Index: src/codec/SkCodec_libbmp.cpp |
diff --git a/src/codec/SkCodec_libbmp.cpp b/src/codec/SkCodec_libbmp.cpp |
deleted file mode 100644 |
index 13a6f3e405630a21fc023ace7c96284aa42e2321..0000000000000000000000000000000000000000 |
--- a/src/codec/SkCodec_libbmp.cpp |
+++ /dev/null |
@@ -1,1235 +0,0 @@ |
-/* |
- * Copyright 2015 Google Inc. |
- * |
- * Use of this source code is governed by a BSD-style license that can be |
- * found in the LICENSE file. |
- */ |
- |
-#include "SkCodec_libbmp.h" |
-#include "SkCodecPriv.h" |
-#include "SkColorPriv.h" |
-#include "SkStream.h" |
- |
-/* |
- * |
- * Checks if the conversion between the input image and the requested output |
- * image has been implemented |
- * |
- */ |
-static bool conversion_possible(const SkImageInfo& dst, |
- const SkImageInfo& src) { |
- // Ensure that the profile type is unchanged |
- if (dst.profileType() != src.profileType()) { |
- return false; |
- } |
- |
- // Check for supported alpha types |
- if (src.alphaType() != dst.alphaType()) { |
- if (kOpaque_SkAlphaType == src.alphaType()) { |
- // If the source is opaque, we must decode to opaque |
- return false; |
- } |
- |
- // The source is not opaque |
- switch (dst.alphaType()) { |
- case kPremul_SkAlphaType: |
- case kUnpremul_SkAlphaType: |
- // The source is not opaque, so either of these is okay |
- break; |
- default: |
- // We cannot decode a non-opaque image to opaque (or unknown) |
- return false; |
- } |
- } |
- |
- // Check for supported color types |
- switch (dst.colorType()) { |
- // Allow output to kN32 from any type of input |
- case kN32_SkColorType: |
- return true; |
- // Allow output to kIndex_8 from compatible inputs |
- case kIndex_8_SkColorType: |
- return kIndex_8_SkColorType == src.colorType(); |
- default: |
- return false; |
- } |
-} |
- |
-/* |
- * |
- * Defines the version and type of the second bitmap header |
- * |
- */ |
-enum BitmapHeaderType { |
- kInfoV1_BitmapHeaderType, |
- kInfoV2_BitmapHeaderType, |
- kInfoV3_BitmapHeaderType, |
- kInfoV4_BitmapHeaderType, |
- kInfoV5_BitmapHeaderType, |
- kOS2V1_BitmapHeaderType, |
- kOS2VX_BitmapHeaderType, |
- kUnknown_BitmapHeaderType |
-}; |
- |
-/* |
- * |
- * Possible bitmap compression types |
- * |
- */ |
-enum BitmapCompressionMethod { |
- kNone_BitmapCompressionMethod = 0, |
- k8BitRLE_BitmapCompressionMethod = 1, |
- k4BitRLE_BitmapCompressionMethod = 2, |
- kBitMasks_BitmapCompressionMethod = 3, |
- kJpeg_BitmapCompressionMethod = 4, |
- kPng_BitmapCompressionMethod = 5, |
- kAlphaBitMasks_BitmapCompressionMethod = 6, |
- kCMYK_BitmapCompressionMethod = 11, |
- kCMYK8BitRLE_BitmapCompressionMethod = 12, |
- kCMYK4BitRLE_BitmapCompressionMethod = 13 |
-}; |
- |
-/* |
- * |
- * Checks the start of the stream to see if the image is a bitmap |
- * |
- */ |
-bool SkBmpCodec::IsBmp(SkStream* stream) { |
- // TODO: Support "IC", "PT", "CI", "CP", "BA" |
- const char bmpSig[] = { 'B', 'M' }; |
- char buffer[sizeof(bmpSig)]; |
- return stream->read(buffer, sizeof(bmpSig)) == sizeof(bmpSig) && |
- !memcmp(buffer, bmpSig, sizeof(bmpSig)); |
-} |
- |
-/* |
- * |
- * Assumes IsBmp was called and returned true |
- * Creates a bmp decoder |
- * Reads enough of the stream to determine the image format |
- * |
- */ |
-SkCodec* SkBmpCodec::NewFromStream(SkStream* stream) { |
- return SkBmpCodec::NewFromStream(stream, false); |
-} |
- |
-/* |
- * |
- * Creates a bmp decoder for a bmp embedded in ico |
- * Reads enough of the stream to determine the image format |
- * |
- */ |
-SkCodec* SkBmpCodec::NewFromIco(SkStream* stream) { |
- return SkBmpCodec::NewFromStream(stream, true); |
-} |
- |
-/* |
- * |
- * Read enough of the stream to initialize the SkBmpCodec. Returns a bool |
- * representing success or failure. If it returned true, and codecOut was |
- * not NULL, it will be set to a new SkBmpCodec. |
- * Does *not* take ownership of the passed in SkStream. |
- * |
- */ |
-bool SkBmpCodec::ReadHeader(SkStream* stream, bool isIco, SkCodec** codecOut) { |
- // Header size constants |
- static const uint32_t kBmpHeaderBytes = 14; |
- static const uint32_t kBmpHeaderBytesPlusFour = kBmpHeaderBytes + 4; |
- static const uint32_t kBmpOS2V1Bytes = 12; |
- static const uint32_t kBmpOS2V2Bytes = 64; |
- static const uint32_t kBmpInfoBaseBytes = 16; |
- static const uint32_t kBmpInfoV1Bytes = 40; |
- static const uint32_t kBmpInfoV2Bytes = 52; |
- static const uint32_t kBmpInfoV3Bytes = 56; |
- static const uint32_t kBmpInfoV4Bytes = 108; |
- static const uint32_t kBmpInfoV5Bytes = 124; |
- static const uint32_t kBmpMaskBytes = 12; |
- |
- // The total bytes in the bmp file |
- // We only need to use this value for RLE decoding, so we will only |
- // check that it is valid in the RLE case. |
- uint32_t totalBytes; |
- // The offset from the start of the file where the pixel data begins |
- uint32_t offset; |
- // The size of the second (info) header in bytes |
- uint32_t infoBytes; |
- |
- // Bmps embedded in Icos skip the first Bmp header |
- if (!isIco) { |
- // Read the first header and the size of the second header |
