Index: src/opts/SkXfermode_opts_arm_neon.cpp |
diff --git a/src/opts/SkXfermode_opts_arm_neon.cpp b/src/opts/SkXfermode_opts_arm_neon.cpp |
index 42278165f6214637dbbc1fd1fbe6f115bda4c026..ae0fd17b2589cb7302c1f0963acf479eb1e1e274 100644 |
--- a/src/opts/SkXfermode_opts_arm_neon.cpp |
+++ b/src/opts/SkXfermode_opts_arm_neon.cpp |
@@ -5,1029 +5,10 @@ |
* found in the LICENSE file. |
*/ |
-#include "SkXfermode.h" |
-#include "SkXfermode_proccoeff.h" |
-#include "SkColorPriv.h" |
- |
-#include <arm_neon.h> |
-#include "SkColor_opts_neon.h" |
-#include "SkXfermode_opts_arm_neon.h" |
+// Including Sk4pxXfermode.h from this file should find SK_ARM_HAS_NEON is defined. |
#include "Sk4pxXfermode.h" |
-#define SkAlphaMulAlpha(a, b) SkMulDiv255Round(a, b) |
- |
- |
-//////////////////////////////////////////////////////////////////////////////// |
-// NEONized skia functions |
-//////////////////////////////////////////////////////////////////////////////// |
- |
-static inline uint8x8_t SkAlphaMulAlpha_neon8(uint8x8_t color, uint8x8_t alpha) { |
- uint16x8_t tmp; |
- uint8x8_t ret; |
- |
- tmp = vmull_u8(color, alpha); |
- tmp = vaddq_u16(tmp, vdupq_n_u16(128)); |
- tmp = vaddq_u16(tmp, vshrq_n_u16(tmp, 8)); |
- |
- ret = vshrn_n_u16(tmp, 8); |
- |
- return ret; |
-} |
- |
-static inline uint16x8_t SkAlphaMulAlpha_neon8_16(uint8x8_t color, uint8x8_t alpha) { |
- uint16x8_t ret; |
- |
- ret = vmull_u8(color, alpha); |
- ret = vaddq_u16(ret, vdupq_n_u16(128)); |
- ret = vaddq_u16(ret, vshrq_n_u16(ret, 8)); |
- |
- ret = vshrq_n_u16(ret, 8); |
- |
- return ret; |
-} |
- |
-static inline uint8x8_t SkDiv255Round_neon8_32_8(int32x4_t p1, int32x4_t p2) { |
- uint16x8_t tmp; |
- |
-#ifdef SK_CPU_ARM64 |
- tmp = vmovn_high_u32(vmovn_u32(vreinterpretq_u32_s32(p1)), |
- vreinterpretq_u32_s32(p2)); |
-#else |
- tmp = vcombine_u16(vmovn_u32(vreinterpretq_u32_s32(p1)), |
- vmovn_u32(vreinterpretq_u32_s32(p2))); |
-#endif |
- |
- tmp += vdupq_n_u16(128); |
- tmp += vshrq_n_u16(tmp, 8); |
- |
- return vshrn_n_u16(tmp, 8); |
-} |
- |
-static inline uint16x8_t SkDiv255Round_neon8_16_16(uint16x8_t prod) { |
- prod += vdupq_n_u16(128); |
- prod += vshrq_n_u16(prod, 8); |
- |
- return vshrq_n_u16(prod, 8); |
-} |
- |
-static inline uint8x8_t clamp_div255round_simd8_32(int32x4_t val1, int32x4_t val2) { |
- uint8x8_t ret; |
- uint32x4_t cmp1, cmp2; |
- uint16x8_t cmp16; |
- uint8x8_t cmp8, cmp8_1; |
- |
- // Test if <= 0 |
- cmp1 = vcleq_s32(val1, vdupq_n_s32(0)); |
- cmp2 = vcleq_s32(val2, vdupq_n_s32(0)); |
-#ifdef SK_CPU_ARM64 |
- cmp16 = vmovn_high_u32(vmovn_u32(cmp1), cmp2); |
-#else |
- cmp16 = vcombine_u16(vmovn_u32(cmp1), vmovn_u32(cmp2)); |
-#endif |
- cmp8_1 = vmovn_u16(cmp16); |
- |
- // Init to zero |
- ret = vdup_n_u8(0); |
- |
- // Test if >= 255*255 |
- cmp1 = vcgeq_s32(val1, vdupq_n_s32(255*255)); |
- cmp2 = vcgeq_s32(val2, vdupq_n_s32(255*255)); |
-#ifdef SK_CPU_ARM64 |
- cmp16 = vmovn_high_u32(vmovn_u32(cmp1), cmp2); |
-#else |
- cmp16 = vcombine_u16(vmovn_u32(cmp1), vmovn_u32(cmp2)); |
-#endif |
- cmp8 = vmovn_u16(cmp16); |
- |
- // Insert 255 where true |
- ret = vbsl_u8(cmp8, vdup_n_u8(255), ret); |
