OLD | NEW |
---|---|
1 // Copyright 2012 the V8 project authors. All rights reserved. | 1 // Copyright 2012 the V8 project authors. All rights reserved. |
2 // Redistribution and use in source and binary forms, with or without | 2 // Redistribution and use in source and binary forms, with or without |
3 // modification, are permitted provided that the following conditions are | 3 // modification, are permitted provided that the following conditions are |
4 // met: | 4 // met: |
5 // | 5 // |
6 // * Redistributions of source code must retain the above copyright | 6 // * Redistributions of source code must retain the above copyright |
7 // notice, this list of conditions and the following disclaimer. | 7 // notice, this list of conditions and the following disclaimer. |
8 // * Redistributions in binary form must reproduce the above | 8 // * Redistributions in binary form must reproduce the above |
9 // copyright notice, this list of conditions and the following | 9 // copyright notice, this list of conditions and the following |
10 // disclaimer in the documentation and/or other materials provided | 10 // disclaimer in the documentation and/or other materials provided |
(...skipping 2418 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... | |
2429 void MacroAssembler::SmiToDoubleVFPRegister(Register smi, | 2429 void MacroAssembler::SmiToDoubleVFPRegister(Register smi, |
2430 DwVfpRegister value, | 2430 DwVfpRegister value, |
2431 Register scratch1, | 2431 Register scratch1, |
2432 SwVfpRegister scratch2) { | 2432 SwVfpRegister scratch2) { |
2433 mov(scratch1, Operand(smi, ASR, kSmiTagSize)); | 2433 mov(scratch1, Operand(smi, ASR, kSmiTagSize)); |
2434 vmov(scratch2, scratch1); | 2434 vmov(scratch2, scratch1); |
2435 vcvt_f64_s32(value, scratch2); | 2435 vcvt_f64_s32(value, scratch2); |
2436 } | 2436 } |
2437 | 2437 |
2438 | 2438 |
2439 // Tries to get a signed int32 out of a double precision floating point heap | |
2440 // number. Rounds towards 0. Branch to 'not_int32' if the double is out of the | |
2441 // 32bits signed integer range. | |
2442 void MacroAssembler::ConvertToInt32(Register source, | |
2443 Register dest, | |
2444 Register scratch, | |
2445 Register scratch2, | |
2446 DwVfpRegister double_scratch, | |
2447 Label *not_int32) { | |
2448 if (CpuFeatures::IsSupported(VFP2)) { | |
2449 CpuFeatureScope scope(this, VFP2); | |
2450 sub(scratch, source, Operand(kHeapObjectTag)); | |
2451 vldr(double_scratch, scratch, HeapNumber::kValueOffset); | |
2452 vcvt_s32_f64(double_scratch.low(), double_scratch); | |
2453 vmov(dest, double_scratch.low()); | |
2454 // Signed vcvt instruction will saturate to the minimum (0x80000000) or | |
2455 // maximun (0x7fffffff) signed 32bits integer when the double is out of | |
2456 // range. When substracting one, the minimum signed integer becomes the | |
2457 // maximun signed integer. | |
2458 sub(scratch, dest, Operand(1)); | |
2459 cmp(scratch, Operand(LONG_MAX - 1)); | |
2460 // If equal then dest was LONG_MAX, if greater dest was LONG_MIN. | |
2461 b(ge, not_int32); | |
2462 } else { | |
2463 // This code is faster for doubles that are in the ranges -0x7fffffff to | |
2464 // -0x40000000 or 0x40000000 to 0x7fffffff. This corresponds almost to | |
2465 // the range of signed int32 values that are not Smis. Jumps to the label | |
2466 // 'not_int32' if the double isn't in the range -0x80000000.0 to | |
2467 // 0x80000000.0 (excluding the endpoints). | |
2468 Label right_exponent, done; | |
2469 // Get exponent word. | |
2470 ldr(scratch, FieldMemOperand(source, HeapNumber::kExponentOffset)); | |
2471 // Get exponent alone in scratch2. | |
2472 Ubfx(scratch2, | |
2473 scratch, | |
2474 HeapNumber::kExponentShift, | |
2475 HeapNumber::kExponentBits); | |
2476 // Load dest with zero. We use this either for the final shift or | |