- SkAutoTDeleteArray<uint8_t> hBuffer( |
- SkNEW_ARRAY(uint8_t, kBmpHeaderBytesPlusFour)); |
- if (stream->read(hBuffer.get(), kBmpHeaderBytesPlusFour) != |
- kBmpHeaderBytesPlusFour) { |
- SkCodecPrintf("Error: unable to read first bitmap header.\n"); |
- return false; |
- } |
- |
- totalBytes = get_int(hBuffer.get(), 2); |
- offset = get_int(hBuffer.get(), 10); |
- if (offset < kBmpHeaderBytes + kBmpOS2V1Bytes) { |
- SkCodecPrintf("Error: invalid starting location for pixel data\n"); |
- return false; |
- } |
- |
- // The size of the second (info) header in bytes |
- // The size is the first field of the second header, so we have already |
- // read the first four infoBytes. |
- infoBytes = get_int(hBuffer.get(), 14); |
- if (infoBytes < kBmpOS2V1Bytes) { |
- SkCodecPrintf("Error: invalid second header size.\n"); |
- return false; |
- } |
- } else { |
- // This value is only used by RLE compression. Bmp in Ico files do not |
- // use RLE. If the compression field is incorrectly signaled as RLE, |
- // we will catch this and signal an error below. |
- totalBytes = 0; |
- |
- // Bmps in Ico cannot specify an offset. We will always assume that |
- // pixel data begins immediately after the color table. This value |
- // will be corrected below. |
- offset = 0; |
- |
- // Read the size of the second header |
- SkAutoTDeleteArray<uint8_t> hBuffer( |
- SkNEW_ARRAY(uint8_t, 4)); |
- if (stream->read(hBuffer.get(), 4) != 4) { |
- SkCodecPrintf("Error: unable to read size of second bitmap header.\n"); |
- return false; |
- } |
- infoBytes = get_int(hBuffer.get(), 0); |
- if (infoBytes < kBmpOS2V1Bytes) { |
- SkCodecPrintf("Error: invalid second header size.\n"); |
- return false; |
- } |
- } |
- |
- // We already read the first four bytes of the info header to get the size |
- const uint32_t infoBytesRemaining = infoBytes - 4; |
- |
- // Read the second header |
- SkAutoTDeleteArray<uint8_t> iBuffer( |
- SkNEW_ARRAY(uint8_t, infoBytesRemaining)); |
- if (stream->read(iBuffer.get(), infoBytesRemaining) != infoBytesRemaining) { |
- SkCodecPrintf("Error: unable to read second bitmap header.\n"); |
- return false; |
- } |
- |
- // The number of bits used per pixel in the pixel data |
- uint16_t bitsPerPixel; |
- |
- // The compression method for the pixel data |
- uint32_t compression = kNone_BitmapCompressionMethod; |
- |
- // Number of colors in the color table, defaults to 0 or max (see below) |
- uint32_t numColors = 0; |
- |
- // Bytes per color in the color table, early versions use 3, most use 4 |
- uint32_t bytesPerColor; |
- |
- // The image width and height |
- int width, height; |
- |
- // Determine image information depending on second header format |
- BitmapHeaderType headerType; |
- if (infoBytes >= kBmpInfoBaseBytes) { |
- // Check the version of the header |
- switch (infoBytes) { |
- case kBmpInfoV1Bytes: |
- headerType = kInfoV1_BitmapHeaderType; |
- break; |
- case kBmpInfoV2Bytes: |
- headerType = kInfoV2_BitmapHeaderType; |
- break; |
- case kBmpInfoV3Bytes: |
- headerType = kInfoV3_BitmapHeaderType; |
- break; |
- case kBmpInfoV4Bytes: |
- headerType = kInfoV4_BitmapHeaderType; |
- break; |
- case kBmpInfoV5Bytes: |
- headerType = kInfoV5_BitmapHeaderType; |
- break; |
- case 16: |
- case 20: |
- case 24: |
- case 28: |
- case 32: |
- case 36: |
- case 42: |
- case 46: |
- case 48: |
- case 60: |
- case kBmpOS2V2Bytes: |
- headerType = kOS2VX_BitmapHeaderType; |
- break; |
- default: |
- // We do not signal an error here because there is the |
- // possibility of new or undocumented bmp header types. Most |
- // of the newer versions of bmp headers are similar to and |
- // build off of the older versions, so we may still be able to |
- // decode the bmp. |
- SkCodecPrintf("Warning: unknown bmp header format.\n"); |
- headerType = kUnknown_BitmapHeaderType; |
- break; |
- } |
- // We check the size of the header before entering the if statement. |
- // We should not reach this point unless the size is large enough for |
- // these required fields. |
- SkASSERT(infoBytesRemaining >= 12); |
- width = get_int(iBuffer.get(), 0); |
- height = get_int(iBuffer.get(), 4); |
- bitsPerPixel = get_short(iBuffer.get(), 10); |
- |
- // Some versions do not have these fields, so we check before |
- // overwriting the default value. |
- if (infoBytesRemaining >= 16) { |
- compression = get_int(iBuffer.get(), 12); |
- if (infoBytesRemaining >= 32) { |
- numColors = get_int(iBuffer.get(), 28); |
- } |
- } |
- |
- // All of the headers that reach this point, store color table entries |
- // using 4 bytes per pixel. |
- bytesPerColor = 4; |
- } else if (infoBytes >= kBmpOS2V1Bytes) { |
- // The OS2V1 is treated separately because it has a unique format |
- headerType = kOS2V1_BitmapHeaderType; |
- width = (int) get_short(iBuffer.get(), 0); |
- height = (int) get_short(iBuffer.get(), 2); |
- bitsPerPixel = get_short(iBuffer.get(), 6); |
- bytesPerColor = 3; |
- } else { |
- // There are no valid bmp headers |
- SkCodecPrintf("Error: second bitmap header size is invalid.\n"); |
- return false; |
- } |
- |