- |
- // Calc SkDiv255Round |
- uint8x8_t div = SkDiv255Round_neon8_32_8(val1, val2); |
- |
- // Insert where false and previous test false |
- cmp8 = cmp8 | cmp8_1; |
- ret = vbsl_u8(cmp8, ret, div); |
- |
- // Return the final combination |
- return ret; |
-} |
- |
-//////////////////////////////////////////////////////////////////////////////// |
-// 1 pixel modeprocs |
-//////////////////////////////////////////////////////////////////////////////// |
- |
-// kSrcATop_Mode, //!< [Da, Sc * Da + (1 - Sa) * Dc] |
-SkPMColor srcatop_modeproc_neon(SkPMColor src, SkPMColor dst) { |
- unsigned sa = SkGetPackedA32(src); |
- unsigned da = SkGetPackedA32(dst); |
- unsigned isa = 255 - sa; |
- |
- uint8x8_t vda, visa, vsrc, vdst; |
- |
- vda = vdup_n_u8(da); |
- visa = vdup_n_u8(isa); |
- |
- uint16x8_t vsrc_wide, vdst_wide; |
- vsrc_wide = vmull_u8(vda, vreinterpret_u8_u32(vdup_n_u32(src))); |
- vdst_wide = vmull_u8(visa, vreinterpret_u8_u32(vdup_n_u32(dst))); |
- |
- vsrc_wide += vdupq_n_u16(128); |
- vsrc_wide += vshrq_n_u16(vsrc_wide, 8); |
- |
- vdst_wide += vdupq_n_u16(128); |
- vdst_wide += vshrq_n_u16(vdst_wide, 8); |
- |
- vsrc = vshrn_n_u16(vsrc_wide, 8); |
- vdst = vshrn_n_u16(vdst_wide, 8); |
- |
- vsrc += vdst; |
- vsrc = vset_lane_u8(da, vsrc, 3); |
- |
- return vget_lane_u32(vreinterpret_u32_u8(vsrc), 0); |
-} |
- |
-// kDstATop_Mode, //!< [Sa, Sa * Dc + Sc * (1 - Da)] |
-SkPMColor dstatop_modeproc_neon(SkPMColor src, SkPMColor dst) { |
- unsigned sa = SkGetPackedA32(src); |
- unsigned da = SkGetPackedA32(dst); |
- unsigned ida = 255 - da; |
- |
- uint8x8_t vsa, vida, vsrc, vdst; |
- |
- vsa = vdup_n_u8(sa); |
- vida = vdup_n_u8(ida); |
- |
- uint16x8_t vsrc_wide, vdst_wide; |
- vsrc_wide = vmull_u8(vida, vreinterpret_u8_u32(vdup_n_u32(src))); |
- vdst_wide = vmull_u8(vsa, vreinterpret_u8_u32(vdup_n_u32(dst))); |
- |
- vsrc_wide += vdupq_n_u16(128); |
- vsrc_wide += vshrq_n_u16(vsrc_wide, 8); |
- |
- vdst_wide += vdupq_n_u16(128); |
- vdst_wide += vshrq_n_u16(vdst_wide, 8); |
- |
- vsrc = vshrn_n_u16(vsrc_wide, 8); |
- vdst = vshrn_n_u16(vdst_wide, 8); |
- |
- vsrc += vdst; |
- vsrc = vset_lane_u8(sa, vsrc, 3); |
- |
- return vget_lane_u32(vreinterpret_u32_u8(vsrc), 0); |
-} |
- |
-// kXor_Mode [Sa + Da - 2 * Sa * Da, Sc * (1 - Da) + (1 - Sa) * Dc] |
-SkPMColor xor_modeproc_neon(SkPMColor src, SkPMColor dst) { |
- unsigned sa = SkGetPackedA32(src); |
- unsigned da = SkGetPackedA32(dst); |
- unsigned ret_alpha = sa + da - (SkAlphaMulAlpha(sa, da) << 1); |
- unsigned isa = 255 - sa; |
- unsigned ida = 255 - da; |
- |
- uint8x8_t vsrc, vdst, visa, vida; |
- uint16x8_t vsrc_wide, vdst_wide; |
- |
- visa = vdup_n_u8(isa); |
- vida = vdup_n_u8(ida); |
- vsrc = vreinterpret_u8_u32(vdup_n_u32(src)); |
- vdst = vreinterpret_u8_u32(vdup_n_u32(dst)); |
- |
- vsrc_wide = vmull_u8(vsrc, vida); |
- vdst_wide = vmull_u8(vdst, visa); |
- |
- vsrc_wide += vdupq_n_u16(128); |
- vsrc_wide += vshrq_n_u16(vsrc_wide, 8); |
- |
- vdst_wide += vdupq_n_u16(128); |
- vdst_wide += vshrq_n_u16(vdst_wide, 8); |
- |
- vsrc = vshrn_n_u16(vsrc_wide, 8); |
- vdst = vshrn_n_u16(vdst_wide, 8); |
- |
- vsrc += vdst; |
