Index: src/arm/macro-assembler-arm.cc |
diff --git a/src/arm/macro-assembler-arm.cc b/src/arm/macro-assembler-arm.cc |
index 2265d03bd907532edbf280da92ba3bd9e2daef60..ce9a8d4bfb91b5755b2c1ea708999d5a230f0b46 100644 |
--- a/src/arm/macro-assembler-arm.cc |
+++ b/src/arm/macro-assembler-arm.cc |
@@ -2436,105 +2436,6 @@ void MacroAssembler::SmiToDoubleVFPRegister(Register smi, |
} |
-// Tries to get a signed int32 out of a double precision floating point heap |
-// number. Rounds towards 0. Branch to 'not_int32' if the double is out of the |
-// 32bits signed integer range. |
-void MacroAssembler::ConvertToInt32(Register source, |
- Register dest, |
- Register scratch, |
- Register scratch2, |
- DwVfpRegister double_scratch, |
- Label *not_int32) { |
- if (CpuFeatures::IsSupported(VFP2)) { |
- CpuFeatureScope scope(this, VFP2); |
- sub(scratch, source, Operand(kHeapObjectTag)); |
- vldr(double_scratch, scratch, HeapNumber::kValueOffset); |
- vcvt_s32_f64(double_scratch.low(), double_scratch); |
- vmov(dest, double_scratch.low()); |
- // Signed vcvt instruction will saturate to the minimum (0x80000000) or |
- // maximun (0x7fffffff) signed 32bits integer when the double is out of |
- // range. When substracting one, the minimum signed integer becomes the |
- // maximun signed integer. |
- sub(scratch, dest, Operand(1)); |
- cmp(scratch, Operand(LONG_MAX - 1)); |
- // If equal then dest was LONG_MAX, if greater dest was LONG_MIN. |
- b(ge, not_int32); |
- } else { |
- // This code is faster for doubles that are in the ranges -0x7fffffff to |
- // -0x40000000 or 0x40000000 to 0x7fffffff. This corresponds almost to |
- // the range of signed int32 values that are not Smis. Jumps to the label |
- // 'not_int32' if the double isn't in the range -0x80000000.0 to |
- // 0x80000000.0 (excluding the endpoints). |
- Label right_exponent, done; |
- // Get exponent word. |
- ldr(scratch, FieldMemOperand(source, HeapNumber::kExponentOffset)); |
- // Get exponent alone in scratch2. |
- Ubfx(scratch2, |
- scratch, |
- HeapNumber::kExponentShift, |
- HeapNumber::kExponentBits); |
- // Load dest with zero. We use this either for the final shift or |
- // for the answer. |
- mov(dest, Operand::Zero()); |
- // Check whether the exponent matches a 32 bit signed int that is not a Smi. |
- // A non-Smi integer is 1.xxx * 2^30 so the exponent is 30 (biased). This is |
- // the exponent that we are fastest at and also the highest exponent we can |
- // handle here. |
- const uint32_t non_smi_exponent = HeapNumber::kExponentBias + 30; |
- // The non_smi_exponent, 0x41d, is too big for ARM's immediate field so we |
- // split it up to avoid a constant pool entry. You can't do that in general |
- // for cmp because of the overflow flag, but we know the exponent is in the |
- // range 0-2047 so there is no overflow. |
- int fudge_factor = 0x400; |
- sub(scratch2, scratch2, Operand(fudge_factor)); |
- cmp(scratch2, Operand(non_smi_exponent - fudge_factor)); |
- // If we have a match of the int32-but-not-Smi exponent then skip some |
- // logic. |
- b(eq, &right_exponent); |
- // If the exponent is higher than that then go to slow case. This catches |
- // numbers that don't fit in a signed int32, infinities and NaNs. |
- b(gt, not_int32); |
- |
- // We know the exponent is smaller than 30 (biased). If it is less than |
- // 0 (biased) then the number is smaller in magnitude than 1.0 * 2^0, i.e. |
- // it rounds to zero. |
- const uint32_t zero_exponent = HeapNumber::kExponentBias + 0; |
- sub(scratch2, scratch2, Operand(zero_exponent - fudge_factor), SetCC); |
- // Dest already has a Smi zero. |
- b(lt, &done); |
- |
- // We have an exponent between 0 and 30 in scratch2. Subtract from 30 to |
- // get how much to shift down. |
- rsb(dest, scratch2, Operand(30)); |
- |
- bind(&right_exponent); |