2477 // for the answer. | |
2478 mov(dest, Operand::Zero()); | |
2479 // Check whether the exponent matches a 32 bit signed int that is not a Smi. | |
2480 // A non-Smi integer is 1.xxx * 2^30 so the exponent is 30 (biased). This is | |
2481 // the exponent that we are fastest at and also the highest exponent we can | |
2482 // handle here. | |
2483 const uint32_t non_smi_exponent = HeapNumber::kExponentBias + 30; | |
2484 // The non_smi_exponent, 0x41d, is too big for ARM's immediate field so we | |
2485 // split it up to avoid a constant pool entry. You can't do that in general | |
2486 // for cmp because of the overflow flag, but we know the exponent is in the | |
2487 // range 0-2047 so there is no overflow. | |
2488 int fudge_factor = 0x400; | |
2489 sub(scratch2, scratch2, Operand(fudge_factor)); | |
2490 cmp(scratch2, Operand(non_smi_exponent - fudge_factor)); | |
2491 // If we have a match of the int32-but-not-Smi exponent then skip some | |
2492 // logic. | |
2493 b(eq, &right_exponent); | |
2494 // If the exponent is higher than that then go to slow case. This catches | |
2495 // numbers that don't fit in a signed int32, infinities and NaNs. | |
2496 b(gt, not_int32); | |
2497 | |
2498 // We know the exponent is smaller than 30 (biased). If it is less than | |
2499 // 0 (biased) then the number is smaller in magnitude than 1.0 * 2^0, i.e. | |
2500 // it rounds to zero. | |
2501 const uint32_t zero_exponent = HeapNumber::kExponentBias + 0; | |
2502 sub(scratch2, scratch2, Operand(zero_exponent - fudge_factor), SetCC); | |
2503 // Dest already has a Smi zero. | |
2504 b(lt, &done); | |
2505 | |
2506 // We have an exponent between 0 and 30 in scratch2. Subtract from 30 to | |
2507 // get how much to shift down. | |
2508 rsb(dest, scratch2, Operand(30)); | |
2509 | |
2510 bind(&right_exponent); | |
2511 // Get the top bits of the mantissa. | |
2512 and_(scratch2, scratch, Operand(HeapNumber::kMantissaMask)); | |
2513 // Put back the implicit 1. | |
2514 orr(scratch2, scratch2, Operand(1 << HeapNumber::kExponentShift)); | |
2515 // Shift up the mantissa bits to take up the space the exponent used to | |
2516 // take. We just orred in the implicit bit so that took care of one and | |
2517 // we want to leave the sign bit 0 so we subtract 2 bits from the shift | |
2518 // distance. | |
2519 const int shift_distance = HeapNumber::kNonMantissaBitsInTopWord - 2; | |
2520 mov(scratch2, Operand(scratch2, LSL, shift_distance)); | |
2521 // Put sign in zero flag. | |
2522 tst(scratch, Operand(HeapNumber::kSignMask)); | |
2523 // Get the second half of the double. For some exponents we don't | |
2524 // actually need this because the bits get shifted out again, but | |
2525 // it's probably slower to test than just to do it. | |
2526 ldr(scratch, FieldMemOperand(source, HeapNumber::kMantissaOffset)); | |
2527 // Shift down 22 bits to get the last 10 bits. | |
2528 orr(scratch, scratch2, Operand(scratch, LSR, 32 - shift_distance)); | |
2529 // Move down according to the exponent. | |
2530 mov(dest, Operand(scratch, LSR, dest)); | |
2531 // Fix sign if sign bit was set. | |
2532 rsb(dest, dest, Operand::Zero(), LeaveCC, ne); | |
2533 bind(&done); | |
2534 } | |
2535 } | |
2536 | |
2537 | |
2538 void MacroAssembler::TestDoubleIsInt32(DwVfpRegister double_input, | 2439 void MacroAssembler::TestDoubleIsInt32(DwVfpRegister double_input, |
2539 DwVfpRegister double_scratch) { | 2440 DwVfpRegister double_scratch) { |
2540 ASSERT(!double_input.is(double_scratch)); | 2441 ASSERT(!double_input.is(double_scratch)); |
2541 ASSERT(CpuFeatures::IsSupported(VFP2)); | 2442 ASSERT(CpuFeatures::IsSupported(VFP2)); |
2542 CpuFeatureScope scope(this, VFP2); | 2443 CpuFeatureScope scope(this, VFP2); |
2543 | 2444 |
2544 vcvt_s32_f64(double_scratch.low(), double_input); | 2445 vcvt_s32_f64(double_scratch.low(), double_input); |