- |
- vsrc = vset_lane_u8(ret_alpha, vsrc, 3); |
- |
- return vget_lane_u32(vreinterpret_u32_u8(vsrc), 0); |
-} |
- |
-// kPlus_Mode |
-SkPMColor plus_modeproc_neon(SkPMColor src, SkPMColor dst) { |
- uint8x8_t vsrc, vdst; |
- vsrc = vreinterpret_u8_u32(vdup_n_u32(src)); |
- vdst = vreinterpret_u8_u32(vdup_n_u32(dst)); |
- vsrc = vqadd_u8(vsrc, vdst); |
- |
- return vget_lane_u32(vreinterpret_u32_u8(vsrc), 0); |
-} |
- |
-// kModulate_Mode |
-SkPMColor modulate_modeproc_neon(SkPMColor src, SkPMColor dst) { |
- uint8x8_t vsrc, vdst, vres; |
- uint16x8_t vres_wide; |
- |
- vsrc = vreinterpret_u8_u32(vdup_n_u32(src)); |
- vdst = vreinterpret_u8_u32(vdup_n_u32(dst)); |
- |
- vres_wide = vmull_u8(vsrc, vdst); |
- |
- vres_wide += vdupq_n_u16(128); |
- vres_wide += vshrq_n_u16(vres_wide, 8); |
- |
- vres = vshrn_n_u16(vres_wide, 8); |
- |
- return vget_lane_u32(vreinterpret_u32_u8(vres), 0); |
-} |
- |
-//////////////////////////////////////////////////////////////////////////////// |
-// 8 pixels modeprocs |
-//////////////////////////////////////////////////////////////////////////////// |
- |
-uint8x8x4_t dstover_modeproc_neon8(uint8x8x4_t src, uint8x8x4_t dst) { |
- uint8x8x4_t ret; |
- uint16x8_t src_scale; |
- |
- src_scale = vsubw_u8(vdupq_n_u16(256), dst.val[NEON_A]); |
- |
- ret.val[NEON_A] = dst.val[NEON_A] + SkAlphaMul_neon8(src.val[NEON_A], src_scale); |
- ret.val[NEON_R] = dst.val[NEON_R] + SkAlphaMul_neon8(src.val[NEON_R], src_scale); |
- ret.val[NEON_G] = dst.val[NEON_G] + SkAlphaMul_neon8(src.val[NEON_G], src_scale); |
- ret.val[NEON_B] = dst.val[NEON_B] + SkAlphaMul_neon8(src.val[NEON_B], src_scale); |
- |
- return ret; |
-} |
- |
-uint8x8x4_t srcin_modeproc_neon8(uint8x8x4_t src, uint8x8x4_t dst) { |
- uint8x8x4_t ret; |
- uint16x8_t scale; |
- |
- scale = SkAlpha255To256_neon8(dst.val[NEON_A]); |
- |
- ret.val[NEON_A] = SkAlphaMul_neon8(src.val[NEON_A], scale); |
- ret.val[NEON_R] = SkAlphaMul_neon8(src.val[NEON_R], scale); |
- ret.val[NEON_G] = SkAlphaMul_neon8(src.val[NEON_G], scale); |
- ret.val[NEON_B] = SkAlphaMul_neon8(src.val[NEON_B], scale); |
- |
- return ret; |
-} |
- |
-uint8x8x4_t dstin_modeproc_neon8(uint8x8x4_t src, uint8x8x4_t dst) { |
- uint8x8x4_t ret; |
- uint16x8_t scale; |
- |
- scale = SkAlpha255To256_neon8(src.val[NEON_A]); |
- |
- ret = SkAlphaMulQ_neon8(dst, scale); |
- |
- return ret; |
-} |
- |
-uint8x8x4_t srcout_modeproc_neon8(uint8x8x4_t src, uint8x8x4_t dst) { |
- uint8x8x4_t ret; |
- uint16x8_t scale = vsubw_u8(vdupq_n_u16(256), dst.val[NEON_A]); |
- |
- ret = SkAlphaMulQ_neon8(src, scale); |
- |
- return ret; |
-} |
- |
-uint8x8x4_t dstout_modeproc_neon8(uint8x8x4_t src, uint8x8x4_t dst) { |
- uint8x8x4_t ret; |
- uint16x8_t scale = vsubw_u8(vdupq_n_u16(256), src.val[NEON_A]); |
- |
- ret = SkAlphaMulQ_neon8(dst, scale); |
- |
- return ret; |
-} |
- |
-uint8x8x4_t srcatop_modeproc_neon8(uint8x8x4_t src, uint8x8x4_t dst) { |
- uint8x8x4_t ret; |
- uint8x8_t isa; |
- |
- isa = vsub_u8(vdup_n_u8(255), src.val[NEON_A]); |
- |
- ret.val[NEON_A] = dst.val[NEON_A]; |
- ret.val[NEON_R] = SkAlphaMulAlpha_neon8(src.val[NEON_R], dst.val[NEON_A]) |
