| OLD | NEW |
| (Empty) |
| 1 /* | |
| 2 * Copyright 2015 Google Inc. | |
| 3 * | |
| 4 * Use of this source code is governed by a BSD-style license that can be | |
| 5 * found in the LICENSE file. | |
| 6 */ | |
| 7 | |
| 8 #include "SkCodec_libbmp.h" | |
| 9 #include "SkCodecPriv.h" | |
| 10 #include "SkColorPriv.h" | |
| 11 #include "SkStream.h" | |
| 12 | |
| 13 /* | |
| 14 * | |
| 15 * Checks if the conversion between the input image and the requested output | |
| 16 * image has been implemented | |
| 17 * | |
| 18 */ | |
| 19 static bool conversion_possible(const SkImageInfo& dst, | |
| 20 const SkImageInfo& src) { | |
| 21 // Ensure that the profile type is unchanged | |
| 22 if (dst.profileType() != src.profileType()) { | |
| 23 return false; | |
| 24 } | |
| 25 | |
| 26 // Check for supported alpha types | |
| 27 if (src.alphaType() != dst.alphaType()) { | |
| 28 if (kOpaque_SkAlphaType == src.alphaType()) { | |
| 29 // If the source is opaque, we must decode to opaque | |
| 30 return false; | |
| 31 } | |
| 32 | |
| 33 // The source is not opaque | |
| 34 switch (dst.alphaType()) { | |
| 35 case kPremul_SkAlphaType: | |
| 36 case kUnpremul_SkAlphaType: | |
| 37 // The source is not opaque, so either of these is okay | |
| 38 break; | |
| 39 default: | |
| 40 // We cannot decode a non-opaque image to opaque (or unknown) | |
| 41 return false; | |
| 42 } | |
| 43 } | |
| 44 | |
| 45 // Check for supported color types | |
| 46 switch (dst.colorType()) { | |
| 47 // Allow output to kN32 from any type of input | |
| 48 case kN32_SkColorType: | |
| 49 return true; | |
| 50 // Allow output to kIndex_8 from compatible inputs | |
| 51 case kIndex_8_SkColorType: | |
| 52 return kIndex_8_SkColorType == src.colorType(); | |
| 53 default: | |
| 54 return false; | |
| 55 } | |
| 56 } | |
| 57 | |
| 58 /* | |
| 59 * | |
| 60 * Defines the version and type of the second bitmap header | |
| 61 * | |
| 62 */ | |
| 63 enum BitmapHeaderType { | |
| 64 kInfoV1_BitmapHeaderType, | |
| 65 kInfoV2_BitmapHeaderType, | |
| 66 kInfoV3_BitmapHeaderType, | |
| 67 kInfoV4_BitmapHeaderType, | |
| 68 kInfoV5_BitmapHeaderType, | |
| 69 kOS2V1_BitmapHeaderType, | |
| 70 kOS2VX_BitmapHeaderType, | |
| 71 kUnknown_BitmapHeaderType | |
| 72 }; | |
| 73 | |
| 74 /* | |
| 75 * | |
| 76 * Possible bitmap compression types | |
| 77 * | |
| 78 */ | |
| 79 enum BitmapCompressionMethod { | |
| 80 kNone_BitmapCompressionMethod = 0, | |
| 81 k8BitRLE_BitmapCompressionMethod = 1, | |
| 82 k4BitRLE_BitmapCompressionMethod = 2, | |
| 83 kBitMasks_BitmapCompressionMethod = 3, | |
| 84 kJpeg_BitmapCompressionMethod = 4, | |
| 85 kPng_BitmapCompressionMethod = 5, | |
| 86 kAlphaBitMasks_BitmapCompressionMethod = 6, | |
| 87 kCMYK_BitmapCompressionMethod = 11, | |
| 88 kCMYK8BitRLE_BitmapCompressionMethod = 12, | |
| 89 kCMYK4BitRLE_BitmapCompressionMethod = 13 | |
| 90 }; | |
| 91 | |
| 92 /* | |
| 93 * | |
| 94 * Checks the start of the stream to see if the image is a bitmap | |
| 95 * | |
| 96 */ | |
| 97 bool SkBmpCodec::IsBmp(SkStream* stream) { | |
| 98 // TODO: Support "IC", "PT", "CI", "CP", "BA" | |
| 99 const char bmpSig[] = { 'B', 'M' }; | |
| 100 char buffer[sizeof(bmpSig)]; | |
| 101 return stream->read(buffer, sizeof(bmpSig)) == sizeof(bmpSig) && | |
| 102 !memcmp(buffer, bmpSig, sizeof(bmpSig)); | |
| 103 } | |
| 104 | |
| 105 /* | |
| 106 * | |
| 107 * Assumes IsBmp was called and returned true | |
| 108 * Creates a bmp decoder | |
| 109 * Reads enough of the stream to determine the image format | |
| 110 * | |
| 111 */ | |
| 112 SkCodec* SkBmpCodec::NewFromStream(SkStream* stream) { | |
| 113 return SkBmpCodec::NewFromStream(stream, false); | |
| 114 } | |
| 115 | |
| 116 /* | |
| 117 * | |
| 118 * Creates a bmp decoder for a bmp embedded in ico | |
| 119 * Reads enough of the stream to determine the image format | |
| 120 * | |
| 121 */ | |
| 122 SkCodec* SkBmpCodec::NewFromIco(SkStream* stream) { | |
| 123 return SkBmpCodec::NewFromStream(stream, true); | |
| 124 } | |
| 125 | |
| 126 /* | |
| 127 * | |
| 128 * Read enough of the stream to initialize the SkBmpCodec. Returns a bool | |
| 129 * representing success or failure. If it returned true, and codecOut was | |
| 130 * not NULL, it will be set to a new SkBmpCodec. | |
| 131 * Does *not* take ownership of the passed in SkStream. | |
| 132 * | |
| 133 */ | |
| 134 bool SkBmpCodec::ReadHeader(SkStream* stream, bool isIco, SkCodec** codecOut) { | |
| 135 // Header size constants | |
| 136 static const uint32_t kBmpHeaderBytes = 14; | |
| 137 static const uint32_t kBmpHeaderBytesPlusFour = kBmpHeaderBytes + 4; | |
| 138 static const uint32_t kBmpOS2V1Bytes = 12; | |
| 139 static const uint32_t kBmpOS2V2Bytes = 64; | |
| 140 static const uint32_t kBmpInfoBaseBytes = 16; | |
| 141 static const uint32_t kBmpInfoV1Bytes = 40; | |
| 142 static const uint32_t kBmpInfoV2Bytes = 52; | |
| 143 static const uint32_t kBmpInfoV3Bytes = 56; | |
| 144 static const uint32_t kBmpInfoV4Bytes = 108; | |
| 145 static const uint32_t kBmpInfoV5Bytes = 124; | |
| 146 static const uint32_t kBmpMaskBytes = 12; | |
| 147 | |
| 148 // The total bytes in the bmp file | |
| 149 // We only need to use this value for RLE decoding, so we will only | |
| 150 // check that it is valid in the RLE case. | |
| 151 uint32_t totalBytes; | |
| 152 // The offset from the start of the file where the pixel data begins | |
| 153 uint32_t offset; | |
| 154 // The size of the second (info) header in bytes | |
| 155 uint32_t infoBytes; | |
| 156 | |
| 157 // Bmps embedded in Icos skip the first Bmp header | |
| 158 if (!isIco) { | |
| 159 // Read the first header and the size of the second header | |
| 160 SkAutoTDeleteArray<uint8_t> hBuffer( | |
| 161 SkNEW_ARRAY(uint8_t, kBmpHeaderBytesPlusFour)); | |
| 162 if (stream->read(hBuffer.get(), kBmpHeaderBytesPlusFour) != | |
| 163 kBmpHeaderBytesPlusFour) { | |
| 164 SkCodecPrintf("Error: unable to read first bitmap header.\n"); | |
| 165 return false; | |
| 166 } | |
| 167 | |