2545 vcvt_f64_s32(double_scratch, double_scratch.low()); | 2446 vcvt_f64_s32(double_scratch, double_scratch.low()); |
2546 VFPCompareAndSetFlags(double_input, double_scratch); | 2447 VFPCompareAndSetFlags(double_input, double_scratch); |
2547 } | 2448 } |
(...skipping 53 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... | |
2601 // floor(x) <=> round_to_zero(x) - 1. | 2502 // floor(x) <=> round_to_zero(x) - 1. |
2602 bind(&negative); | 2503 bind(&negative); |
2603 sub(result, result, Operand(1), SetCC); | 2504 sub(result, result, Operand(1), SetCC); |
2604 // If result is still negative, go to done, result fetched. | 2505 // If result is still negative, go to done, result fetched. |
2605 // Else, we had an overflow and we fall through exception. | 2506 // Else, we had an overflow and we fall through exception. |
2606 b(mi, done); | 2507 b(mi, done); |
2607 bind(&exception); | 2508 bind(&exception); |
2608 } | 2509 } |
2609 | 2510 |
2610 | 2511 |
2611 void MacroAssembler::EmitOutOfInt32RangeTruncate(Register result, | 2512 void MacroAssembler::ECMAConvertNumberToInt32(Register source, |
2612 Register input_high, | 2513 Register result, |
2613 Register input_low, | 2514 Register scratch, |
2614 Register scratch) { | 2515 Register input_high, |
2615 Label done, normal_exponent, restore_sign; | 2516 Register input_low, |
2616 | 2517 DwVfpRegister double_scratch1, |
2617 // Extract the biased exponent in result. | 2518 DwVfpRegister double_scratch2) { |
2618 Ubfx(result, | 2519 if (CpuFeatures::IsSupported(VFP2)) { |
2619 input_high, | 2520 CpuFeatureScope scope(this, VFP2); |
2620 HeapNumber::kExponentShift, | 2521 vldr(double_scratch1, FieldMemOperand(source, HeapNumber::kValueOffset)); |
2621 HeapNumber::kExponentBits); | 2522 ECMAToInt32VFP(result, double_scratch1, double_scratch2, |
2622 | 2523 scratch, input_high, input_low); |
2623 // Check for Infinity and NaNs, which should return 0. | 2524 } else { |
2624 cmp(result, Operand(HeapNumber::kExponentMask)); | 2525 Ldrd(input_low, input_high, |
2625 mov(result, Operand::Zero(), LeaveCC, eq); | 2526 FieldMemOperand(source, HeapNumber::kValueOffset)); |
2626 b(eq, &done); | 2527 ECMAToInt32NoVFP(result, scratch, input_high, input_low); |
2627 | 2528 } |
2628 // Express exponent as delta to (number of mantissa bits + 31). | |
2629 sub(result, | |
2630 result, | |
2631 Operand(HeapNumber::kExponentBias + HeapNumber::kMantissaBits + 31), | |
2632 SetCC); | |
2633 | |
2634 // If the delta is strictly positive, all bits would be shifted away, | |
2635 // which means that we can return 0. | |
2636 b(le, &normal_exponent); | |
2637 mov(result, Operand::Zero()); | |
2638 b(&done); | |
2639 | |
2640 bind(&normal_exponent); | |
2641 const int kShiftBase = HeapNumber::kNonMantissaBitsInTopWord - 1; | |
2642 // Calculate shift. | |
2643 add(scratch, result, Operand(kShiftBase + HeapNumber::kMantissaBits), SetCC); | |
2644 | |
2645 // Save the sign. | |
2646 Register sign = result; | |
2647 result = no_reg; | |
2648 and_(sign, input_high, Operand(HeapNumber::kSignMask)); | |
2649 | |
2650 // Set the implicit 1 before the mantissa part in input_high. | |
2651 orr(input_high, | |
2652 input_high, | |
2653 Operand(1 << HeapNumber::kMantissaBitsInTopWord)); | |
2654 // Shift the mantissa bits to the correct position. | |
2655 // We don't need to clear non-mantissa bits as they will be shifted away. | |
2656 // If they weren't, it would mean that the answer is in the 32bit range. | |
2657 mov(input_high, Operand(input_high, LSL, scratch)); | |
2658 | |
2659 // Replace the shifted bits with bits from the lower mantissa word. | |
2660 Label pos_shift, shift_done; | |
2661 rsb(scratch, scratch, Operand(32), SetCC); | |
2662 b(&pos_shift, ge); | |
2663 | |
2664 // Negate scratch. | |
2665 rsb(scratch, scratch, Operand::Zero()); | |