- + SkAlphaMulAlpha_neon8(dst.val[NEON_R], isa); |
- ret.val[NEON_G] = SkAlphaMulAlpha_neon8(src.val[NEON_G], dst.val[NEON_A]) |
- + SkAlphaMulAlpha_neon8(dst.val[NEON_G], isa); |
- ret.val[NEON_B] = SkAlphaMulAlpha_neon8(src.val[NEON_B], dst.val[NEON_A]) |
- + SkAlphaMulAlpha_neon8(dst.val[NEON_B], isa); |
- |
- return ret; |
-} |
- |
-uint8x8x4_t dstatop_modeproc_neon8(uint8x8x4_t src, uint8x8x4_t dst) { |
- uint8x8x4_t ret; |
- uint8x8_t ida; |
- |
- ida = vsub_u8(vdup_n_u8(255), dst.val[NEON_A]); |
- |
- ret.val[NEON_A] = src.val[NEON_A]; |
- ret.val[NEON_R] = SkAlphaMulAlpha_neon8(src.val[NEON_R], ida) |
- + SkAlphaMulAlpha_neon8(dst.val[NEON_R], src.val[NEON_A]); |
- ret.val[NEON_G] = SkAlphaMulAlpha_neon8(src.val[NEON_G], ida) |
- + SkAlphaMulAlpha_neon8(dst.val[NEON_G], src.val[NEON_A]); |
- ret.val[NEON_B] = SkAlphaMulAlpha_neon8(src.val[NEON_B], ida) |
- + SkAlphaMulAlpha_neon8(dst.val[NEON_B], src.val[NEON_A]); |
- |
- return ret; |
-} |
- |
-uint8x8x4_t xor_modeproc_neon8(uint8x8x4_t src, uint8x8x4_t dst) { |
- uint8x8x4_t ret; |
- uint8x8_t isa, ida; |
- uint16x8_t tmp_wide, tmp_wide2; |
- |
- isa = vsub_u8(vdup_n_u8(255), src.val[NEON_A]); |
- ida = vsub_u8(vdup_n_u8(255), dst.val[NEON_A]); |
- |
- // First calc alpha |
- tmp_wide = vmovl_u8(src.val[NEON_A]); |
- tmp_wide = vaddw_u8(tmp_wide, dst.val[NEON_A]); |
- tmp_wide2 = vshll_n_u8(SkAlphaMulAlpha_neon8(src.val[NEON_A], dst.val[NEON_A]), 1); |
- tmp_wide = vsubq_u16(tmp_wide, tmp_wide2); |
- ret.val[NEON_A] = vmovn_u16(tmp_wide); |
- |
- // Then colors |
- ret.val[NEON_R] = SkAlphaMulAlpha_neon8(src.val[NEON_R], ida) |
- + SkAlphaMulAlpha_neon8(dst.val[NEON_R], isa); |
- ret.val[NEON_G] = SkAlphaMulAlpha_neon8(src.val[NEON_G], ida) |
- + SkAlphaMulAlpha_neon8(dst.val[NEON_G], isa); |
- ret.val[NEON_B] = SkAlphaMulAlpha_neon8(src.val[NEON_B], ida) |
- + SkAlphaMulAlpha_neon8(dst.val[NEON_B], isa); |
- |
- return ret; |
-} |
- |
-uint8x8x4_t plus_modeproc_neon8(uint8x8x4_t src, uint8x8x4_t dst) { |
- uint8x8x4_t ret; |
- |
- ret.val[NEON_A] = vqadd_u8(src.val[NEON_A], dst.val[NEON_A]); |
- ret.val[NEON_R] = vqadd_u8(src.val[NEON_R], dst.val[NEON_R]); |
- ret.val[NEON_G] = vqadd_u8(src.val[NEON_G], dst.val[NEON_G]); |
- ret.val[NEON_B] = vqadd_u8(src.val[NEON_B], dst.val[NEON_B]); |
- |
- return ret; |
-} |
- |
-uint8x8x4_t modulate_modeproc_neon8(uint8x8x4_t src, uint8x8x4_t dst) { |
- uint8x8x4_t ret; |
- |
- ret.val[NEON_A] = SkAlphaMulAlpha_neon8(src.val[NEON_A], dst.val[NEON_A]); |
- ret.val[NEON_R] = SkAlphaMulAlpha_neon8(src.val[NEON_R], dst.val[NEON_R]); |
- ret.val[NEON_G] = SkAlphaMulAlpha_neon8(src.val[NEON_G], dst.val[NEON_G]); |
- ret.val[NEON_B] = SkAlphaMulAlpha_neon8(src.val[NEON_B], dst.val[NEON_B]); |
- |
- return ret; |
-} |
- |
-static inline uint8x8_t srcover_color(uint8x8_t a, uint8x8_t b) { |
- uint16x8_t tmp; |
- |
- tmp = vaddl_u8(a, b); |
- tmp -= SkAlphaMulAlpha_neon8_16(a, b); |
- |
- return vmovn_u16(tmp); |
-} |
- |
-uint8x8x4_t screen_modeproc_neon8(uint8x8x4_t src, uint8x8x4_t dst) { |
- uint8x8x4_t ret; |
- |
- ret.val[NEON_A] = srcover_color(src.val[NEON_A], dst.val[NEON_A]); |