| 168 totalBytes = get_int(hBuffer.get(), 2); | |
| 169 offset = get_int(hBuffer.get(), 10); | |
| 170 if (offset < kBmpHeaderBytes + kBmpOS2V1Bytes) { | |
| 171 SkCodecPrintf("Error: invalid starting location for pixel data\n"); | |
| 172 return false; | |
| 173 } | |
| 174 | |
| 175 // The size of the second (info) header in bytes | |
| 176 // The size is the first field of the second header, so we have already | |
| 177 // read the first four infoBytes. | |
| 178 infoBytes = get_int(hBuffer.get(), 14); | |
| 179 if (infoBytes < kBmpOS2V1Bytes) { | |
| 180 SkCodecPrintf("Error: invalid second header size.\n"); | |
| 181 return false; | |
| 182 } | |
| 183 } else { | |
| 184 // This value is only used by RLE compression. Bmp in Ico files do not | |
| 185 // use RLE. If the compression field is incorrectly signaled as RLE, | |
| 186 // we will catch this and signal an error below. | |
| 187 totalBytes = 0; | |
| 188 | |
| 189 // Bmps in Ico cannot specify an offset. We will always assume that | |
| 190 // pixel data begins immediately after the color table. This value | |
| 191 // will be corrected below. | |
| 192 offset = 0; | |
| 193 | |
| 194 // Read the size of the second header | |
| 195 SkAutoTDeleteArray<uint8_t> hBuffer( | |
| 196 SkNEW_ARRAY(uint8_t, 4)); | |
| 197 if (stream->read(hBuffer.get(), 4) != 4) { | |
| 198 SkCodecPrintf("Error: unable to read size of second bitmap header.\n
"); | |
| 199 return false; | |
| 200 } | |
| 201 infoBytes = get_int(hBuffer.get(), 0); | |
| 202 if (infoBytes < kBmpOS2V1Bytes) { | |
| 203 SkCodecPrintf("Error: invalid second header size.\n"); | |
| 204 return false; | |
| 205 } | |
| 206 } | |
| 207 | |
| 208 // We already read the first four bytes of the info header to get the size | |
| 209 const uint32_t infoBytesRemaining = infoBytes - 4; | |
| 210 | |
| 211 // Read the second header | |
| 212 SkAutoTDeleteArray<uint8_t> iBuffer( | |
| 213 SkNEW_ARRAY(uint8_t, infoBytesRemaining)); | |
| 214 if (stream->read(iBuffer.get(), infoBytesRemaining) != infoBytesRemaining) { | |
| 215 SkCodecPrintf("Error: unable to read second bitmap header.\n"); | |
| 216 return false; | |
| 217 } | |
| 218 | |
| 219 // The number of bits used per pixel in the pixel data | |
| 220 uint16_t bitsPerPixel; | |
| 221 | |
| 222 // The compression method for the pixel data | |
| 223 uint32_t compression = kNone_BitmapCompressionMethod; | |
| 224 | |
| 225 // Number of colors in the color table, defaults to 0 or max (see below) | |
| 226 uint32_t numColors = 0; | |
| 227 | |
| 228 // Bytes per color in the color table, early versions use 3, most use 4 | |
| 229 uint32_t bytesPerColor; | |
| 230 | |
| 231 // The image width and height | |
| 232 int width, height; | |
| 233 | |
| 234 // Determine image information depending on second header format | |
| 235 BitmapHeaderType headerType; | |
| 236 if (infoBytes >= kBmpInfoBaseBytes) { | |
| 237 // Check the version of the header | |
| 238 switch (infoBytes) { | |
| 239 case kBmpInfoV1Bytes: | |
| 240 headerType = kInfoV1_BitmapHeaderType; | |
| 241 break; | |
| 242 case kBmpInfoV2Bytes: | |
| 243 headerType = kInfoV2_BitmapHeaderType; | |
| 244 break; | |
| 245 case kBmpInfoV3Bytes: | |
| 246 headerType = kInfoV3_BitmapHeaderType; | |
| 247 break; | |
| 248 case kBmpInfoV4Bytes: | |
| 249 headerType = kInfoV4_BitmapHeaderType; | |
| 250 break; | |
| 251 case kBmpInfoV5Bytes: | |
| 252 headerType = kInfoV5_BitmapHeaderType; | |
| 253 break; | |
| 254 case 16: | |
| 255 case 20: | |
| 256 case 24: | |
| 257 case 28: | |
| 258 case 32: | |
| 259 case 36: | |
| 260 case 42: | |
| 261 case 46: | |
| 262 case 48: | |
| 263 case 60: | |
| 264 case kBmpOS2V2Bytes: | |
| 265 headerType = kOS2VX_BitmapHeaderType; | |
| 266 break; | |
| 267 default: | |
| 268 // We do not signal an error here because there is the | |
| 269 // possibility of new or undocumented bmp header types. Most | |
| 270 // of the newer versions of bmp headers are similar to and | |
| 271 // build off of the older versions, so we may still be able to | |
| 272 // decode the bmp. | |
| 273 SkCodecPrintf("Warning: unknown bmp header format.\n"); | |
| 274 headerType = kUnknown_BitmapHeaderType; | |
| 275 break; | |
| 276 } | |
| 277 // We check the size of the header before entering the if statement. | |
| 278 // We should not reach this point unless the size is large enough for | |
| 279 // these required fields. | |
| 280 SkASSERT(infoBytesRemaining >= 12); | |
| 281 width = get_int(iBuffer.get(), 0); | |
| 282 height = get_int(iBuffer.get(), 4); | |
| 283 bitsPerPixel = get_short(iBuffer.get(), 10); | |
| 284 | |
| 285 // Some versions do not have these fields, so we check before | |
| 286 // overwriting the default value. | |
| 287 if (infoBytesRemaining >= 16) { | |
| 288 compression = get_int(iBuffer.get(), 12); | |
| 289 if (infoBytesRemaining >= 32) { | |
| 290 numColors = get_int(iBuffer.get(), 28); | |
| 291 } | |
| 292 } | |
| 293 | |
| 294 // All of the headers that reach this point, store color table entries | |
| 295 // using 4 bytes per pixel. | |
| 296 bytesPerColor = 4; | |
| 297 } else if (infoBytes >= kBmpOS2V1Bytes) { | |
| 298 // The OS2V1 is treated separately because it has a unique format | |
| 299 headerType = kOS2V1_BitmapHeaderType; | |
| 300 width = (int) get_short(iBuffer.get(), 0); | |
| 301 height = (int) get_short(iBuffer.get(), 2); | |
| 302 bitsPerPixel = get_short(iBuffer.get(), 6); | |
| 303 bytesPerColor = 3; | |
| 304 } else { | |
| 305 // There are no valid bmp headers | |
| 306 SkCodecPrintf("Error: second bitmap header size is invalid.\n"); | |
| 307 return false; | |
| 308 } | |
| 309 | |
| 310 // Check for valid dimensions from header | |
| 311 RowOrder rowOrder = kBottomUp_RowOrder; | |
| 312 if (height < 0) { | |
| 313 height = -height; | |
| 314 rowOrder = kTopDown_RowOrder; | |
| 315 } | |
| 316 // The height field for bmp in ico is double the actual height because they | |
| 317 // contain an XOR mask followed by an AND mask | |