- // Get the top bits of the mantissa. |
- and_(scratch2, scratch, Operand(HeapNumber::kMantissaMask)); |
- // Put back the implicit 1. |
- orr(scratch2, scratch2, Operand(1 << HeapNumber::kExponentShift)); |
- // Shift up the mantissa bits to take up the space the exponent used to |
- // take. We just orred in the implicit bit so that took care of one and |
- // we want to leave the sign bit 0 so we subtract 2 bits from the shift |
- // distance. |
- const int shift_distance = HeapNumber::kNonMantissaBitsInTopWord - 2; |
- mov(scratch2, Operand(scratch2, LSL, shift_distance)); |
- // Put sign in zero flag. |
- tst(scratch, Operand(HeapNumber::kSignMask)); |
- // Get the second half of the double. For some exponents we don't |
- // actually need this because the bits get shifted out again, but |
- // it's probably slower to test than just to do it. |
- ldr(scratch, FieldMemOperand(source, HeapNumber::kMantissaOffset)); |
- // Shift down 22 bits to get the last 10 bits. |
- orr(scratch, scratch2, Operand(scratch, LSR, 32 - shift_distance)); |
- // Move down according to the exponent. |
- mov(dest, Operand(scratch, LSR, dest)); |
- // Fix sign if sign bit was set. |
- rsb(dest, dest, Operand::Zero(), LeaveCC, ne); |
- bind(&done); |
- } |
-} |
- |
- |
void MacroAssembler::TestDoubleIsInt32(DwVfpRegister double_input, |
DwVfpRegister double_scratch) { |
ASSERT(!double_input.is(double_scratch)); |
@@ -2608,85 +2509,32 @@ void MacroAssembler::TryInt32Floor(Register result, |
} |
-void MacroAssembler::EmitOutOfInt32RangeTruncate(Register result, |
- Register input_high, |
- Register input_low, |
- Register scratch) { |
- Label done, normal_exponent, restore_sign; |
- |
- // Extract the biased exponent in result. |
- Ubfx(result, |
- input_high, |
- HeapNumber::kExponentShift, |
- HeapNumber::kExponentBits); |
- |
- // Check for Infinity and NaNs, which should return 0. |
- cmp(result, Operand(HeapNumber::kExponentMask)); |
- mov(result, Operand::Zero(), LeaveCC, eq); |
- b(eq, &done); |
- |
- // Express exponent as delta to (number of mantissa bits + 31). |
- sub(result, |
- result, |
- Operand(HeapNumber::kExponentBias + HeapNumber::kMantissaBits + 31), |
- SetCC); |
- |
- // If the delta is strictly positive, all bits would be shifted away, |
- // which means that we can return 0. |
- b(le, &normal_exponent); |
- mov(result, Operand::Zero()); |
- b(&done); |
- |
- bind(&normal_exponent); |
- const int kShiftBase = HeapNumber::kNonMantissaBitsInTopWord - 1; |
- // Calculate shift. |
- add(scratch, result, Operand(kShiftBase + HeapNumber::kMantissaBits), SetCC); |
- |
- // Save the sign. |
- Register sign = result; |
- result = no_reg; |
- and_(sign, input_high, Operand(HeapNumber::kSignMask)); |
- |
- // Set the implicit 1 before the mantissa part in input_high. |
- orr(input_high, |
- input_high, |
- Operand(1 << HeapNumber::kMantissaBitsInTopWord)); |
- // Shift the mantissa bits to the correct position. |
- // We don't need to clear non-mantissa bits as they will be shifted away. |
- // If they weren't, it would mean that the answer is in the 32bit range. |
- mov(input_high, Operand(input_high, LSL, scratch)); |
- |
- // Replace the shifted bits with bits from the lower mantissa word. |
- Label pos_shift, shift_done; |
- rsb(scratch, scratch, Operand(32), SetCC); |
- b(&pos_shift, ge); |
- |
- // Negate scratch. |
- rsb(scratch, scratch, Operand::Zero()); |
- mov(input_low, Operand(input_low, LSL, scratch)); |
- b(&shift_done); |
- |
- bind(&pos_shift); |
- mov(input_low, Operand(input_low, LSR, scratch)); |
- |
- bind(&shift_done); |
- orr(input_high, input_high, Operand(input_low)); |
- // Restore sign if necessary. |
- cmp(sign, Operand::Zero()); |
- result = sign; |
- sign = no_reg; |
- rsb(result, input_high, Operand::Zero(), LeaveCC, ne); |
- mov(result, input_high, LeaveCC, eq); |
- bind(&done); |