2666 mov(input_low, Operand(input_low, LSL, scratch)); | |
2667 b(&shift_done); | |
2668 | |
2669 bind(&pos_shift); | |
2670 mov(input_low, Operand(input_low, LSR, scratch)); | |
2671 | |
2672 bind(&shift_done); | |
2673 orr(input_high, input_high, Operand(input_low)); | |
2674 // Restore sign if necessary. | |
2675 cmp(sign, Operand::Zero()); | |
2676 result = sign; | |
2677 sign = no_reg; | |
2678 rsb(result, input_high, Operand::Zero(), LeaveCC, ne); | |
2679 mov(result, input_high, LeaveCC, eq); | |
2680 bind(&done); | |
2681 } | 2529 } |
2682 | 2530 |
2683 | 2531 |
2684 void MacroAssembler::EmitECMATruncate(Register result, | 2532 void MacroAssembler::ECMAToInt32VFP(Register result, |
2685 DwVfpRegister double_input, | 2533 DwVfpRegister double_input, |
2686 DwVfpRegister double_scratch, | 2534 DwVfpRegister double_scratch, |
2687 Register scratch, | 2535 Register scratch, |
2688 Register input_high, | 2536 Register input_high, |
2689 Register input_low) { | 2537 Register input_low) { |
2690 CpuFeatureScope scope(this, VFP2); | 2538 CpuFeatureScope scope(this, VFP2); |
2691 ASSERT(!input_high.is(result)); | 2539 ASSERT(!input_high.is(result)); |
2692 ASSERT(!input_low.is(result)); | 2540 ASSERT(!input_low.is(result)); |
2693 ASSERT(!input_low.is(input_high)); | 2541 ASSERT(!input_low.is(input_high)); |
2694 ASSERT(!scratch.is(result) && | 2542 ASSERT(!scratch.is(result) && |
2695 !scratch.is(input_high) && | 2543 !scratch.is(input_high) && |
2696 !scratch.is(input_low)); | 2544 !scratch.is(input_low)); |
2697 ASSERT(!double_input.is(double_scratch)); | 2545 ASSERT(!double_input.is(double_scratch)); |
2698 | 2546 |
2699 Label done; | 2547 Label overflow, out_of_range, negate, done; |
2700 | 2548 |
2701 // Test if the value can be exactly represented as a signed integer. | 2549 vmov(input_low, input_high, double_input); |
2702 TryDoubleToInt32Exact(result, double_input, double_scratch); | 2550 Ubfx(scratch, input_high, |
2703 b(eq, &done); | 2551 HeapNumber::kExponentShift, HeapNumber::kExponentBits); |
2552 // Load scratch with exponent - 1. This is faster than loading | |
2553 // with exponent because Bias + 1 = 1024 which is an *ARM* immediate value. | |
2554 sub(scratch, scratch, Operand(HeapNumber::kExponentBias + 1)); | |
2555 // Compare exponent with 31 (compare exponent - 1 with 30). | |
2556 cmp(scratch, Operand(30)); | |
2557 b(ge, &overflow); | |
2558 // Exponent is less than 31 so vcvt will never saturate. | |
2559 // So, just return the result. | |
2560 vcvt_s32_f64(double_scratch.low(), double_input); | |
2561 vmov(result, double_scratch.low()); | |
2562 b(&done); | |
2704 | 2563 |
2705 // Check the exception flags. If they are not set, we are done. | 2564 bind(&overflow); |
2706 // If they are set, it could be because of the conversion above, or because | 2565 // If exponent is greater than or equal to 84, the 32 less significant |
2707 // they were set before this code. | 2566 // bits are 0s (2^84 = 1, 52 significant bits, 32 uncoded bits), |
2708 vmrs(scratch); | 2567 // the result is 0. |
2709 tst(scratch, Operand(kVFPInvalidOpExceptionBit)); | 2568 // This test also catch Nan and infinities which also return 0. |
2710 b(eq, &done); | 2569 // Compare exponent with 84 (compare exponent - 1 with 83). |
2570 cmp(scratch, Operand(83)); | |
2571 b(ge, &out_of_range); | |
2711 | 2572 |
2712 // Clear cumulative exception flags. | 2573 // If we reach this code, 31 <= exponent <= 83. |
2713 bic(scratch, scratch, Operand(kVFPInvalidOpExceptionBit)); | 2574 // So, we don't have to handle cases where 0 <= exponent <= 20 for |
2714 vmsr(scratch); | 2575 // which we would need to shift right the high part of the mantissa. |
2715 // Try a conversion to a signed integer. | 2576 ECMAToInt32Tail(result, scratch, input_high, input_low, |
2716 vcvt_s32_f64(double_scratch.low(), double_input); | 2577 &out_of_range, &negate, &done); |