- // Check for valid dimensions from header |
- RowOrder rowOrder = kBottomUp_RowOrder; |
- if (height < 0) { |
- height = -height; |
- rowOrder = kTopDown_RowOrder; |
- } |
- // The height field for bmp in ico is double the actual height because they |
- // contain an XOR mask followed by an AND mask |
- if (isIco) { |
- height /= 2; |
- } |
- if (width <= 0 || height <= 0) { |
- // TODO: Decide if we want to disable really large bmps as well. |
- // https://code.google.com/p/skia/issues/detail?id=3617 |
- SkCodecPrintf("Error: invalid bitmap dimensions.\n"); |
- return false; |
- } |
- |
- // Create mask struct |
- SkMasks::InputMasks inputMasks; |
- memset(&inputMasks, 0, sizeof(SkMasks::InputMasks)); |
- |
- // Determine the input compression format and set bit masks if necessary |
- uint32_t maskBytes = 0; |
- BitmapInputFormat inputFormat = kUnknown_BitmapInputFormat; |
- switch (compression) { |
- case kNone_BitmapCompressionMethod: |
- inputFormat = kStandard_BitmapInputFormat; |
- break; |
- case k8BitRLE_BitmapCompressionMethod: |
- if (bitsPerPixel != 8) { |
- SkCodecPrintf("Warning: correcting invalid bitmap format.\n"); |
- bitsPerPixel = 8; |
- } |
- inputFormat = kRLE_BitmapInputFormat; |
- break; |
- case k4BitRLE_BitmapCompressionMethod: |
- if (bitsPerPixel != 4) { |
- SkCodecPrintf("Warning: correcting invalid bitmap format.\n"); |
- bitsPerPixel = 4; |
- } |
- inputFormat = kRLE_BitmapInputFormat; |
- break; |
- case kAlphaBitMasks_BitmapCompressionMethod: |
- case kBitMasks_BitmapCompressionMethod: |
- // Load the masks |
- inputFormat = kBitMask_BitmapInputFormat; |
- switch (headerType) { |
- case kInfoV1_BitmapHeaderType: { |
- // The V1 header stores the bit masks after the header |
- SkAutoTDeleteArray<uint8_t> mBuffer( |
- SkNEW_ARRAY(uint8_t, kBmpMaskBytes)); |
- if (stream->read(mBuffer.get(), kBmpMaskBytes) != |
- kBmpMaskBytes) { |
- SkCodecPrintf("Error: unable to read bit inputMasks.\n"); |
- return false; |
- } |
- maskBytes = kBmpMaskBytes; |
- inputMasks.red = get_int(mBuffer.get(), 0); |
- inputMasks.green = get_int(mBuffer.get(), 4); |
- inputMasks.blue = get_int(mBuffer.get(), 8); |
- break; |
- } |
- case kInfoV2_BitmapHeaderType: |
- case kInfoV3_BitmapHeaderType: |
- case kInfoV4_BitmapHeaderType: |
- case kInfoV5_BitmapHeaderType: |
- // Header types are matched based on size. If the header |
- // is V2+, we are guaranteed to be able to read at least |
- // this size. |
- SkASSERT(infoBytesRemaining >= 48); |
- inputMasks.red = get_int(iBuffer.get(), 36); |
- inputMasks.green = get_int(iBuffer.get(), 40); |
- inputMasks.blue = get_int(iBuffer.get(), 44); |
- break; |
- case kOS2VX_BitmapHeaderType: |
- // TODO: Decide if we intend to support this. |
- // It is unsupported in the previous version and |
- // in chromium. I have not come across a test case |
- // that uses this format. |
- SkCodecPrintf("Error: huffman format unsupported.\n"); |
- return false; |
- default: |
- SkCodecPrintf("Error: invalid bmp bit masks header.\n"); |
- return false; |
- } |
- break; |
- case kJpeg_BitmapCompressionMethod: |
- if (24 == bitsPerPixel) { |
- inputFormat = kRLE_BitmapInputFormat; |
- break; |
- } |
- // Fall through |
- case kPng_BitmapCompressionMethod: |
- // TODO: Decide if we intend to support this. |
- // It is unsupported in the previous version and |
- // in chromium. I think it is used mostly for printers. |
- SkCodecPrintf("Error: compression format not supported.\n"); |
- return false; |
- case kCMYK_BitmapCompressionMethod: |
- case kCMYK8BitRLE_BitmapCompressionMethod: |
- case kCMYK4BitRLE_BitmapCompressionMethod: |
- // TODO: Same as above. |
- SkCodecPrintf("Error: CMYK not supported for bitmap decoding.\n"); |
- return false; |
- default: |
- SkCodecPrintf("Error: invalid format for bitmap decoding.\n"); |
- return false; |
- } |
- |
- // Most versions of bmps should be rendered as opaque. Either they do |
- // not have an alpha channel, or they expect the alpha channel to be |
- // ignored. V3+ bmp files introduce an alpha mask and allow the creator |
- // of the image to use the alpha channels. However, many of these images |
- // leave the alpha channel blank and expect to be rendered as opaque. This |
- // is the case for almost all V3 images, so we render these as opaque. For |
- // V4+, we will use the alpha channel, and fix the image later if it turns |
- // out to be fully transparent. |
- // As an exception, V3 bmp-in-ico may use an alpha mask. |
- SkAlphaType alphaType = kOpaque_SkAlphaType; |
- if ((kInfoV3_BitmapHeaderType == headerType && isIco) || |
- kInfoV4_BitmapHeaderType == headerType || |
- kInfoV5_BitmapHeaderType == headerType) { |
- // Header types are matched based on size. If the header is |
- // V3+, we are guaranteed to be able to read at least this size. |
- SkASSERT(infoBytesRemaining > 52); |
- inputMasks.alpha = get_int(iBuffer.get(), 48); |
- if (inputMasks.alpha != 0) { |
- alphaType = kUnpremul_SkAlphaType; |
- } |
- } |
- iBuffer.free(); |
- |
- // Additionally, 32 bit bmp-in-icos use the alpha channel. |