- ret.val[NEON_R] = srcover_color(src.val[NEON_R], dst.val[NEON_R]); |
- ret.val[NEON_G] = srcover_color(src.val[NEON_G], dst.val[NEON_G]); |
- ret.val[NEON_B] = srcover_color(src.val[NEON_B], dst.val[NEON_B]); |
- |
- return ret; |
-} |
- |
-template <bool overlay> |
-static inline uint8x8_t overlay_hardlight_color(uint8x8_t sc, uint8x8_t dc, |
- uint8x8_t sa, uint8x8_t da) { |
- /* |
- * In the end we're gonna use (rc + tmp) with a different rc |
- * coming from an alternative. |
- * The whole value (rc + tmp) can always be expressed as |
- * VAL = COM - SUB in the if case |
- * VAL = COM + SUB - sa*da in the else case |
- * |
- * with COM = 255 * (sc + dc) |
- * and SUB = sc*da + dc*sa - 2*dc*sc |
- */ |
- |
- // Prepare common subexpressions |
- uint16x8_t const255 = vdupq_n_u16(255); |
- uint16x8_t sc_plus_dc = vaddl_u8(sc, dc); |
- uint16x8_t scda = vmull_u8(sc, da); |
- uint16x8_t dcsa = vmull_u8(dc, sa); |
- uint16x8_t sada = vmull_u8(sa, da); |
- |
- // Prepare non common subexpressions |
- uint16x8_t dc2, sc2; |
- uint32x4_t scdc2_1, scdc2_2; |
- if (overlay) { |
- dc2 = vshll_n_u8(dc, 1); |
- scdc2_1 = vmull_u16(vget_low_u16(dc2), vget_low_u16(vmovl_u8(sc))); |
-#ifdef SK_CPU_ARM64 |
- scdc2_2 = vmull_high_u16(dc2, vmovl_u8(sc)); |
-#else |
- scdc2_2 = vmull_u16(vget_high_u16(dc2), vget_high_u16(vmovl_u8(sc))); |
-#endif |
- } else { |
- sc2 = vshll_n_u8(sc, 1); |
- scdc2_1 = vmull_u16(vget_low_u16(sc2), vget_low_u16(vmovl_u8(dc))); |
-#ifdef SK_CPU_ARM64 |
- scdc2_2 = vmull_high_u16(sc2, vmovl_u8(dc)); |
-#else |
- scdc2_2 = vmull_u16(vget_high_u16(sc2), vget_high_u16(vmovl_u8(dc))); |
-#endif |
- } |
- |
- // Calc COM |
- int32x4_t com1, com2; |
- com1 = vreinterpretq_s32_u32( |
- vmull_u16(vget_low_u16(const255), vget_low_u16(sc_plus_dc))); |
- com2 = vreinterpretq_s32_u32( |
-#ifdef SK_CPU_ARM64 |
- vmull_high_u16(const255, sc_plus_dc)); |
-#else |
- vmull_u16(vget_high_u16(const255), vget_high_u16(sc_plus_dc))); |
-#endif |
- |
- // Calc SUB |
- int32x4_t sub1, sub2; |
- sub1 = vreinterpretq_s32_u32(vaddl_u16(vget_low_u16(scda), vget_low_u16(dcsa))); |
-#ifdef SK_CPU_ARM64 |
- sub2 = vreinterpretq_s32_u32(vaddl_high_u16(scda, dcsa)); |
-#else |
- sub2 = vreinterpretq_s32_u32(vaddl_u16(vget_high_u16(scda), vget_high_u16(dcsa))); |
-#endif |
- sub1 = vsubq_s32(sub1, vreinterpretq_s32_u32(scdc2_1)); |
- sub2 = vsubq_s32(sub2, vreinterpretq_s32_u32(scdc2_2)); |
- |
- // Compare 2*dc <= da |
- uint16x8_t cmp; |
- |
- if (overlay) { |
- cmp = vcleq_u16(dc2, vmovl_u8(da)); |
- } else { |
- cmp = vcleq_u16(sc2, vmovl_u8(sa)); |
- } |
- |
- // Prepare variables |
- int32x4_t val1_1, val1_2; |
- int32x4_t val2_1, val2_2; |
- uint32x4_t cmp1, cmp2; |
- |
- // Doing a signed lengthening allows to save a few instructions |
- // thanks to sign extension. |
- cmp1 = vreinterpretq_u32_s32(vmovl_s16(vreinterpret_s16_u16(vget_low_u16(cmp)))); |
-#ifdef SK_CPU_ARM64 |
- cmp2 = vreinterpretq_u32_s32(vmovl_high_s16(vreinterpretq_s16_u16(cmp))); |
-#else |
- cmp2 = vreinterpretq_u32_s32(vmovl_s16(vreinterpret_s16_u16(vget_high_u16(cmp)))); |
-#endif |
- |
- // Calc COM - SUB |
- val1_1 = com1 - sub1; |
