value, distribution.Distribution):
- raise errors.MonitoringInvalidValueTypeError(self._name, value)
-
- self._set_and_send_value(value, fields)
-
-
-class CumulativeDistributionMetric(DistributionMetric):
- """A DistributionMetric with is_cumulative set to True."""
-
- def __init__(
- self, name, bucketer=None, target=None, fields=None, time_fn=time.time):
- super(CumulativeDistributionMetric, self).__init__(
- name,
- is_cumulative=True,
- bucketer=bucketer,
- target=target,
- fields=fields,
- time_fn=time_fn)
-
-
-class NonCumulativeDistributionMetric(DistributionMetric):
- """A DistributionMetric with is_cumulative set to False."""
-
- def __init__(
- self, name, bucketer=None, target=None, fields=None, time_fn=time.time):
- super(NonCumulativeDistributionMetric, self).__init__(
- name,
- is_cumulative=False,
- bucketer=bucketer,
- target=target,
- fields=fields,
- time_fn=time_fn)

Powered by Google App Engine
This is Rietveld 408576698