- // And, RLE inputs may skip pixels, leaving them as transparent. This |
- // is uncommon, but we cannot be certain that an RLE bmp will be opaque. |
- if ((isIco && 32 == bitsPerPixel) || (kRLE_BitmapInputFormat == inputFormat)) { |
- alphaType = kUnpremul_SkAlphaType; |
- } |
- |
- // Check for valid bits per pixel. |
- // At the same time, use this information to choose a suggested color type |
- // and to set default masks. |
- SkColorType colorType = kN32_SkColorType; |
- switch (bitsPerPixel) { |
- // In addition to more standard pixel compression formats, bmp supports |
- // the use of bit masks to determine pixel components. The standard |
- // format for representing 16-bit colors is 555 (XRRRRRGGGGGBBBBB), |
- // which does not map well to any Skia color formats. For this reason, |
- // we will always enable mask mode with 16 bits per pixel. |
- case 16: |
- if (kBitMask_BitmapInputFormat != inputFormat) { |
- inputMasks.red = 0x7C00; |
- inputMasks.green = 0x03E0; |
- inputMasks.blue = 0x001F; |
- inputFormat = kBitMask_BitmapInputFormat; |
- } |
- break; |
- // We want to decode to kIndex_8 for input formats that are already |
- // designed in index format. |
- case 1: |
- case 2: |
- case 4: |
- case 8: |
- // However, we cannot in RLE format since we may need to leave some |
- // pixels as transparent. Similarly, we also cannot for ICO images |
- // since we may need to apply a transparent mask. |
- if (kRLE_BitmapInputFormat != inputFormat && !isIco) { |
- colorType = kIndex_8_SkColorType; |
- } |
- case 24: |
- case 32: |
- break; |
- default: |
- SkCodecPrintf("Error: invalid input value for bits per pixel.\n"); |
- return false; |
- } |
- |
- // Check that input bit masks are valid and create the masks object |
- SkAutoTDelete<SkMasks> |
- masks(SkMasks::CreateMasks(inputMasks, bitsPerPixel)); |
- if (NULL == masks) { |
- SkCodecPrintf("Error: invalid input masks.\n"); |
- return false; |
- } |
- |
- // Check for a valid number of total bytes when in RLE mode |
- if (totalBytes <= offset && kRLE_BitmapInputFormat == inputFormat) { |
- SkCodecPrintf("Error: RLE requires valid input size.\n"); |
- return false; |
- } |
- const size_t RLEBytes = totalBytes - offset; |
- |
- // Calculate the number of bytes read so far |
- const uint32_t bytesRead = kBmpHeaderBytes + infoBytes + maskBytes; |
- if (!isIco && offset < bytesRead) { |
- SkCodecPrintf("Error: pixel data offset less than header size.\n"); |
- return false; |
- } |
- |
- if (codecOut) { |
- // Return the codec |
- // We will use ImageInfo to store width, height, suggested color type, and |
- // suggested alpha type. |
- const SkImageInfo& imageInfo = SkImageInfo::Make(width, height, |
- colorType, alphaType); |
- *codecOut = SkNEW_ARGS(SkBmpCodec, (imageInfo, stream, bitsPerPixel, |
- inputFormat, masks.detach(), |
- numColors, bytesPerColor, |
- offset - bytesRead, rowOrder, |
- RLEBytes, isIco)); |
- } |
- return true; |
-} |
- |
-/* |
- * |
- * Creates a bmp decoder |
- * Reads enough of the stream to determine the image format |
- * |
- */ |
-SkCodec* SkBmpCodec::NewFromStream(SkStream* stream, bool isIco) { |
- SkAutoTDelete<SkStream> streamDeleter(stream); |
- SkCodec* codec = NULL; |
- if (ReadHeader(stream, isIco, &codec)) { |
- // codec has taken ownership of stream, so we do not need to |
- // delete it. |
- SkASSERT(codec); |
- streamDeleter.detach(); |
- return codec; |
- } |
- return NULL; |
-} |
- |
-/* |
- * |
- * Creates an instance of the decoder |
- * Called only by NewFromStream |
- * |
- */ |
-SkBmpCodec::SkBmpCodec(const SkImageInfo& info, SkStream* stream, |
- uint16_t bitsPerPixel, BitmapInputFormat inputFormat, |
- SkMasks* masks, uint32_t numColors, |
- uint32_t bytesPerColor, uint32_t offset, |
- RowOrder rowOrder, size_t RLEBytes, bool isIco) |
- : INHERITED(info, stream) |
- , fBitsPerPixel(bitsPerPixel) |
- , fInputFormat(inputFormat) |
- , fMasks(masks) |
- , fColorTable(NULL) |
- , fNumColors(numColors) |
- , fBytesPerColor(bytesPerColor) |
- , fOffset(offset) |
- , fRowOrder(rowOrder) |
- , fRLEBytes(RLEBytes) |
- , fIsIco(isIco) |
- |
-{} |
- |
-/* |
- * |
- * Initiates the bitmap decode |
- * |
- */ |
-SkCodec::Result SkBmpCodec::onGetPixels(const SkImageInfo& dstInfo, |
- void* dst, size_t dstRowBytes, |
- const Options& opts, |
- SkPMColor* inputColorPtr, |
- int* inputColorCount) { |
- // Check for proper input and output formats |
- SkCodec::RewindState rewindState = this->rewindIfNeeded(); |
- if (rewindState == kCouldNotRewind_RewindState) { |
- return kCouldNotRewind; |
- } else if (rewindState == kRewound_RewindState) { |
- if (!ReadHeader(this->stream(), fIsIco, NULL)) { |
- return kCouldNotRewind; |
- } |
- } |
- if (opts.fSubset) { |
- // Subsets are not supported. |
- return kUnimplemented; |
- } |
- if (dstInfo.dimensions() != this->getInfo().dimensions()) { |
- SkCodecPrintf("Error: scaling not supported.\n"); |
- return kInvalidScale; |
- } |
- if (!conversion_possible(dstInfo, this->getInfo())) { |
- SkCodecPrintf("Error: cannot convert input type to output type.\n"); |
- return kInvalidConversion; |
- } |
- |