| 318 if (isIco) { | |
| 319 height /= 2; | |
| 320 } | |
| 321 if (width <= 0 || height <= 0) { | |
| 322 // TODO: Decide if we want to disable really large bmps as well. | |
| 323 // https://code.google.com/p/skia/issues/detail?id=3617 | |
| 324 SkCodecPrintf("Error: invalid bitmap dimensions.\n"); | |
| 325 return false; | |
| 326 } | |
| 327 | |
| 328 // Create mask struct | |
| 329 SkMasks::InputMasks inputMasks; | |
| 330 memset(&inputMasks, 0, sizeof(SkMasks::InputMasks)); | |
| 331 | |
| 332 // Determine the input compression format and set bit masks if necessary | |
| 333 uint32_t maskBytes = 0; | |
| 334 BitmapInputFormat inputFormat = kUnknown_BitmapInputFormat; | |
| 335 switch (compression) { | |
| 336 case kNone_BitmapCompressionMethod: | |
| 337 inputFormat = kStandard_BitmapInputFormat; | |
| 338 break; | |
| 339 case k8BitRLE_BitmapCompressionMethod: | |
| 340 if (bitsPerPixel != 8) { | |
| 341 SkCodecPrintf("Warning: correcting invalid bitmap format.\n"); | |
| 342 bitsPerPixel = 8; | |
| 343 } | |
| 344 inputFormat = kRLE_BitmapInputFormat; | |
| 345 break; | |
| 346 case k4BitRLE_BitmapCompressionMethod: | |
| 347 if (bitsPerPixel != 4) { | |
| 348 SkCodecPrintf("Warning: correcting invalid bitmap format.\n"); | |
| 349 bitsPerPixel = 4; | |
| 350 } | |
| 351 inputFormat = kRLE_BitmapInputFormat; | |
| 352 break; | |
| 353 case kAlphaBitMasks_BitmapCompressionMethod: | |
| 354 case kBitMasks_BitmapCompressionMethod: | |
| 355 // Load the masks | |
| 356 inputFormat = kBitMask_BitmapInputFormat; | |
| 357 switch (headerType) { | |
| 358 case kInfoV1_BitmapHeaderType: { | |
| 359 // The V1 header stores the bit masks after the header | |
| 360 SkAutoTDeleteArray<uint8_t> mBuffer( | |
| 361 SkNEW_ARRAY(uint8_t, kBmpMaskBytes)); | |
| 362 if (stream->read(mBuffer.get(), kBmpMaskBytes) != | |
| 363 kBmpMaskBytes) { | |
| 364 SkCodecPrintf("Error: unable to read bit inputMasks.\n")
; | |
| 365 return false; | |
| 366 } | |
| 367 maskBytes = kBmpMaskBytes; | |
| 368 inputMasks.red = get_int(mBuffer.get(), 0); | |
| 369 inputMasks.green = get_int(mBuffer.get(), 4); | |
| 370 inputMasks.blue = get_int(mBuffer.get(), 8); | |
| 371 break; | |
| 372 } | |
| 373 case kInfoV2_BitmapHeaderType: | |
| 374 case kInfoV3_BitmapHeaderType: | |
| 375 case kInfoV4_BitmapHeaderType: | |
| 376 case kInfoV5_BitmapHeaderType: | |
| 377 // Header types are matched based on size. If the header | |
| 378 // is V2+, we are guaranteed to be able to read at least | |
| 379 // this size. | |
| 380 SkASSERT(infoBytesRemaining >= 48); | |
| 381 inputMasks.red = get_int(iBuffer.get(), 36); | |
| 382 inputMasks.green = get_int(iBuffer.get(), 40); | |
| 383 inputMasks.blue = get_int(iBuffer.get(), 44); | |
| 384 break; | |
| 385 case kOS2VX_BitmapHeaderType: | |
| 386 // TODO: Decide if we intend to support this. | |
| 387 // It is unsupported in the previous version and | |
| 388 // in chromium. I have not come across a test case | |
| 389 // that uses this format. | |
| 390 SkCodecPrintf("Error: huffman format unsupported.\n"); | |
| 391 return false; | |
| 392 default: | |
| 393 SkCodecPrintf("Error: invalid bmp bit masks header.\n"); | |
| 394 return false; | |
| 395 } | |
| 396 break; | |
| 397 case kJpeg_BitmapCompressionMethod: | |
| 398 if (24 == bitsPerPixel) { | |
| 399 inputFormat = kRLE_BitmapInputFormat; | |
| 400 break; | |
| 401 } | |
| 402 // Fall through | |
| 403 case kPng_BitmapCompressionMethod: | |
| 404 // TODO: Decide if we intend to support this. | |
| 405 // It is unsupported in the previous version and | |
| 406 // in chromium. I think it is used mostly for printers. | |
| 407 SkCodecPrintf("Error: compression format not supported.\n"); | |
| 408 return false; | |
| 409 case kCMYK_BitmapCompressionMethod: | |
| 410 case kCMYK8BitRLE_BitmapCompressionMethod: | |
| 411 case kCMYK4BitRLE_BitmapCompressionMethod: | |
| 412 // TODO: Same as above. | |
| 413 SkCodecPrintf("Error: CMYK not supported for bitmap decoding.\n"); | |
| 414 return false; | |
| 415 default: | |
| 416 SkCodecPrintf("Error: invalid format for bitmap decoding.\n"); | |
| 417 return false; | |
| 418 } | |
| 419 | |
| 420 // Most versions of bmps should be rendered as opaque. Either they do | |
| 421 // not have an alpha channel, or they expect the alpha channel to be | |
| 422 // ignored. V3+ bmp files introduce an alpha mask and allow the creator | |
| 423 // of the image to use the alpha channels. However, many of these images | |
| 424 // leave the alpha channel blank and expect to be rendered as opaque. This | |
| 425 // is the case for almost all V3 images, so we render these as opaque. For | |
| 426 // V4+, we will use the alpha channel, and fix the image later if it turns | |
| 427 // out to be fully transparent. | |
| 428 // As an exception, V3 bmp-in-ico may use an alpha mask. | |
| 429 SkAlphaType alphaType = kOpaque_SkAlphaType; | |
| 430 if ((kInfoV3_BitmapHeaderType == headerType && isIco) || | |
| 431 kInfoV4_BitmapHeaderType == headerType || | |
| 432 kInfoV5_BitmapHeaderType == headerType) { | |
| 433 // Header types are matched based on size. If the header is | |
| 434 // V3+, we are guaranteed to be able to read at least this size. | |
| 435 SkASSERT(infoBytesRemaining > 52); | |
| 436 inputMasks.alpha = get_int(iBuffer.get(), 48); | |
| 437 if (inputMasks.alpha != 0) { | |
| 438 alphaType = kUnpremul_SkAlphaType; | |
| 439 } | |
| 440 } | |
| 441 iBuffer.free(); | |
| 442 | |
| 443 // Additionally, 32 bit bmp-in-icos use the alpha channel. | |
| 444 // And, RLE inputs may skip pixels, leaving them as transparent. This | |
| 445 // is uncommon, but we cannot be certain that an RLE bmp will be opaque. | |
| 446 if ((isIco && 32 == bitsPerPixel) || (kRLE_BitmapInputFormat == inputFormat)
) { | |
| 447 alphaType = kUnpremul_SkAlphaType; | |
| 448 } | |
| 449 | |
| 450 // Check for valid bits per pixel. | |
| 451 // At the same time, use this information to choose a suggested color type | |
| 452 // and to set default masks. | |