2717 // Retrieve the FPSCR. | |
2718 vmrs(scratch); | |
2719 // Check for invalid conversions (out of range and NaNs). | |
2720 tst(scratch, Operand(kVFPInvalidOpExceptionBit)); | |
2721 // If we had no exceptions we are done. | |
2722 b(eq, &done); | |
2723 | |
2724 // Load the double value and perform a manual truncation. | |
2725 vmov(input_low, input_high, double_input); | |
2726 EmitOutOfInt32RangeTruncate(result, | |
2727 input_high, | |
2728 input_low, | |
2729 scratch); | |
2730 bind(&done); | |
2731 } | 2578 } |
2732 | 2579 |
2733 | 2580 |
2581 void MacroAssembler::ECMAToInt32NoVFP(Register result, | |
2582 Register scratch, | |
2583 Register input_high, | |
2584 Register input_low) { | |
2585 ASSERT(!result.is(scratch)); | |
2586 ASSERT(!result.is(input_high)); | |
2587 ASSERT(!result.is(input_low)); | |
2588 ASSERT(!scratch.is(input_high)); | |
2589 ASSERT(!scratch.is(input_low)); | |
2590 ASSERT(!input_high.is(input_low)); | |
2591 | |
2592 Label both, out_of_range, negate, done; | |
2593 | |
2594 Ubfx(scratch, input_high, | |
2595 HeapNumber::kExponentShift, HeapNumber::kExponentBits); | |
2596 // Load scratch with exponent - 1. This is faster than loading | |
2597 // with exponent because Bias + 1 = 1024 which is an *ARM* immediate value. | |
2598 sub(scratch, scratch, Operand(HeapNumber::kExponentBias + 1)); | |
2599 // If exponent is negative, 0 < input < 1, the result is 0. | |
2600 // If exponent is greater than or equal to 84, the 32 less significant | |
2601 // bits are 0s (2^84 = 1, 52 significant bits, 32 uncoded bits), | |
2602 // the result is 0. | |
2603 // This test also catch Nan and infinities which also return 0. | |
2604 // Compare exponent with 84 (compare exponent - 1 with 83). | |
2605 cmp(scratch, Operand(83)); | |
2606 // We do an unsigned comparison so negative numbers are treated as big | |
2607 // positive number and the two tests above are done in one test. | |
2608 b(hs, &out_of_range); | |
2609 | |
2610 // Load scratch with 20 - exponent (load with 19 - (exponent - 1)). | |
2611 rsb(scratch, scratch, Operand(19), SetCC); | |
2612 b(mi, &both); | |
2613 | |
2614 // 0 <= exponent <= 20, shift only input_high. | |
2615 // Scratch contains: 20 - exponent. | |
2616 Ubfx(result, input_high, | |
2617 0, HeapNumber::kMantissaBitsInTopWord); | |
2618 orr(result, result, Operand(1 << HeapNumber::kMantissaBitsInTopWord)); | |
2619 mov(result, Operand(result, LSR, scratch)); | |
2620 b(&negate); | |
2621 | |
2622 bind(&both); | |
2623 // Restore scratch to exponent - 1 to be consistent with ECMAToInt32VFP. | |
2624 rsb(scratch, scratch, Operand(19)); | |
2625 ECMAToInt32Tail(result, scratch, input_high, input_low, | |
2626 &out_of_range, &negate, &done); | |
2627 } | |
2628 | |
2629 | |
2630 void MacroAssembler::ECMAToInt32Tail(Register result, | |
2631 Register scratch, | |
2632 Register input_high, | |
2633 Register input_low, | |
2634 Label* out_of_range, | |
2635 Label* negate, | |
2636 Label* done) { | |
2637 Label only_low; | |
2638 | |
2639 // On entry, scratch contains exponent - 1. | |
2640 // Load scratch with 52 - exponent (load with 51 - (exponent - 1)). | |
2641 rsb(scratch, scratch, Operand(51), SetCC); | |
2642 b(ls, &only_low); | |
2643 // 21 <= exponent <= 51, shift input_low and input_high | |
2644 // to generate the result. | |
2645 mov(input_low, Operand(input_low, LSR, scratch)); | |
2646 // Scratch contains: 52 - exponent. | |
2647 // We needs: exponent - 20. | |
2648 // So we use: 32 - scratch = 32 - 52 + exponent = exponent - 20. | |
2649 rsb(scratch, scratch, Operand(32)); | |
2650 Ubfx(result, input_high, | |
2651 0, HeapNumber::kMantissaBitsInTopWord); | |
2652 orr(result, result, Operand(1 << HeapNumber::kMantissaBitsInTopWord)); | |
ulan
2013/03/11 15:11:03
Maybe restore the comment about implicit 1?