- // Create the color table if necessary and prepare the stream for decode |
- // Note that if it is non-NULL, inputColorCount will be modified |
- if (!createColorTable(dstInfo.alphaType(), inputColorCount)) { |
- SkCodecPrintf("Error: could not create color table.\n"); |
- return kInvalidInput; |
- } |
- |
- // Copy the color table to the client if necessary |
- copy_color_table(dstInfo, fColorTable, inputColorPtr, inputColorCount); |
- |
- // Perform the decode |
- switch (fInputFormat) { |
- case kBitMask_BitmapInputFormat: |
- return decodeMask(dstInfo, dst, dstRowBytes, opts); |
- case kRLE_BitmapInputFormat: |
- return decodeRLE(dstInfo, dst, dstRowBytes, opts); |
- case kStandard_BitmapInputFormat: |
- return decode(dstInfo, dst, dstRowBytes, opts); |
- default: |
- SkASSERT(false); |
- return kInvalidInput; |
- } |
-} |
- |
-/* |
- * |
- * Process the color table for the bmp input |
- * |
- */ |
- bool SkBmpCodec::createColorTable(SkAlphaType alphaType, int* numColors) { |
- // Allocate memory for color table |
- uint32_t colorBytes = 0; |
- uint32_t maxColors = 0; |
- SkPMColor colorTable[256]; |
- if (fBitsPerPixel <= 8) { |
- // Zero is a default for maxColors |
- // Also set fNumColors to maxColors when it is too large |
- maxColors = 1 << fBitsPerPixel; |
- if (fNumColors == 0 || fNumColors >= maxColors) { |
- fNumColors = maxColors; |
- } |
- |
- // Inform the caller of the number of colors |
- if (NULL != numColors) { |
- // We set the number of colors to maxColors in order to ensure |
- // safe memory accesses. Otherwise, an invalid pixel could |
- // access memory outside of our color table array. |
- *numColors = maxColors; |
- } |
- |
- // Read the color table from the stream |
- colorBytes = fNumColors * fBytesPerColor; |
- SkAutoTDeleteArray<uint8_t> cBuffer(SkNEW_ARRAY(uint8_t, colorBytes)); |
- if (stream()->read(cBuffer.get(), colorBytes) != colorBytes) { |
- SkCodecPrintf("Error: unable to read color table.\n"); |
- return false; |
- } |
- |
- // Choose the proper packing function |
- SkPMColor (*packARGB) (uint32_t, uint32_t, uint32_t, uint32_t); |
- switch (alphaType) { |
- case kOpaque_SkAlphaType: |
- case kUnpremul_SkAlphaType: |
- packARGB = &SkPackARGB32NoCheck; |
- break; |
- case kPremul_SkAlphaType: |
- packARGB = &SkPreMultiplyARGB; |
- break; |
- default: |
- // This should not be reached because conversion possible |
- // should fail if the alpha type is not one of the above |
- // values. |
- SkASSERT(false); |
- packARGB = NULL; |
- break; |
- } |
- |
- // Fill in the color table |
- uint32_t i = 0; |
- for (; i < fNumColors; i++) { |
- uint8_t blue = get_byte(cBuffer.get(), i*fBytesPerColor); |
- uint8_t green = get_byte(cBuffer.get(), i*fBytesPerColor + 1); |
- uint8_t red = get_byte(cBuffer.get(), i*fBytesPerColor + 2); |
- uint8_t alpha; |
- if (kOpaque_SkAlphaType == alphaType || kRLE_BitmapInputFormat == fInputFormat) { |
- alpha = 0xFF; |
- } else { |
- alpha = (fMasks->getAlphaMask() >> 24) & |
- get_byte(cBuffer.get(), i*fBytesPerColor + 3); |
- } |
- colorTable[i] = packARGB(alpha, red, green, blue); |
- } |
- |
- // To avoid segmentation faults on bad pixel data, fill the end of the |
- // color table with black. This is the same the behavior as the |
- // chromium decoder. |
- for (; i < maxColors; i++) { |
- colorTable[i] = SkPackARGB32NoCheck(0xFF, 0, 0, 0); |
- } |
- |
- // Set the color table |
- fColorTable.reset(SkNEW_ARGS(SkColorTable, (colorTable, maxColors))); |
- } |
- |
- // Bmp-in-Ico files do not use an offset to indicate where the pixel data |
- // begins. Pixel data always begins immediately after the color table. |
- if (!fIsIco) { |
- // Check that we have not read past the pixel array offset |
- if(fOffset < colorBytes) { |
- // This may occur on OS 2.1 and other old versions where the color |
- // table defaults to max size, and the bmp tries to use a smaller |
- // color table. This is invalid, and our decision is to indicate |
- // an error, rather than try to guess the intended size of the |
- // color table. |
- SkCodecPrintf("Error: pixel data offset less than color table size.\n"); |
- return false; |
- } |
- |
- // After reading the color table, skip to the start of the pixel array |
- if (stream()->skip(fOffset - colorBytes) != fOffset - colorBytes) { |
- SkCodecPrintf("Error: unable to skip to image data.\n"); |
- return false; |
- } |
- } |
- |
- // Return true on success |
- return true; |
-} |
- |
-/* |
- * |
- * Get the destination row to start filling from |
- * Used to fill the remainder of the image on incomplete input |
- * |
- */ |
-static inline void* get_dst_start_row(void* dst, size_t dstRowBytes, int32_t y, |
- SkBmpCodec::RowOrder rowOrder) { |
- return (SkBmpCodec::kTopDown_RowOrder == rowOrder) ? |
- SkTAddOffset<void*>(dst, y * dstRowBytes) : dst; |
-} |
- |
-/* |
- * |
- * Performs the bitmap decoding for bit masks input format |
- * |
- */ |
-SkCodec::Result SkBmpCodec::decodeMask(const SkImageInfo& dstInfo, |
- void* dst, size_t dstRowBytes, |
- const Options& opts) { |
- // Set constant values |