| 453 SkColorType colorType = kN32_SkColorType; | |
| 454 switch (bitsPerPixel) { | |
| 455 // In addition to more standard pixel compression formats, bmp supports | |
| 456 // the use of bit masks to determine pixel components. The standard | |
| 457 // format for representing 16-bit colors is 555 (XRRRRRGGGGGBBBBB), | |
| 458 // which does not map well to any Skia color formats. For this reason, | |
| 459 // we will always enable mask mode with 16 bits per pixel. | |
| 460 case 16: | |
| 461 if (kBitMask_BitmapInputFormat != inputFormat) { | |
| 462 inputMasks.red = 0x7C00; | |
| 463 inputMasks.green = 0x03E0; | |
| 464 inputMasks.blue = 0x001F; | |
| 465 inputFormat = kBitMask_BitmapInputFormat; | |
| 466 } | |
| 467 break; | |
| 468 // We want to decode to kIndex_8 for input formats that are already | |
| 469 // designed in index format. | |
| 470 case 1: | |
| 471 case 2: | |
| 472 case 4: | |
| 473 case 8: | |
| 474 // However, we cannot in RLE format since we may need to leave some | |
| 475 // pixels as transparent. Similarly, we also cannot for ICO images | |
| 476 // since we may need to apply a transparent mask. | |
| 477 if (kRLE_BitmapInputFormat != inputFormat && !isIco) { | |
| 478 colorType = kIndex_8_SkColorType; | |
| 479 } | |
| 480 case 24: | |
| 481 case 32: | |
| 482 break; | |
| 483 default: | |
| 484 SkCodecPrintf("Error: invalid input value for bits per pixel.\n"); | |
| 485 return false; | |
| 486 } | |
| 487 | |
| 488 // Check that input bit masks are valid and create the masks object | |
| 489 SkAutoTDelete<SkMasks> | |
| 490 masks(SkMasks::CreateMasks(inputMasks, bitsPerPixel)); | |
| 491 if (NULL == masks) { | |
| 492 SkCodecPrintf("Error: invalid input masks.\n"); | |
| 493 return false; | |
| 494 } | |
| 495 | |
| 496 // Check for a valid number of total bytes when in RLE mode | |
| 497 if (totalBytes <= offset && kRLE_BitmapInputFormat == inputFormat) { | |
| 498 SkCodecPrintf("Error: RLE requires valid input size.\n"); | |
| 499 return false; | |
| 500 } | |
| 501 const size_t RLEBytes = totalBytes - offset; | |
| 502 | |
| 503 // Calculate the number of bytes read so far | |
| 504 const uint32_t bytesRead = kBmpHeaderBytes + infoBytes + maskBytes; | |
| 505 if (!isIco && offset < bytesRead) { | |
| 506 SkCodecPrintf("Error: pixel data offset less than header size.\n"); | |
| 507 return false; | |
| 508 } | |
| 509 | |
| 510 if (codecOut) { | |
| 511 // Return the codec | |
| 512 // We will use ImageInfo to store width, height, suggested color type, a
nd | |
| 513 // suggested alpha type. | |
| 514 const SkImageInfo& imageInfo = SkImageInfo::Make(width, height, | |
| 515 colorType, alphaType); | |
| 516 *codecOut = SkNEW_ARGS(SkBmpCodec, (imageInfo, stream, bitsPerPixel, | |
| 517 inputFormat, masks.detach(), | |
| 518 numColors, bytesPerColor, | |
| 519 offset - bytesRead, rowOrder, | |
| 520 RLEBytes, isIco)); | |
| 521 } | |
| 522 return true; | |
| 523 } | |
| 524 | |
| 525 /* | |
| 526 * | |
| 527 * Creates a bmp decoder | |
| 528 * Reads enough of the stream to determine the image format | |
| 529 * | |
| 530 */ | |
| 531 SkCodec* SkBmpCodec::NewFromStream(SkStream* stream, bool isIco) { | |
| 532 SkAutoTDelete<SkStream> streamDeleter(stream); | |
| 533 SkCodec* codec = NULL; | |
| 534 if (ReadHeader(stream, isIco, &codec)) { | |
| 535 // codec has taken ownership of stream, so we do not need to | |
| 536 // delete it. | |
| 537 SkASSERT(codec); | |
| 538 streamDeleter.detach(); | |
| 539 return codec; | |
| 540 } | |
| 541 return NULL; | |
| 542 } | |
| 543 | |
| 544 /* | |
| 545 * | |
| 546 * Creates an instance of the decoder | |
| 547 * Called only by NewFromStream | |
| 548 * | |
| 549 */ | |
| 550 SkBmpCodec::SkBmpCodec(const SkImageInfo& info, SkStream* stream, | |
| 551 uint16_t bitsPerPixel, BitmapInputFormat inputFormat, | |
| 552 SkMasks* masks, uint32_t numColors, | |
| 553 uint32_t bytesPerColor, uint32_t offset, | |
| 554 RowOrder rowOrder, size_t RLEBytes, bool isIco) | |
| 555 : INHERITED(info, stream) | |
| 556 , fBitsPerPixel(bitsPerPixel) | |
| 557 , fInputFormat(inputFormat) | |
| 558 , fMasks(masks) | |
| 559 , fColorTable(NULL) | |
| 560 , fNumColors(numColors) | |
| 561 , fBytesPerColor(bytesPerColor) | |
| 562 , fOffset(offset) | |
| 563 , fRowOrder(rowOrder) | |
| 564 , fRLEBytes(RLEBytes) | |
| 565 , fIsIco(isIco) | |
| 566 | |
| 567 {} | |
| 568 | |
| 569 /* | |
| 570 * | |
| 571 * Initiates the bitmap decode | |
| 572 * | |
| 573 */ | |
| 574 SkCodec::Result SkBmpCodec::onGetPixels(const SkImageInfo& dstInfo, | |
| 575 void* dst, size_t dstRowBytes, | |
| 576 const Options& opts, | |
| 577 SkPMColor* inputColorPtr, | |
| 578 int* inputColorCount) { | |
| 579 // Check for proper input and output formats | |
| 580 SkCodec::RewindState rewindState = this->rewindIfNeeded(); | |
| 581 if (rewindState == kCouldNotRewind_RewindState) { | |
| 582 return kCouldNotRewind; | |
| 583 } else if (rewindState == kRewound_RewindState) { | |
| 584 if (!ReadHeader(this->stream(), fIsIco, NULL)) { | |
| 585 return kCouldNotRewind; | |
| 586 } | |
| 587 } | |
| 588 if (opts.fSubset) { | |
| 589 // Subsets are not supported. | |
| 590 return kUnimplemented; | |
| 591 } | |
| 592 if (dstInfo.dimensions() != this->getInfo().dimensions()) { | |
| 593 SkCodecPrintf("Error: scaling not supported.\n"); | |
| 594 return kInvalidScale; | |
| 595 } | |
| 596 if (!conversion_possible(dstInfo, this->getInfo())) { | |
| 597 SkCodecPrintf("Error: cannot convert input type to output type.\n"); | |
| 598 return kInvalidConversion; | |
| 599 } | |
| 600 | |
| 601 // Create the color table if necessary and prepare the stream for decode | |
| 602 // Note that if it is non-NULL, inputColorCount will be modified | |
| 603 if (!createColorTable(dstInfo.alphaType(), inputColorCount)) { | |
| 604 SkCodecPrintf("Error: could not create color table.\n"); | |
| 605 return kInvalidInput; | |
| 606 } | |
| 607 | |
| 608 // Copy the color table to the client if necessary | |