- val1_2 = com2 - sub2; |
- |
- // Calc COM + SUB - sa*da |
- val2_1 = com1 + sub1; |
- val2_2 = com2 + sub2; |
- |
- val2_1 = vsubq_s32(val2_1, vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(sada)))); |
-#ifdef SK_CPU_ARM64 |
- val2_2 = vsubq_s32(val2_2, vreinterpretq_s32_u32(vmovl_high_u16(sada))); |
-#else |
- val2_2 = vsubq_s32(val2_2, vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(sada)))); |
-#endif |
- |
- // Insert where needed |
- val1_1 = vbslq_s32(cmp1, val1_1, val2_1); |
- val1_2 = vbslq_s32(cmp2, val1_2, val2_2); |
- |
- // Call the clamp_div255round function |
- return clamp_div255round_simd8_32(val1_1, val1_2); |
-} |
- |
-static inline uint8x8_t overlay_color(uint8x8_t sc, uint8x8_t dc, |
- uint8x8_t sa, uint8x8_t da) { |
- return overlay_hardlight_color<true>(sc, dc, sa, da); |
-} |
- |
-uint8x8x4_t overlay_modeproc_neon8(uint8x8x4_t src, uint8x8x4_t dst) { |
- uint8x8x4_t ret; |
- |
- ret.val[NEON_A] = srcover_color(src.val[NEON_A], dst.val[NEON_A]); |
- ret.val[NEON_R] = overlay_color(src.val[NEON_R], dst.val[NEON_R], |
- src.val[NEON_A], dst.val[NEON_A]); |
- ret.val[NEON_G] = overlay_color(src.val[NEON_G], dst.val[NEON_G], |
- src.val[NEON_A], dst.val[NEON_A]); |
- ret.val[NEON_B] = overlay_color(src.val[NEON_B], dst.val[NEON_B], |
- src.val[NEON_A], dst.val[NEON_A]); |
- |
- return ret; |
-} |
- |
-template <bool lighten> |
-static inline uint8x8_t lighten_darken_color(uint8x8_t sc, uint8x8_t dc, |
- uint8x8_t sa, uint8x8_t da) { |
- uint16x8_t sd, ds, cmp, tmp, tmp2; |
- |
- // Prepare |
- sd = vmull_u8(sc, da); |
- ds = vmull_u8(dc, sa); |
- |
- // Do test |
- if (lighten) { |
- cmp = vcgtq_u16(sd, ds); |
- } else { |
- cmp = vcltq_u16(sd, ds); |
- } |
- |
- // Assign if |
- tmp = vaddl_u8(sc, dc); |
- tmp2 = tmp; |
- tmp -= SkDiv255Round_neon8_16_16(ds); |
- |
- // Calc else |
- tmp2 -= SkDiv255Round_neon8_16_16(sd); |
- |
- // Insert where needed |
- tmp = vbslq_u16(cmp, tmp, tmp2); |
- |
- return vmovn_u16(tmp); |
-} |
- |
-static inline uint8x8_t darken_color(uint8x8_t sc, uint8x8_t dc, |
- uint8x8_t sa, uint8x8_t da) { |
- return lighten_darken_color<false>(sc, dc, sa, da); |
-} |
- |
-uint8x8x4_t darken_modeproc_neon8(uint8x8x4_t src, uint8x8x4_t dst) { |
- uint8x8x4_t ret; |
- |
- ret.val[NEON_A] = srcover_color(src.val[NEON_A], dst.val[NEON_A]); |
- ret.val[NEON_R] = darken_color(src.val[NEON_R], dst.val[NEON_R], |
- src.val[NEON_A], dst.val[NEON_A]); |
- ret.val[NEON_G] = darken_color(src.val[NEON_G], dst.val[NEON_G], |
- src.val[NEON_A], dst.val[NEON_A]); |
- ret.val[NEON_B] = darken_color(src.val[NEON_B], dst.val[NEON_B], |
- src.val[NEON_A], dst.val[NEON_A]); |
- |
- return ret; |
-} |
- |
-static inline uint8x8_t lighten_color(uint8x8_t sc, uint8x8_t dc, |
- uint8x8_t sa, uint8x8_t da) { |
- return lighten_darken_color<true>(sc, dc, sa, da); |
-} |
- |
-uint8x8x4_t lighten_modeproc_neon8(uint8x8x4_t src, uint8x8x4_t dst) { |
- uint8x8x4_t ret; |
- |
- ret.val[NEON_A] = srcover_color(src.val[NEON_A], dst.val[NEON_A]); |
- ret.val[NEON_R] = lighten_color(src.val[NEON_R], dst.val[NEON_R], |
- src.val[NEON_A], dst.val[NEON_A]); |