- const int width = dstInfo.width(); |
- const int height = dstInfo.height(); |
- const size_t rowBytes = SkAlign4(compute_row_bytes(width, fBitsPerPixel)); |
- |
- // Allocate a buffer large enough to hold the full image |
- SkAutoTDeleteArray<uint8_t> |
- srcBuffer(SkNEW_ARRAY(uint8_t, height*rowBytes)); |
- uint8_t* srcRow = srcBuffer.get(); |
- |
- // Create the swizzler |
- SkAutoTDelete<SkMaskSwizzler> maskSwizzler( |
- SkMaskSwizzler::CreateMaskSwizzler(dstInfo, fMasks, fBitsPerPixel)); |
- |
- // Iterate over rows of the image |
- bool transparent = true; |
- for (int y = 0; y < height; y++) { |
- // Read a row of the input |
- if (stream()->read(srcRow, rowBytes) != rowBytes) { |
- SkCodecPrintf("Warning: incomplete input stream.\n"); |
- // Fill the destination image on failure |
- SkPMColor fillColor = dstInfo.alphaType() == kOpaque_SkAlphaType ? |
- SK_ColorBLACK : SK_ColorTRANSPARENT; |
- if (kNo_ZeroInitialized == opts.fZeroInitialized || 0 != fillColor) { |
- void* dstStart = get_dst_start_row(dst, dstRowBytes, y, fRowOrder); |
- SkSwizzler::Fill(dstStart, dstInfo, dstRowBytes, dstInfo.height() - y, fillColor, |
- NULL); |
- } |
- return kIncompleteInput; |
- } |
- |
- // Decode the row in destination format |
- int row = kBottomUp_RowOrder == fRowOrder ? height - 1 - y : y; |
- void* dstRow = SkTAddOffset<void>(dst, dstRowBytes * row); |
- SkSwizzler::ResultAlpha r = maskSwizzler->swizzle(dstRow, srcRow); |
- transparent &= SkSwizzler::IsTransparent(r); |
- |
- // Move to the next row |
- srcRow = SkTAddOffset<uint8_t>(srcRow, rowBytes); |
- } |
- |
- // Some fully transparent bmp images are intended to be opaque. Here, we |
- // correct for this possibility. |
- if (transparent) { |
- const SkImageInfo& opaqueInfo = |
- dstInfo.makeAlphaType(kOpaque_SkAlphaType); |
- SkAutoTDelete<SkMaskSwizzler> opaqueSwizzler( |
- SkMaskSwizzler::CreateMaskSwizzler(opaqueInfo, fMasks, fBitsPerPixel)); |
- srcRow = srcBuffer.get(); |
- for (int y = 0; y < height; y++) { |
- // Decode the row in opaque format |
- int row = kBottomUp_RowOrder == fRowOrder ? height - 1 - y : y; |
- void* dstRow = SkTAddOffset<void>(dst, dstRowBytes * row); |
- opaqueSwizzler->swizzle(dstRow, srcRow); |
- |
- // Move to the next row |
- srcRow = SkTAddOffset<uint8_t>(srcRow, rowBytes); |
- } |
- } |
- |
- // Finished decoding the entire image |
- return kSuccess; |
-} |
- |
-/* |
- * |
- * Set an RLE pixel using the color table |
- * |
- */ |
-void SkBmpCodec::setRLEPixel(void* dst, size_t dstRowBytes, |
- const SkImageInfo& dstInfo, uint32_t x, uint32_t y, |
- uint8_t index) { |
- // Set the row |
- int height = dstInfo.height(); |
- int row; |
- if (kBottomUp_RowOrder == fRowOrder) { |
- row = height - y - 1; |
- } else { |
- row = y; |
- } |
- |
- // Set the pixel based on destination color type |
- switch (dstInfo.colorType()) { |
- case kN32_SkColorType: { |
- SkPMColor* dstRow = SkTAddOffset<SkPMColor>((SkPMColor*) dst, |
- row * (int) dstRowBytes); |
- dstRow[x] = fColorTable->operator[](index); |
- break; |
- } |
- default: |
- // This case should not be reached. We should catch an invalid |
- // color type when we check that the conversion is possible. |
- SkASSERT(false); |
- break; |
- } |
-} |
- |
-/* |
- * |
- * Set an RLE pixel from R, G, B values |
- * |
- */ |
-void SkBmpCodec::setRLE24Pixel(void* dst, size_t dstRowBytes, |
- const SkImageInfo& dstInfo, uint32_t x, |
- uint32_t y, uint8_t red, uint8_t green, |
- uint8_t blue) { |
- // Set the row |
- int height = dstInfo.height(); |
- int row; |
- if (kBottomUp_RowOrder == fRowOrder) { |
- row = height - y - 1; |
- } else { |
- row = y; |
- } |
- |
- // Set the pixel based on destination color type |
- switch (dstInfo.colorType()) { |
- case kN32_SkColorType: { |
- SkPMColor* dstRow = SkTAddOffset<SkPMColor>((SkPMColor*) dst, |
- row * (int) dstRowBytes); |
- dstRow[x] = SkPackARGB32NoCheck(0xFF, red, green, blue); |
- break; |
- } |
- default: |
- // This case should not be reached. We should catch an invalid |
- // color type when we check that the conversion is possible. |
- SkASSERT(false); |
- break; |
- } |
-} |
- |
-/* |
- * |
- * Performs the bitmap decoding for RLE input format |
- * RLE decoding is performed all at once, rather than a one row at a time |
- * |
- */ |
-SkCodec::Result SkBmpCodec::decodeRLE(const SkImageInfo& dstInfo, |
- void* dst, size_t dstRowBytes, |
- const Options& opts) { |
- // Set RLE flags |
- static const uint8_t RLE_ESCAPE = 0; |
- static const uint8_t RLE_EOL = 0; |
- static const uint8_t RLE_EOF = 1; |
- static const uint8_t RLE_DELTA = 2; |
- |
- // Set constant values |
- const int width = dstInfo.width(); |
- const int height = dstInfo.height(); |
- |
- // Input buffer parameters |
- uint32_t currByte = 0; |
- SkAutoTDeleteArray<uint8_t> buffer(SkNEW_ARRAY(uint8_t, fRLEBytes)); |
- size_t totalBytes = stream()->read(buffer.get(), fRLEBytes); |
- if (totalBytes < fRLEBytes) { |
- SkCodecPrintf("Warning: incomplete RLE file.\n"); |
- } else if (totalBytes <= 0) { |
- SkCodecPrintf("Error: could not read RLE image data.\n"); |