| 609 copy_color_table(dstInfo, fColorTable, inputColorPtr, inputColorCount); | |
| 610 | |
| 611 // Perform the decode | |
| 612 switch (fInputFormat) { | |
| 613 case kBitMask_BitmapInputFormat: | |
| 614 return decodeMask(dstInfo, dst, dstRowBytes, opts); | |
| 615 case kRLE_BitmapInputFormat: | |
| 616 return decodeRLE(dstInfo, dst, dstRowBytes, opts); | |
| 617 case kStandard_BitmapInputFormat: | |
| 618 return decode(dstInfo, dst, dstRowBytes, opts); | |
| 619 default: | |
| 620 SkASSERT(false); | |
| 621 return kInvalidInput; | |
| 622 } | |
| 623 } | |
| 624 | |
| 625 /* | |
| 626 * | |
| 627 * Process the color table for the bmp input | |
| 628 * | |
| 629 */ | |
| 630 bool SkBmpCodec::createColorTable(SkAlphaType alphaType, int* numColors) { | |
| 631 // Allocate memory for color table | |
| 632 uint32_t colorBytes = 0; | |
| 633 uint32_t maxColors = 0; | |
| 634 SkPMColor colorTable[256]; | |
| 635 if (fBitsPerPixel <= 8) { | |
| 636 // Zero is a default for maxColors | |
| 637 // Also set fNumColors to maxColors when it is too large | |
| 638 maxColors = 1 << fBitsPerPixel; | |
| 639 if (fNumColors == 0 || fNumColors >= maxColors) { | |
| 640 fNumColors = maxColors; | |
| 641 } | |
| 642 | |
| 643 // Inform the caller of the number of colors | |
| 644 if (NULL != numColors) { | |
| 645 // We set the number of colors to maxColors in order to ensure | |
| 646 // safe memory accesses. Otherwise, an invalid pixel could | |
| 647 // access memory outside of our color table array. | |
| 648 *numColors = maxColors; | |
| 649 } | |
| 650 | |
| 651 // Read the color table from the stream | |
| 652 colorBytes = fNumColors * fBytesPerColor; | |
| 653 SkAutoTDeleteArray<uint8_t> cBuffer(SkNEW_ARRAY(uint8_t, colorBytes)); | |
| 654 if (stream()->read(cBuffer.get(), colorBytes) != colorBytes) { | |
| 655 SkCodecPrintf("Error: unable to read color table.\n"); | |
| 656 return false; | |
| 657 } | |
| 658 | |
| 659 // Choose the proper packing function | |
| 660 SkPMColor (*packARGB) (uint32_t, uint32_t, uint32_t, uint32_t); | |
| 661 switch (alphaType) { | |
| 662 case kOpaque_SkAlphaType: | |
| 663 case kUnpremul_SkAlphaType: | |
| 664 packARGB = &SkPackARGB32NoCheck; | |
| 665 break; | |
| 666 case kPremul_SkAlphaType: | |
| 667 packARGB = &SkPreMultiplyARGB; | |
| 668 break; | |
| 669 default: | |
| 670 // This should not be reached because conversion possible | |
| 671 // should fail if the alpha type is not one of the above | |
| 672 // values. | |
| 673 SkASSERT(false); | |
| 674 packARGB = NULL; | |
| 675 break; | |
| 676 } | |
| 677 | |
| 678 // Fill in the color table | |
| 679 uint32_t i = 0; | |
| 680 for (; i < fNumColors; i++) { | |
| 681 uint8_t blue = get_byte(cBuffer.get(), i*fBytesPerColor); | |
| 682 uint8_t green = get_byte(cBuffer.get(), i*fBytesPerColor + 1); | |
| 683 uint8_t red = get_byte(cBuffer.get(), i*fBytesPerColor + 2); | |
| 684 uint8_t alpha; | |
| 685 if (kOpaque_SkAlphaType == alphaType || kRLE_BitmapInputFormat == fI
nputFormat) { | |
| 686 alpha = 0xFF; | |
| 687 } else { | |
| 688 alpha = (fMasks->getAlphaMask() >> 24) & | |
| 689 get_byte(cBuffer.get(), i*fBytesPerColor + 3); | |
| 690 } | |
| 691 colorTable[i] = packARGB(alpha, red, green, blue); | |
| 692 } | |
| 693 | |
| 694 // To avoid segmentation faults on bad pixel data, fill the end of the | |
| 695 // color table with black. This is the same the behavior as the | |
| 696 // chromium decoder. | |
| 697 for (; i < maxColors; i++) { | |
| 698 colorTable[i] = SkPackARGB32NoCheck(0xFF, 0, 0, 0); | |
| 699 } | |
| 700 | |
| 701 // Set the color table | |
| 702 fColorTable.reset(SkNEW_ARGS(SkColorTable, (colorTable, maxColors))); | |
| 703 } | |
| 704 | |
| 705 // Bmp-in-Ico files do not use an offset to indicate where the pixel data | |
| 706 // begins. Pixel data always begins immediately after the color table. | |
| 707 if (!fIsIco) { | |
| 708 // Check that we have not read past the pixel array offset | |
| 709 if(fOffset < colorBytes) { | |
| 710 // This may occur on OS 2.1 and other old versions where the color | |
| 711 // table defaults to max size, and the bmp tries to use a smaller | |
| 712 // color table. This is invalid, and our decision is to indicate | |
| 713 // an error, rather than try to guess the intended size of the | |
| 714 // color table. | |
| 715 SkCodecPrintf("Error: pixel data offset less than color table size.\
n"); | |
| 716 return false; | |
| 717 } | |
| 718 | |
| 719 // After reading the color table, skip to the start of the pixel array | |
| 720 if (stream()->skip(fOffset - colorBytes) != fOffset - colorBytes) { | |
| 721 SkCodecPrintf("Error: unable to skip to image data.\n"); | |
| 722 return false; | |
| 723 } | |
| 724 } | |
| 725 | |
| 726 // Return true on success | |
| 727 return true; | |
| 728 } | |
| 729 | |
| 730 /* | |
| 731 * | |
| 732 * Get the destination row to start filling from | |
| 733 * Used to fill the remainder of the image on incomplete input | |
| 734 * | |
| 735 */ | |
| 736 static inline void* get_dst_start_row(void* dst, size_t dstRowBytes, int32_t y, | |
| 737 SkBmpCodec::RowOrder rowOrder) { | |
| 738 return (SkBmpCodec::kTopDown_RowOrder == rowOrder) ? | |
| 739 SkTAddOffset<void*>(dst, y * dstRowBytes) : dst; | |
| 740 } | |
| 741 | |
| 742 /* | |
| 743 * | |
| 744 * Performs the bitmap decoding for bit masks input format | |
| 745 * | |
| 746 */ | |
| 747 SkCodec::Result SkBmpCodec::decodeMask(const SkImageInfo& dstInfo, | |
| 748 void* dst, size_t dstRowBytes, | |
| 749 const Options& opts) { | |
| 750 // Set constant values | |
| 751 const int width = dstInfo.width(); | |
| 752 const int height = dstInfo.height(); | |
| 753 const size_t rowBytes = SkAlign4(compute_row_bytes(width, fBitsPerPixel)); | |
| 754 | |
| 755 // Allocate a buffer large enough to hold the full image | |
| 756 SkAutoTDeleteArray<uint8_t> | |
| 757 srcBuffer(SkNEW_ARRAY(uint8_t, height*rowBytes)); | |
| 758 uint8_t* srcRow = srcBuffer.get(); | |
| 759 | |
| 760 // Create the swizzler | |