- ret.val[NEON_G] = lighten_color(src.val[NEON_G], dst.val[NEON_G], |
- src.val[NEON_A], dst.val[NEON_A]); |
- ret.val[NEON_B] = lighten_color(src.val[NEON_B], dst.val[NEON_B], |
- src.val[NEON_A], dst.val[NEON_A]); |
- |
- return ret; |
-} |
- |
-static inline uint8x8_t hardlight_color(uint8x8_t sc, uint8x8_t dc, |
- uint8x8_t sa, uint8x8_t da) { |
- return overlay_hardlight_color<false>(sc, dc, sa, da); |
-} |
- |
-uint8x8x4_t hardlight_modeproc_neon8(uint8x8x4_t src, uint8x8x4_t dst) { |
- uint8x8x4_t ret; |
- |
- ret.val[NEON_A] = srcover_color(src.val[NEON_A], dst.val[NEON_A]); |
- ret.val[NEON_R] = hardlight_color(src.val[NEON_R], dst.val[NEON_R], |
- src.val[NEON_A], dst.val[NEON_A]); |
- ret.val[NEON_G] = hardlight_color(src.val[NEON_G], dst.val[NEON_G], |
- src.val[NEON_A], dst.val[NEON_A]); |
- ret.val[NEON_B] = hardlight_color(src.val[NEON_B], dst.val[NEON_B], |
- src.val[NEON_A], dst.val[NEON_A]); |
- |
- return ret; |
-} |
- |
-static inline uint8x8_t difference_color(uint8x8_t sc, uint8x8_t dc, |
- uint8x8_t sa, uint8x8_t da) { |
- uint16x8_t sd, ds, tmp; |
- int16x8_t val; |
- |
- sd = vmull_u8(sc, da); |
- ds = vmull_u8(dc, sa); |
- |
- tmp = vminq_u16(sd, ds); |
- tmp = SkDiv255Round_neon8_16_16(tmp); |
- tmp = vshlq_n_u16(tmp, 1); |
- |
- val = vreinterpretq_s16_u16(vaddl_u8(sc, dc)); |
- |
- val -= vreinterpretq_s16_u16(tmp); |
- |
- val = vmaxq_s16(val, vdupq_n_s16(0)); |
- val = vminq_s16(val, vdupq_n_s16(255)); |
- |
- return vmovn_u16(vreinterpretq_u16_s16(val)); |
-} |
- |
-uint8x8x4_t difference_modeproc_neon8(uint8x8x4_t src, uint8x8x4_t dst) { |
- uint8x8x4_t ret; |
- |
- ret.val[NEON_A] = srcover_color(src.val[NEON_A], dst.val[NEON_A]); |
- ret.val[NEON_R] = difference_color(src.val[NEON_R], dst.val[NEON_R], |
- src.val[NEON_A], dst.val[NEON_A]); |
- ret.val[NEON_G] = difference_color(src.val[NEON_G], dst.val[NEON_G], |
- src.val[NEON_A], dst.val[NEON_A]); |
- ret.val[NEON_B] = difference_color(src.val[NEON_B], dst.val[NEON_B], |
- src.val[NEON_A], dst.val[NEON_A]); |
- |
- return ret; |
-} |
- |
-static inline uint8x8_t exclusion_color(uint8x8_t sc, uint8x8_t dc, |
- uint8x8_t sa, uint8x8_t da) { |
- /* The equation can be simplified to 255(sc + dc) - 2 * sc * dc */ |
- |
- uint16x8_t sc_plus_dc, scdc, const255; |
- int32x4_t term1_1, term1_2, term2_1, term2_2; |
- |
- /* Calc (sc + dc) and (sc * dc) */ |
- sc_plus_dc = vaddl_u8(sc, dc); |
- scdc = vmull_u8(sc, dc); |
- |
- /* Prepare constants */ |
- const255 = vdupq_n_u16(255); |
- |
- /* Calc the first term */ |
- term1_1 = vreinterpretq_s32_u32( |
- vmull_u16(vget_low_u16(const255), vget_low_u16(sc_plus_dc))); |
- term1_2 = vreinterpretq_s32_u32( |
-#ifdef SK_CPU_ARM64 |
- vmull_high_u16(const255, sc_plus_dc)); |
-#else |
- vmull_u16(vget_high_u16(const255), vget_high_u16(sc_plus_dc))); |
-#endif |
- |
- /* Calc the second term */ |
- term2_1 = vreinterpretq_s32_u32(vshll_n_u16(vget_low_u16(scdc), 1)); |
-#ifdef SK_CPU_ARM64 |
- term2_2 = vreinterpretq_s32_u32(vshll_high_n_u16(scdc, 1)); |
-#else |
- term2_2 = vreinterpretq_s32_u32(vshll_n_u16(vget_high_u16(scdc), 1)); |
-#endif |
- |