- return kInvalidInput; |
- } |
- |
- // Destination parameters |
- int x = 0; |
- int y = 0; |
- |
- // Set the background as transparent. Then, if the RLE code skips pixels, |
- // the skipped pixels will be transparent. |
- // Because of the need for transparent pixels, kN32 is the only color |
- // type that makes sense for the destination format. |
- SkASSERT(kN32_SkColorType == dstInfo.colorType()); |
- if (kNo_ZeroInitialized == opts.fZeroInitialized) { |
- SkSwizzler::Fill(dst, dstInfo, dstRowBytes, height, SK_ColorTRANSPARENT, NULL); |
- } |
- |
- while (true) { |
- // Every entry takes at least two bytes |
- if ((int) totalBytes - currByte < 2) { |
- SkCodecPrintf("Warning: incomplete RLE input.\n"); |
- return kIncompleteInput; |
- } |
- |
- // Read the next two bytes. These bytes have different meanings |
- // depending on their values. In the first interpretation, the first |
- // byte is an escape flag and the second byte indicates what special |
- // task to perform. |
- const uint8_t flag = buffer.get()[currByte++]; |
- const uint8_t task = buffer.get()[currByte++]; |
- |
- // If we have reached a row that is beyond the image size, and the RLE |
- // code does not indicate end of file, abort and signal a warning. |
- if (y >= height && (flag != RLE_ESCAPE || (task != RLE_EOF))) { |
- SkCodecPrintf("Warning: invalid RLE input.\n"); |
- return kIncompleteInput; |
- } |
- |
- // Perform decoding |
- if (RLE_ESCAPE == flag) { |
- switch (task) { |
- case RLE_EOL: |
- x = 0; |
- y++; |
- break; |
- case RLE_EOF: |
- return kSuccess; |
- case RLE_DELTA: { |
- // Two bytes are needed to specify delta |
- if ((int) totalBytes - currByte < 2) { |
- SkCodecPrintf("Warning: incomplete RLE input\n"); |
- return kIncompleteInput; |
- } |
- // Modify x and y |
- const uint8_t dx = buffer.get()[currByte++]; |
- const uint8_t dy = buffer.get()[currByte++]; |
- x += dx; |
- y += dy; |
- if (x > width || y > height) { |
- SkCodecPrintf("Warning: invalid RLE input.\n"); |
- return kIncompleteInput; |
- } |
- break; |
- } |
- default: { |
- // If task does not match any of the above signals, it |
- // indicates that we have a sequence of non-RLE pixels. |
- // Furthermore, the value of task is equal to the number |
- // of pixels to interpret. |
- uint8_t numPixels = task; |
- const size_t rowBytes = compute_row_bytes(numPixels, |
- fBitsPerPixel); |
- // Abort if setting numPixels moves us off the edge of the |
- // image. Also abort if there are not enough bytes |
- // remaining in the stream to set numPixels. |
- if (x + numPixels > width || |
- (int) totalBytes - currByte < SkAlign2(rowBytes)) { |
- SkCodecPrintf("Warning: invalid RLE input.\n"); |
- return kIncompleteInput; |
- } |
- // Set numPixels number of pixels |
- while (numPixels > 0) { |
- switch(fBitsPerPixel) { |
- case 4: { |
- SkASSERT(currByte < totalBytes); |
- uint8_t val = buffer.get()[currByte++]; |
- setRLEPixel(dst, dstRowBytes, dstInfo, x++, |
- y, val >> 4); |
- numPixels--; |
- if (numPixels != 0) { |
- setRLEPixel(dst, dstRowBytes, dstInfo, |
- x++, y, val & 0xF); |
- numPixels--; |
- } |
- break; |
- } |
- case 8: |
- SkASSERT(currByte < totalBytes); |
- setRLEPixel(dst, dstRowBytes, dstInfo, x++, |
- y, buffer.get()[currByte++]); |
- numPixels--; |
- break; |
- case 24: { |
- SkASSERT(currByte + 2 < totalBytes); |
- uint8_t blue = buffer.get()[currByte++]; |
- uint8_t green = buffer.get()[currByte++]; |
- uint8_t red = buffer.get()[currByte++]; |
- setRLE24Pixel(dst, dstRowBytes, dstInfo, |
- x++, y, red, green, blue); |
- numPixels--; |
- } |
- default: |
- SkASSERT(false); |
- return kInvalidInput; |
- } |
- } |
- // Skip a byte if necessary to maintain alignment |
- if (!SkIsAlign2(rowBytes)) { |
- currByte++; |
- } |
- break; |
- } |
- } |
- } else { |
- // If the first byte read is not a flag, it indicates the number of |
- // pixels to set in RLE mode. |
- const uint8_t numPixels = flag; |
- const int endX = SkTMin<int>(x + numPixels, width); |
- |
- if (24 == fBitsPerPixel) { |
- // In RLE24, the second byte read is part of the pixel color. |
- // There are two more required bytes to finish encoding the |
- // color. |
- if ((int) totalBytes - currByte < 2) { |
- SkCodecPrintf("Warning: incomplete RLE input\n"); |
- return kIncompleteInput; |
- } |
- |
- // Fill the pixels up to endX with the specified color |
- uint8_t blue = task; |
- uint8_t green = buffer.get()[currByte++]; |
- uint8_t red = buffer.get()[currByte++]; |
- while (x < endX) { |
- setRLE24Pixel(dst, dstRowBytes, dstInfo, x++, y, red, |
- green, blue); |
- } |
- } else { |
- // In RLE8 or RLE4, the second byte read gives the index in the |
- // color table to look up the pixel color. |
- // RLE8 has one color index that gets repeated |
- // RLE4 has two color indexes in the upper and lower 4 bits of |
- // the bytes, which are alternated |
- uint8_t indices[2] = { task, task }; |
- if (4 == fBitsPerPixel) { |
- indices[0] >>= 4; |
- indices[1] &= 0xf; |
- } |
- |
- // Set the indicated number of pixels |
- for (int which = 0; x < endX; x++) { |