| 761 SkAutoTDelete<SkMaskSwizzler> maskSwizzler( | |
| 762 SkMaskSwizzler::CreateMaskSwizzler(dstInfo, fMasks, fBitsPerPixel)); | |
| 763 | |
| 764 // Iterate over rows of the image | |
| 765 bool transparent = true; | |
| 766 for (int y = 0; y < height; y++) { | |
| 767 // Read a row of the input | |
| 768 if (stream()->read(srcRow, rowBytes) != rowBytes) { | |
| 769 SkCodecPrintf("Warning: incomplete input stream.\n"); | |
| 770 // Fill the destination image on failure | |
| 771 SkPMColor fillColor = dstInfo.alphaType() == kOpaque_SkAlphaType ? | |
| 772 SK_ColorBLACK : SK_ColorTRANSPARENT; | |
| 773 if (kNo_ZeroInitialized == opts.fZeroInitialized || 0 != fillColor)
{ | |
| 774 void* dstStart = get_dst_start_row(dst, dstRowBytes, y, fRowOrde
r); | |
| 775 SkSwizzler::Fill(dstStart, dstInfo, dstRowBytes, dstInfo.height(
) - y, fillColor, | |
| 776 NULL); | |
| 777 } | |
| 778 return kIncompleteInput; | |
| 779 } | |
| 780 | |
| 781 // Decode the row in destination format | |
| 782 int row = kBottomUp_RowOrder == fRowOrder ? height - 1 - y : y; | |
| 783 void* dstRow = SkTAddOffset<void>(dst, dstRowBytes * row); | |
| 784 SkSwizzler::ResultAlpha r = maskSwizzler->swizzle(dstRow, srcRow); | |
| 785 transparent &= SkSwizzler::IsTransparent(r); | |
| 786 | |
| 787 // Move to the next row | |
| 788 srcRow = SkTAddOffset<uint8_t>(srcRow, rowBytes); | |
| 789 } | |
| 790 | |
| 791 // Some fully transparent bmp images are intended to be opaque. Here, we | |
| 792 // correct for this possibility. | |
| 793 if (transparent) { | |
| 794 const SkImageInfo& opaqueInfo = | |
| 795 dstInfo.makeAlphaType(kOpaque_SkAlphaType); | |
| 796 SkAutoTDelete<SkMaskSwizzler> opaqueSwizzler( | |
| 797 SkMaskSwizzler::CreateMaskSwizzler(opaqueInfo, fMasks, fBitsPerP
ixel)); | |
| 798 srcRow = srcBuffer.get(); | |
| 799 for (int y = 0; y < height; y++) { | |
| 800 // Decode the row in opaque format | |
| 801 int row = kBottomUp_RowOrder == fRowOrder ? height - 1 - y : y; | |
| 802 void* dstRow = SkTAddOffset<void>(dst, dstRowBytes * row); | |
| 803 opaqueSwizzler->swizzle(dstRow, srcRow); | |
| 804 | |
| 805 // Move to the next row | |
| 806 srcRow = SkTAddOffset<uint8_t>(srcRow, rowBytes); | |
| 807 } | |
| 808 } | |
| 809 | |
| 810 // Finished decoding the entire image | |
| 811 return kSuccess; | |
| 812 } | |
| 813 | |
| 814 /* | |
| 815 * | |
| 816 * Set an RLE pixel using the color table | |
| 817 * | |
| 818 */ | |
| 819 void SkBmpCodec::setRLEPixel(void* dst, size_t dstRowBytes, | |
| 820 const SkImageInfo& dstInfo, uint32_t x, uint32_t y, | |
| 821 uint8_t index) { | |
| 822 // Set the row | |
| 823 int height = dstInfo.height(); | |
| 824 int row; | |
| 825 if (kBottomUp_RowOrder == fRowOrder) { | |
| 826 row = height - y - 1; | |
| 827 } else { | |
| 828 row = y; | |
| 829 } | |
| 830 | |
| 831 // Set the pixel based on destination color type | |
| 832 switch (dstInfo.colorType()) { | |
| 833 case kN32_SkColorType: { | |
| 834 SkPMColor* dstRow = SkTAddOffset<SkPMColor>((SkPMColor*) dst, | |
| 835 row * (int) dstRowBytes); | |
| 836 dstRow[x] = fColorTable->operator[](index); | |
| 837 break; | |
| 838 } | |
| 839 default: | |
| 840 // This case should not be reached. We should catch an invalid | |
| 841 // color type when we check that the conversion is possible. | |
| 842 SkASSERT(false); | |
| 843 break; | |
| 844 } | |
| 845 } | |
| 846 | |
| 847 /* | |
| 848 * | |
| 849 * Set an RLE pixel from R, G, B values | |
| 850 * | |
| 851 */ | |
| 852 void SkBmpCodec::setRLE24Pixel(void* dst, size_t dstRowBytes, | |
| 853 const SkImageInfo& dstInfo, uint32_t x, | |
| 854 uint32_t y, uint8_t red, uint8_t green, | |
| 855 uint8_t blue) { | |
| 856 // Set the row | |
| 857 int height = dstInfo.height(); | |
| 858 int row; | |
| 859 if (kBottomUp_RowOrder == fRowOrder) { | |
| 860 row = height - y - 1; | |
| 861 } else { | |
| 862 row = y; | |
| 863 } | |
| 864 | |
| 865 // Set the pixel based on destination color type | |
| 866 switch (dstInfo.colorType()) { | |
| 867 case kN32_SkColorType: { | |
| 868 SkPMColor* dstRow = SkTAddOffset<SkPMColor>((SkPMColor*) dst, | |
| 869 row * (int) dstRowBytes); | |
| 870 dstRow[x] = SkPackARGB32NoCheck(0xFF, red, green, blue); | |
| 871 break; | |
| 872 } | |
| 873 default: | |
| 874 // This case should not be reached. We should catch an invalid | |
| 875 // color type when we check that the conversion is possible. | |
| 876 SkASSERT(false); | |
| 877 break; | |
| 878 } | |
| 879 } | |
| 880 | |
| 881 /* | |
| 882 * | |
| 883 * Performs the bitmap decoding for RLE input format | |
| 884 * RLE decoding is performed all at once, rather than a one row at a time | |
| 885 * | |
| 886 */ | |
| 887 SkCodec::Result SkBmpCodec::decodeRLE(const SkImageInfo& dstInfo, | |
| 888 void* dst, size_t dstRowBytes, | |
| 889 const Options& opts) { | |
| 890 // Set RLE flags | |
| 891 static const uint8_t RLE_ESCAPE = 0; | |
| 892 static const uint8_t RLE_EOL = 0; | |
| 893 static const uint8_t RLE_EOF = 1; | |
| 894 static const uint8_t RLE_DELTA = 2; | |
| 895 | |
| 896 // Set constant values | |
| 897 const int width = dstInfo.width(); | |
| 898 const int height = dstInfo.height(); | |
| 899 | |
| 900 // Input buffer parameters | |
| 901 uint32_t currByte = 0; | |
| 902 SkAutoTDeleteArray<uint8_t> buffer(SkNEW_ARRAY(uint8_t, fRLEBytes)); | |
| 903 size_t totalBytes = stream()->read(buffer.get(), fRLEBytes); | |
| 904 if (totalBytes < fRLEBytes) { | |
| 905 SkCodecPrintf("Warning: incomplete RLE file.\n"); | |
| 906 } else if (totalBytes <= 0) { | |
| 907 SkCodecPrintf("Error: could not read RLE image data.\n"); | |
| 908 return kInvalidInput; | |
| 909 } | |
| 910 | |
| 911 // Destination parameters | |
| 912 int x = 0; | |
| 913 int y = 0; | |
| 914 | |
| 915 // Set the background as transparent. Then, if the RLE code skips pixels, | |
| 916 // the skipped pixels will be transparent. | |
| 917 // Because of the need for transparent pixels, kN32 is the only color | |
| 918 // type that makes sense for the destination format. | |