+void MacroAssembler::ECMAConvertNumberToInt32(Register source, |
+ Register result, |
+ Register scratch, |
+ Register input_high, |
+ Register input_low, |
+ DwVfpRegister double_scratch1, |
+ DwVfpRegister double_scratch2) { |
+ if (CpuFeatures::IsSupported(VFP2)) { |
+ CpuFeatureScope scope(this, VFP2); |
+ vldr(double_scratch1, FieldMemOperand(source, HeapNumber::kValueOffset)); |
+ ECMAToInt32VFP(result, double_scratch1, double_scratch2, |
+ scratch, input_high, input_low); |
+ } else { |
+ Ldrd(input_low, input_high, |
+ FieldMemOperand(source, HeapNumber::kValueOffset)); |
+ ECMAToInt32NoVFP(result, scratch, input_high, input_low); |
+ } |
} |
-void MacroAssembler::EmitECMATruncate(Register result, |
- DwVfpRegister double_input, |
- DwVfpRegister double_scratch, |
- Register scratch, |
- Register input_high, |
- Register input_low) { |
+void MacroAssembler::ECMAToInt32VFP(Register result, |
+ DwVfpRegister double_input, |
+ DwVfpRegister double_scratch, |
+ Register scratch, |
+ Register input_high, |
+ Register input_low) { |
CpuFeatureScope scope(this, VFP2); |
ASSERT(!input_high.is(result)); |
ASSERT(!input_low.is(result)); |
@@ -2696,38 +2544,136 @@ void MacroAssembler::EmitECMATruncate(Register result, |
!scratch.is(input_low)); |
ASSERT(!double_input.is(double_scratch)); |
- Label done; |
+ Label overflow, out_of_range, negate, done; |
- // Test if the value can be exactly represented as a signed integer. |
- TryDoubleToInt32Exact(result, double_input, double_scratch); |
- b(eq, &done); |
+ vmov(input_low, input_high, double_input); |
+ Ubfx(scratch, input_high, |
+ HeapNumber::kExponentShift, HeapNumber::kExponentBits); |
+ // Load scratch with exponent - 1. This is faster than loading |
+ // with exponent because Bias + 1 = 1024 which is an *ARM* immediate value. |
+ sub(scratch, scratch, Operand(HeapNumber::kExponentBias + 1)); |
+ // Compare exponent with 31 (compare exponent - 1 with 30). |
+ cmp(scratch, Operand(30)); |
+ b(ge, &overflow); |
+ // Exponent is less than 31 so vcvt will never saturate. |
+ // So, just return the result. |
+ vcvt_s32_f64(double_scratch.low(), double_input); |
+ vmov(result, double_scratch.low()); |
+ b(&done); |
- // Check the exception flags. If they are not set, we are done. |
- // If they are set, it could be because of the conversion above, or because |
- // they were set before this code. |
- vmrs(scratch); |
- tst(scratch, Operand(kVFPInvalidOpExceptionBit)); |
- b(eq, &done); |
+ bind(&overflow); |
+ // If exponent is greater than or equal to 84, the 32 less significant |
+ // bits are 0s (2^84 = 1, 52 significant bits, 32 uncoded bits), |
+ // the result is 0. |
+ // This test also catch Nan and infinities which also return 0. |
+ // Compare exponent with 84 (compare exponent - 1 with 83). |
+ cmp(scratch, Operand(83)); |
+ b(ge, &out_of_range); |
- // Clear cumulative exception flags. |
- bic(scratch, scratch, Operand(kVFPInvalidOpExceptionBit)); |
- vmsr(scratch); |
- // Try a conversion to a signed integer. |
- vcvt_s32_f64(double_scratch.low(), double_input); |
- // Retrieve the FPSCR. |
- vmrs(scratch); |
- // Check for invalid conversions (out of range and NaNs). |
- tst(scratch, Operand(kVFPInvalidOpExceptionBit)); |
- // If we had no exceptions we are done. |
- b(eq, &done); |
+ // If we reach this code, 31 <= exponent <= 83. |
+ // So, we don't have to handle cases where 0 <= exponent <= 20 for |
+ // which we would need to shift right the high part of the mantissa. |
+ ECMAToInt32Tail(result, scratch, input_high, input_low, |
+ &out_of_range, &negate, &done); |
+} |
- // Load the double value and perform a manual truncation. |
- vmov(input_low, input_high, double_input); |
- EmitOutOfInt32RangeTruncate(result, |
- input_high, |
- input_low, |
- scratch); |
- bind(&done); |
+ |
+void MacroAssembler::ECMAToInt32NoVFP(Register result, |