- setRLEPixel(dst, dstRowBytes, dstInfo, x, y, |
- indices[which]); |
- which = !which; |
- } |
- } |
- } |
- } |
-} |
- |
-/* |
- * |
- * Performs the bitmap decoding for standard input format |
- * |
- */ |
-SkCodec::Result SkBmpCodec::decode(const SkImageInfo& dstInfo, |
- void* dst, size_t dstRowBytes, |
- const Options& opts) { |
- // Set constant values |
- const int width = dstInfo.width(); |
- const int height = dstInfo.height(); |
- const size_t rowBytes = SkAlign4(compute_row_bytes(width, fBitsPerPixel)); |
- |
- // Get swizzler configuration and choose the fill value for failures. We will use |
- // zero as the default palette index, black for opaque images, and transparent for |
- // non-opaque images. |
- SkSwizzler::SrcConfig config; |
- uint32_t fillColorOrIndex; |
- bool zeroFill = true; |
- switch (fBitsPerPixel) { |
- case 1: |
- config = SkSwizzler::kIndex1; |
- fillColorOrIndex = 0; |
- break; |
- case 2: |
- config = SkSwizzler::kIndex2; |
- fillColorOrIndex = 0; |
- break; |
- case 4: |
- config = SkSwizzler::kIndex4; |
- fillColorOrIndex = 0; |
- break; |
- case 8: |
- config = SkSwizzler::kIndex; |
- fillColorOrIndex = 0; |
- break; |
- case 24: |
- config = SkSwizzler::kBGR; |
- fillColorOrIndex = SK_ColorBLACK; |
- zeroFill = false; |
- break; |
- case 32: |
- if (kOpaque_SkAlphaType == dstInfo.alphaType()) { |
- config = SkSwizzler::kBGRX; |
- fillColorOrIndex = SK_ColorBLACK; |
- zeroFill = false; |
- } else { |
- config = SkSwizzler::kBGRA; |
- fillColorOrIndex = SK_ColorTRANSPARENT; |
- } |
- break; |
- default: |
- SkASSERT(false); |
- return kInvalidInput; |
- } |
- |
- // Get a pointer to the color table if it exists |
- const SkPMColor* colorPtr = NULL != fColorTable.get() ? fColorTable->readColors() : NULL; |
- |
- // Create swizzler |
- SkAutoTDelete<SkSwizzler> swizzler(SkSwizzler::CreateSwizzler(config, |
- colorPtr, dstInfo, kNo_ZeroInitialized)); |
- |
- // Allocate space for a row buffer and a source for the swizzler |
- SkAutoTDeleteArray<uint8_t> srcBuffer(SkNEW_ARRAY(uint8_t, rowBytes)); |
- |
- // Iterate over rows of the image |
- // FIXME: bool transparent = true; |
- for (int y = 0; y < height; y++) { |
- // Read a row of the input |
- if (stream()->read(srcBuffer.get(), rowBytes) != rowBytes) { |
- SkCodecPrintf("Warning: incomplete input stream.\n"); |
- // Fill the destination image on failure |
- if (kNo_ZeroInitialized == opts.fZeroInitialized || !zeroFill) { |
- void* dstStart = get_dst_start_row(dst, dstRowBytes, y, fRowOrder); |
- SkSwizzler::Fill(dstStart, dstInfo, dstRowBytes, dstInfo.height() - y, |
- fillColorOrIndex, colorPtr); |
- } |
- return kIncompleteInput; |
- } |
- |
- // Decode the row in destination format |
- uint32_t row; |
- if (kTopDown_RowOrder == fRowOrder) { |
- row = y; |
- } else { |
- row = height - 1 - y; |
- } |
- |
- void* dstRow = SkTAddOffset<void>(dst, dstRowBytes * row); |
- swizzler->swizzle(dstRow, srcBuffer.get()); |
- // FIXME: SkSwizzler::ResultAlpha r = |
- // swizzler->swizzle(dstRow, srcBuffer.get()); |
- // FIXME: transparent &= SkSwizzler::IsTransparent(r); |
- } |
- |
- // FIXME: This code exists to match the behavior in the chromium decoder |
- // and to follow the bmp specification as it relates to alpha masks. It is |
- // commented out because we have yet to discover a test image that provides |
- // an alpha mask and uses this decode mode. |
- |
- // Now we adjust the output image with some additional behavior that |
- // SkSwizzler does not support. Firstly, all bmp images that contain |
- // alpha are masked by the alpha mask. Secondly, many fully transparent |
- // bmp images are intended to be opaque. Here, we make those corrections |
- // in the kN32 case. |
- /* |
- SkPMColor* dstRow = (SkPMColor*) dst; |
- if (SkSwizzler::kBGRA == config) { |
- for (int y = 0; y < height; y++) { |
- for (int x = 0; x < width; x++) { |
- if (transparent) { |
- dstRow[x] |= 0xFF000000; |
- } else { |
- dstRow[x] &= alphaMask; |
- } |
- dstRow = SkTAddOffset<SkPMColor>(dstRow, dstRowBytes); |
- } |
- } |
- } |
- */ |
- |
- // Finally, apply the AND mask for bmp-in-ico images |
- if (fIsIco) { |
- // The AND mask is always 1 bit per pixel |
- const size_t rowBytes = SkAlign4(compute_row_bytes(width, 1)); |
- |
- SkPMColor* dstPtr = (SkPMColor*) dst; |
- for (int y = 0; y < height; y++) { |
- // The srcBuffer will at least be large enough |
- if (stream()->read(srcBuffer.get(), rowBytes) != rowBytes) { |
- SkCodecPrintf("Warning: incomplete AND mask for bmp-in-ico.\n"); |
- return kIncompleteInput; |
- } |
- |
- int row; |
- if (kBottomUp_RowOrder == fRowOrder) { |
- row = height - y - 1; |
- } else { |
- row = y; |
- } |
- |
- SkPMColor* dstRow = |
- SkTAddOffset<SkPMColor>(dstPtr, row * dstRowBytes); |
- |
- for (int x = 0; x < width; x++) { |
- int quotient; |
- int modulus; |
- SkTDivMod(x, 8, "ient, &modulus); |
- uint32_t shift = 7 - modulus; |
- uint32_t alphaBit = |
- (srcBuffer.get()[quotient] >> shift) & 0x1; |
- dstRow[x] &= alphaBit - 1; |
- } |
- } |
- } |
- |
- // Finished decoding the entire image |
- return kSuccess; |
-} |