| 919 SkASSERT(kN32_SkColorType == dstInfo.colorType()); | |
| 920 if (kNo_ZeroInitialized == opts.fZeroInitialized) { | |
| 921 SkSwizzler::Fill(dst, dstInfo, dstRowBytes, height, SK_ColorTRANSPARENT,
NULL); | |
| 922 } | |
| 923 | |
| 924 while (true) { | |
| 925 // Every entry takes at least two bytes | |
| 926 if ((int) totalBytes - currByte < 2) { | |
| 927 SkCodecPrintf("Warning: incomplete RLE input.\n"); | |
| 928 return kIncompleteInput; | |
| 929 } | |
| 930 | |
| 931 // Read the next two bytes. These bytes have different meanings | |
| 932 // depending on their values. In the first interpretation, the first | |
| 933 // byte is an escape flag and the second byte indicates what special | |
| 934 // task to perform. | |
| 935 const uint8_t flag = buffer.get()[currByte++]; | |
| 936 const uint8_t task = buffer.get()[currByte++]; | |
| 937 | |
| 938 // If we have reached a row that is beyond the image size, and the RLE | |
| 939 // code does not indicate end of file, abort and signal a warning. | |
| 940 if (y >= height && (flag != RLE_ESCAPE || (task != RLE_EOF))) { | |
| 941 SkCodecPrintf("Warning: invalid RLE input.\n"); | |
| 942 return kIncompleteInput; | |
| 943 } | |
| 944 | |
| 945 // Perform decoding | |
| 946 if (RLE_ESCAPE == flag) { | |
| 947 switch (task) { | |
| 948 case RLE_EOL: | |
| 949 x = 0; | |
| 950 y++; | |
| 951 break; | |
| 952 case RLE_EOF: | |
| 953 return kSuccess; | |
| 954 case RLE_DELTA: { | |
| 955 // Two bytes are needed to specify delta | |
| 956 if ((int) totalBytes - currByte < 2) { | |
| 957 SkCodecPrintf("Warning: incomplete RLE input\n"); | |
| 958 return kIncompleteInput; | |
| 959 } | |
| 960 // Modify x and y | |
| 961 const uint8_t dx = buffer.get()[currByte++]; | |
| 962 const uint8_t dy = buffer.get()[currByte++]; | |
| 963 x += dx; | |
| 964 y += dy; | |
| 965 if (x > width || y > height) { | |
| 966 SkCodecPrintf("Warning: invalid RLE input.\n"); | |
| 967 return kIncompleteInput; | |
| 968 } | |
| 969 break; | |
| 970 } | |
| 971 default: { | |
| 972 // If task does not match any of the above signals, it | |
| 973 // indicates that we have a sequence of non-RLE pixels. | |
| 974 // Furthermore, the value of task is equal to the number | |
| 975 // of pixels to interpret. | |
| 976 uint8_t numPixels = task; | |
| 977 const size_t rowBytes = compute_row_bytes(numPixels, | |
| 978 fBitsPerPixel); | |
| 979 // Abort if setting numPixels moves us off the edge of the | |
| 980 // image. Also abort if there are not enough bytes | |
| 981 // remaining in the stream to set numPixels. | |
| 982 if (x + numPixels > width || | |
| 983 (int) totalBytes - currByte < SkAlign2(rowBytes)) { | |
| 984 SkCodecPrintf("Warning: invalid RLE input.\n"); | |
| 985 return kIncompleteInput; | |
| 986 } | |
| 987 // Set numPixels number of pixels | |
| 988 while (numPixels > 0) { | |
| 989 switch(fBitsPerPixel) { | |
| 990 case 4: { | |
| 991 SkASSERT(currByte < totalBytes); | |
| 992 uint8_t val = buffer.get()[currByte++]; | |
| 993 setRLEPixel(dst, dstRowBytes, dstInfo, x++, | |
| 994 y, val >> 4); | |
| 995 numPixels--; | |
| 996 if (numPixels != 0) { | |
| 997 setRLEPixel(dst, dstRowBytes, dstInfo, | |
| 998 x++, y, val & 0xF); | |
| 999 numPixels--; | |
| 1000 } | |
| 1001 break; | |
| 1002 } | |
| 1003 case 8: | |
| 1004 SkASSERT(currByte < totalBytes); | |
| 1005 setRLEPixel(dst, dstRowBytes, dstInfo, x++, | |
| 1006 y, buffer.get()[currByte++]); | |
| 1007 numPixels--; | |
| 1008 break; | |
| 1009 case 24: { | |
| 1010 SkASSERT(currByte + 2 < totalBytes); | |
| 1011 uint8_t blue = buffer.get()[currByte++]; | |
| 1012 uint8_t green = buffer.get()[currByte++]; | |
| 1013 uint8_t red = buffer.get()[currByte++]; | |
| 1014 setRLE24Pixel(dst, dstRowBytes, dstInfo, | |
| 1015 x++, y, red, green, blue); | |
| 1016 numPixels--; | |
| 1017 } | |
| 1018 default: | |
| 1019 SkASSERT(false); | |
| 1020 return kInvalidInput; | |
| 1021 } | |
| 1022 } | |
| 1023 // Skip a byte if necessary to maintain alignment | |
| 1024 if (!SkIsAlign2(rowBytes)) { | |
| 1025 currByte++; | |
| 1026 } | |
| 1027 break; | |
| 1028 } | |
| 1029 } | |
| 1030 } else { | |
| 1031 // If the first byte read is not a flag, it indicates the number of | |
| 1032 // pixels to set in RLE mode. | |
| 1033 const uint8_t numPixels = flag; | |
| 1034 const int endX = SkTMin<int>(x + numPixels, width); | |
| 1035 | |
| 1036 if (24 == fBitsPerPixel) { | |
| 1037 // In RLE24, the second byte read is part of the pixel color. | |
| 1038 // There are two more required bytes to finish encoding the | |
| 1039 // color. | |
| 1040 if ((int) totalBytes - currByte < 2) { | |
| 1041 SkCodecPrintf("Warning: incomplete RLE input\n"); | |
| 1042 return kIncompleteInput; | |
| 1043 } | |
| 1044 | |
| 1045 // Fill the pixels up to endX with the specified color | |
| 1046 uint8_t blue = task; | |
| 1047 uint8_t green = buffer.get()[currByte++]; | |
| 1048 uint8_t red = buffer.get()[currByte++]; | |
| 1049 while (x < endX) { | |
| 1050 setRLE24Pixel(dst, dstRowBytes, dstInfo, x++, y, red, | |
| 1051 green, blue); | |
| 1052 } | |
| 1053 } else { | |
| 1054 // In RLE8 or RLE4, the second byte read gives the index in the | |
| 1055 // color table to look up the pixel color. | |
| 1056 // RLE8 has one color index that gets repeated | |
| 1057 // RLE4 has two color indexes in the upper and lower 4 bits of | |
| 1058 // the bytes, which are alternated | |
| 1059 uint8_t indices[2] = { task, task }; | |
| 1060 if (4 == fBitsPerPixel) { | |
| 1061 indices[0] >>= 4; | |
| 1062 indices[1] &= 0xf; | |
| 1063 } | |
| 1064 | |
| 1065 // Set the indicated number of pixels | |
| 1066 for (int which = 0; x < endX; x++) { | |
| 1067 setRLEPixel(dst, dstRowBytes, dstInfo, x, y, | |
| 1068 indices[which]); | |
| 1069 which = !which; | |
| 1070 } | |
| 1071 } | |
| 1072 } | |
| 1073 } | |
| 1074 } | |
| 1075 | |
| 1076 /* | |
| 1077 * | |
| 1078 * Performs the bitmap decoding for standard input format | |
| 1079 * | |
| 1080 */ | |