+ Register scratch, |
+ Register input_high, |
+ Register input_low) { |
+ ASSERT(!result.is(scratch)); |
+ ASSERT(!result.is(input_high)); |
+ ASSERT(!result.is(input_low)); |
+ ASSERT(!scratch.is(input_high)); |
+ ASSERT(!scratch.is(input_low)); |
+ ASSERT(!input_high.is(input_low)); |
+ |
+ Label both, out_of_range, negate, done; |
+ |
+ Ubfx(scratch, input_high, |
+ HeapNumber::kExponentShift, HeapNumber::kExponentBits); |
+ // Load scratch with exponent - 1. This is faster than loading |
+ // with exponent because Bias + 1 = 1024 which is an *ARM* immediate value. |
+ sub(scratch, scratch, Operand(HeapNumber::kExponentBias + 1)); |
+ // If exponent is negative, 0 < input < 1, the result is 0. |
+ // If exponent is greater than or equal to 84, the 32 less significant |
+ // bits are 0s (2^84 = 1, 52 significant bits, 32 uncoded bits), |
+ // the result is 0. |
+ // This test also catch Nan and infinities which also return 0. |
+ // Compare exponent with 84 (compare exponent - 1 with 83). |
+ cmp(scratch, Operand(83)); |
+ // We do an unsigned comparison so negative numbers are treated as big |
+ // positive number and the two tests above are done in one test. |
+ b(hs, &out_of_range); |
+ |
+ // Load scratch with 20 - exponent (load with 19 - (exponent - 1)). |
+ rsb(scratch, scratch, Operand(19), SetCC); |
+ b(mi, &both); |
+ |
+ // 0 <= exponent <= 20, shift only input_high. |
+ // Scratch contains: 20 - exponent. |
+ Ubfx(result, input_high, |
+ 0, HeapNumber::kMantissaBitsInTopWord); |
+ orr(result, result, Operand(1 << HeapNumber::kMantissaBitsInTopWord)); |
+ mov(result, Operand(result, LSR, scratch)); |
+ b(&negate); |
+ |
+ bind(&both); |
+ // Restore scratch to exponent - 1 to be consistent with ECMAToInt32VFP. |
+ rsb(scratch, scratch, Operand(19)); |
+ ECMAToInt32Tail(result, scratch, input_high, input_low, |
+ &out_of_range, &negate, &done); |
+} |
+ |
+ |
+void MacroAssembler::ECMAToInt32Tail(Register result, |
+ Register scratch, |
+ Register input_high, |
+ Register input_low, |
+ Label* out_of_range, |
+ Label* negate, |
+ Label* done) { |
+ Label only_low; |
+ |
+ // On entry, scratch contains exponent - 1. |
+ // Load scratch with 52 - exponent (load with 51 - (exponent - 1)). |
+ rsb(scratch, scratch, Operand(51), SetCC); |
+ b(ls, &only_low); |
+ // 21 <= exponent <= 51, shift input_low and input_high |
+ // to generate the result. |
+ mov(input_low, Operand(input_low, LSR, scratch)); |
+ // Scratch contains: 52 - exponent. |
+ // We needs: exponent - 20. |
+ // So we use: 32 - scratch = 32 - 52 + exponent = exponent - 20. |
+ rsb(scratch, scratch, Operand(32)); |
+ Ubfx(result, input_high, |
+ 0, HeapNumber::kMantissaBitsInTopWord); |
+ orr(result, result, Operand(1 << HeapNumber::kMantissaBitsInTopWord)); |
ulan
2013/03/11 15:11:03
Maybe restore the comment about implicit 1?
// Set
Rodolph Perfetta
2013/03/12 11:24:45
Done.
|
+ orr(result, input_low, Operand(result, LSL, scratch)); |
+ b(negate); |
+ |
+ bind(out_of_range); |
+ mov(result, Operand::Zero()); |
+ b(done); |
+ |
+ bind(&only_low); |
+ // 52 <= exponent <= 83, shift only input_low. |
+ // On entry, scratch contains: 52 - exponent. |
+ rsb(scratch, scratch, Operand::Zero()); |
+ mov(result, Operand(input_low, LSL, scratch)); |
+ |
+ bind(negate); |
+ // If input was positive, input_high ASR 31 equals 0 and |
+ // input_high LSR 31 equals zero. |
+ // New result = (result eor 0) + 0 = result. |
+ // If the input was negative, we have to negate the result. |
+ // Input_high ASR 31 equals 0xffffffff and input_high LSR 31 equals 1. |
+ // New result = (result eor 0xffffffff) + 1 = 0 - result. |
+ eor(result, result, Operand(input_high, ASR, 31)); |
ulan
2013/03/11 15:11:03
This is an awesome trick :)
|
+ add(result, result, Operand(input_high, LSR, 31)); |
+ |
+ bind(done); |
} |