// Set
Rodolph Perfetta
2013/03/12 11:24:45
Done.
| |
2653 orr(result, input_low, Operand(result, LSL, scratch)); | |
2654 b(negate); | |
2655 | |
2656 bind(out_of_range); | |
2657 mov(result, Operand::Zero()); | |
2658 b(done); | |
2659 | |
2660 bind(&only_low); | |
2661 // 52 <= exponent <= 83, shift only input_low. | |
2662 // On entry, scratch contains: 52 - exponent. | |
2663 rsb(scratch, scratch, Operand::Zero()); | |
2664 mov(result, Operand(input_low, LSL, scratch)); | |
2665 | |
2666 bind(negate); | |
2667 // If input was positive, input_high ASR 31 equals 0 and | |
2668 // input_high LSR 31 equals zero. | |
2669 // New result = (result eor 0) + 0 = result. | |
2670 // If the input was negative, we have to negate the result. | |
2671 // Input_high ASR 31 equals 0xffffffff and input_high LSR 31 equals 1. | |
2672 // New result = (result eor 0xffffffff) + 1 = 0 - result. | |
2673 eor(result, result, Operand(input_high, ASR, 31)); | |
ulan
2013/03/11 15:11:03
This is an awesome trick :)
| |
2674 add(result, result, Operand(input_high, LSR, 31)); | |
2675 | |
2676 bind(done); | |
2677 } | |
2678 | |
2679 | |
2734 void MacroAssembler::GetLeastBitsFromSmi(Register dst, | 2680 void MacroAssembler::GetLeastBitsFromSmi(Register dst, |
2735 Register src, | 2681 Register src, |
2736 int num_least_bits) { | 2682 int num_least_bits) { |
2737 if (CpuFeatures::IsSupported(ARMv7) && !predictable_code_size()) { | 2683 if (CpuFeatures::IsSupported(ARMv7) && !predictable_code_size()) { |
2738 ubfx(dst, src, kSmiTagSize, num_least_bits); | 2684 ubfx(dst, src, kSmiTagSize, num_least_bits); |
2739 } else { | 2685 } else { |
2740 mov(dst, Operand(src, ASR, kSmiTagSize)); | 2686 mov(dst, Operand(src, ASR, kSmiTagSize)); |
2741 and_(dst, dst, Operand((1 << num_least_bits) - 1)); | 2687 and_(dst, dst, Operand((1 << num_least_bits) - 1)); |
2742 } | 2688 } |
2743 } | 2689 } |
(...skipping 1277 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... | |
4021 void CodePatcher::EmitCondition(Condition cond) { | 3967 void CodePatcher::EmitCondition(Condition cond) { |
4022 Instr instr = Assembler::instr_at(masm_.pc_); | 3968 Instr instr = Assembler::instr_at(masm_.pc_); |
4023 instr = (instr & ~kCondMask) | cond; | 3969 instr = (instr & ~kCondMask) | cond; |
4024 masm_.emit(instr); | 3970 masm_.emit(instr); |
4025 } | 3971 } |
4026 | 3972 |
4027 | 3973 |
4028 } } // namespace v8::internal | 3974 } } // namespace v8::internal |
4029 | 3975 |
4030 #endif // V8_TARGET_ARCH_ARM | 3976 #endif // V8_TARGET_ARCH_ARM |
OLD | NEW |