| 1081 SkCodec::Result SkBmpCodec::decode(const SkImageInfo& dstInfo, | |
| 1082 void* dst, size_t dstRowBytes, | |
| 1083 const Options& opts) { | |
| 1084 // Set constant values | |
| 1085 const int width = dstInfo.width(); | |
| 1086 const int height = dstInfo.height(); | |
| 1087 const size_t rowBytes = SkAlign4(compute_row_bytes(width, fBitsPerPixel)); | |
| 1088 | |
| 1089 // Get swizzler configuration and choose the fill value for failures. We wi
ll use | |
| 1090 // zero as the default palette index, black for opaque images, and transpare
nt for | |
| 1091 // non-opaque images. | |
| 1092 SkSwizzler::SrcConfig config; | |
| 1093 uint32_t fillColorOrIndex; | |
| 1094 bool zeroFill = true; | |
| 1095 switch (fBitsPerPixel) { | |
| 1096 case 1: | |
| 1097 config = SkSwizzler::kIndex1; | |
| 1098 fillColorOrIndex = 0; | |
| 1099 break; | |
| 1100 case 2: | |
| 1101 config = SkSwizzler::kIndex2; | |
| 1102 fillColorOrIndex = 0; | |
| 1103 break; | |
| 1104 case 4: | |
| 1105 config = SkSwizzler::kIndex4; | |
| 1106 fillColorOrIndex = 0; | |
| 1107 break; | |
| 1108 case 8: | |
| 1109 config = SkSwizzler::kIndex; | |
| 1110 fillColorOrIndex = 0; | |
| 1111 break; | |
| 1112 case 24: | |
| 1113 config = SkSwizzler::kBGR; | |
| 1114 fillColorOrIndex = SK_ColorBLACK; | |
| 1115 zeroFill = false; | |
| 1116 break; | |
| 1117 case 32: | |
| 1118 if (kOpaque_SkAlphaType == dstInfo.alphaType()) { | |
| 1119 config = SkSwizzler::kBGRX; | |
| 1120 fillColorOrIndex = SK_ColorBLACK; | |
| 1121 zeroFill = false; | |
| 1122 } else { | |
| 1123 config = SkSwizzler::kBGRA; | |
| 1124 fillColorOrIndex = SK_ColorTRANSPARENT; | |
| 1125 } | |
| 1126 break; | |
| 1127 default: | |
| 1128 SkASSERT(false); | |
| 1129 return kInvalidInput; | |
| 1130 } | |
| 1131 | |
| 1132 // Get a pointer to the color table if it exists | |
| 1133 const SkPMColor* colorPtr = NULL != fColorTable.get() ? fColorTable->readCol
ors() : NULL; | |
| 1134 | |
| 1135 // Create swizzler | |
| 1136 SkAutoTDelete<SkSwizzler> swizzler(SkSwizzler::CreateSwizzler(config, | |
| 1137 colorPtr, dstInfo, kNo_ZeroInitialized)); | |
| 1138 | |
| 1139 // Allocate space for a row buffer and a source for the swizzler | |
| 1140 SkAutoTDeleteArray<uint8_t> srcBuffer(SkNEW_ARRAY(uint8_t, rowBytes)); | |
| 1141 | |
| 1142 // Iterate over rows of the image | |
| 1143 // FIXME: bool transparent = true; | |
| 1144 for (int y = 0; y < height; y++) { | |
| 1145 // Read a row of the input | |
| 1146 if (stream()->read(srcBuffer.get(), rowBytes) != rowBytes) { | |
| 1147 SkCodecPrintf("Warning: incomplete input stream.\n"); | |
| 1148 // Fill the destination image on failure | |
| 1149 if (kNo_ZeroInitialized == opts.fZeroInitialized || !zeroFill) { | |
| 1150 void* dstStart = get_dst_start_row(dst, dstRowBytes, y, fRowOrde
r); | |
| 1151 SkSwizzler::Fill(dstStart, dstInfo, dstRowBytes, dstInfo.height(
) - y, | |
| 1152 fillColorOrIndex, colorPtr); | |
| 1153 } | |
| 1154 return kIncompleteInput; | |
| 1155 } | |
| 1156 | |
| 1157 // Decode the row in destination format | |
| 1158 uint32_t row; | |
| 1159 if (kTopDown_RowOrder == fRowOrder) { | |
| 1160 row = y; | |
| 1161 } else { | |
| 1162 row = height - 1 - y; | |
| 1163 } | |
| 1164 | |
| 1165 void* dstRow = SkTAddOffset<void>(dst, dstRowBytes * row); | |
| 1166 swizzler->swizzle(dstRow, srcBuffer.get()); | |
| 1167 // FIXME: SkSwizzler::ResultAlpha r = | |
| 1168 // swizzler->swizzle(dstRow, srcBuffer.get()); | |
| 1169 // FIXME: transparent &= SkSwizzler::IsTransparent(r); | |
| 1170 } | |
| 1171 | |
| 1172 // FIXME: This code exists to match the behavior in the chromium decoder | |
| 1173 // and to follow the bmp specification as it relates to alpha masks. It is | |
| 1174 // commented out because we have yet to discover a test image that provides | |
| 1175 // an alpha mask and uses this decode mode. | |
| 1176 | |
| 1177 // Now we adjust the output image with some additional behavior that | |
| 1178 // SkSwizzler does not support. Firstly, all bmp images that contain | |
| 1179 // alpha are masked by the alpha mask. Secondly, many fully transparent | |
| 1180 // bmp images are intended to be opaque. Here, we make those corrections | |
| 1181 // in the kN32 case. | |
| 1182 /* | |
| 1183 SkPMColor* dstRow = (SkPMColor*) dst; | |
| 1184 if (SkSwizzler::kBGRA == config) { | |
| 1185 for (int y = 0; y < height; y++) { | |
| 1186 for (int x = 0; x < width; x++) { | |
| 1187 if (transparent) { | |
| 1188 dstRow[x] |= 0xFF000000; | |
| 1189 } else { | |
| 1190 dstRow[x] &= alphaMask; | |
| 1191 } | |
| 1192 dstRow = SkTAddOffset<SkPMColor>(dstRow, dstRowBytes); | |
| 1193 } | |
| 1194 } | |
| 1195 } | |
| 1196 */ | |
| 1197 | |
| 1198 // Finally, apply the AND mask for bmp-in-ico images | |
| 1199 if (fIsIco) { | |
| 1200 // The AND mask is always 1 bit per pixel | |
| 1201 const size_t rowBytes = SkAlign4(compute_row_bytes(width, 1)); | |
| 1202 | |
| 1203 SkPMColor* dstPtr = (SkPMColor*) dst; | |
| 1204 for (int y = 0; y < height; y++) { | |
| 1205 // The srcBuffer will at least be large enough | |
| 1206 if (stream()->read(srcBuffer.get(), rowBytes) != rowBytes) { | |
| 1207 SkCodecPrintf("Warning: incomplete AND mask for bmp-in-ico.\n"); | |
| 1208 return kIncompleteInput; | |
| 1209 } | |
| 1210 | |
| 1211 int row; | |
| 1212 if (kBottomUp_RowOrder == fRowOrder) { | |
| 1213 row = height - y - 1; | |
| 1214 } else { | |
| 1215 row = y; | |
| 1216 } | |
| 1217 | |
| 1218 SkPMColor* dstRow = | |
| 1219 SkTAddOffset<SkPMColor>(dstPtr, row * dstRowBytes); | |
| 1220 | |
| 1221 for (int x = 0; x < width; x++) { | |
| 1222 int quotient; | |
| 1223 int modulus; | |
| 1224 SkTDivMod(x, 8, "ient, &modulus); | |
| 1225 uint32_t shift = 7 - modulus; | |
| 1226 uint32_t alphaBit = | |
| 1227 (srcBuffer.get()[quotient] >> shift) & 0x1; | |
| 1228 dstRow[x] &= alphaBit - 1; | |
| 1229 } | |
| 1230 } | |
| 1231 } | |
| 1232 | |
| 1233 // Finished decoding the entire image | |
| 1234 return kSuccess; | |
| 1235 } | |
| OLD | NEW |