- return clamp_div255round_simd8_32(term1_1 - term2_1, term1_2 - term2_2); |
-} |
- |
-uint8x8x4_t exclusion_modeproc_neon8(uint8x8x4_t src, uint8x8x4_t dst) { |
- uint8x8x4_t ret; |
- |
- ret.val[NEON_A] = srcover_color(src.val[NEON_A], dst.val[NEON_A]); |
- ret.val[NEON_R] = exclusion_color(src.val[NEON_R], dst.val[NEON_R], |
- src.val[NEON_A], dst.val[NEON_A]); |
- ret.val[NEON_G] = exclusion_color(src.val[NEON_G], dst.val[NEON_G], |
- src.val[NEON_A], dst.val[NEON_A]); |
- ret.val[NEON_B] = exclusion_color(src.val[NEON_B], dst.val[NEON_B], |
- src.val[NEON_A], dst.val[NEON_A]); |
- |
- return ret; |
-} |
- |
-static inline uint8x8_t blendfunc_multiply_color(uint8x8_t sc, uint8x8_t dc, |
- uint8x8_t sa, uint8x8_t da) { |
- uint32x4_t val1, val2; |
- uint16x8_t scdc, t1, t2; |
- |
- t1 = vmull_u8(sc, vdup_n_u8(255) - da); |
- t2 = vmull_u8(dc, vdup_n_u8(255) - sa); |
- scdc = vmull_u8(sc, dc); |
- |
- val1 = vaddl_u16(vget_low_u16(t1), vget_low_u16(t2)); |
-#ifdef SK_CPU_ARM64 |
- val2 = vaddl_high_u16(t1, t2); |
-#else |
- val2 = vaddl_u16(vget_high_u16(t1), vget_high_u16(t2)); |
-#endif |
- |
- val1 = vaddw_u16(val1, vget_low_u16(scdc)); |
-#ifdef SK_CPU_ARM64 |
- val2 = vaddw_high_u16(val2, scdc); |
-#else |
- val2 = vaddw_u16(val2, vget_high_u16(scdc)); |
-#endif |
- |
- return clamp_div255round_simd8_32( |
- vreinterpretq_s32_u32(val1), vreinterpretq_s32_u32(val2)); |
-} |
- |
-uint8x8x4_t multiply_modeproc_neon8(uint8x8x4_t src, uint8x8x4_t dst) { |
- uint8x8x4_t ret; |
- |
- ret.val[NEON_A] = srcover_color(src.val[NEON_A], dst.val[NEON_A]); |
- ret.val[NEON_R] = blendfunc_multiply_color(src.val[NEON_R], dst.val[NEON_R], |
- src.val[NEON_A], dst.val[NEON_A]); |
- ret.val[NEON_G] = blendfunc_multiply_color(src.val[NEON_G], dst.val[NEON_G], |
- src.val[NEON_A], dst.val[NEON_A]); |
- ret.val[NEON_B] = blendfunc_multiply_color(src.val[NEON_B], dst.val[NEON_B], |
- src.val[NEON_A], dst.val[NEON_A]); |
- |
- return ret; |
-} |
- |
-//////////////////////////////////////////////////////////////////////////////// |
- |
-typedef uint8x8x4_t (*SkXfermodeProcSIMD)(uint8x8x4_t src, uint8x8x4_t dst); |
- |
-extern SkXfermodeProcSIMD gNEONXfermodeProcs[]; |
- |
-void SkNEONProcCoeffXfermode::xfer32(SkPMColor* SK_RESTRICT dst, |
- const SkPMColor* SK_RESTRICT src, int count, |
- const SkAlpha* SK_RESTRICT aa) const { |
- SkASSERT(dst && src && count >= 0); |
- |
- SkXfermodeProc proc = this->getProc(); |
- SkXfermodeProcSIMD procSIMD = reinterpret_cast<SkXfermodeProcSIMD>(fProcSIMD); |
- SkASSERT(procSIMD != NULL); |
- |
- if (NULL == aa) { |
- // Unrolled NEON code |
- // We'd like to just do this (modulo a few casts): |
- // vst4_u8(dst, procSIMD(vld4_u8(src), vld4_u8(dst))); |
- // src += 8; |
- // dst += 8; |
- // but that tends to generate miserable code. Here are a bunch of faster |
- // workarounds for different architectures and compilers. |
- while (count >= 8) { |
- |
-#ifdef SK_CPU_ARM32 |
- uint8x8x4_t vsrc, vdst, vres; |
-#if (__GNUC__ > 4) || ((__GNUC__ == 4) && (__GNUC_MINOR__ > 6)) |
- asm volatile ( |
- "vld4.u8 %h[vsrc], [%[src]]! \t\n" |
- "vld4.u8 %h[vdst], [%[dst]] \t\n" |
- : [vsrc] "=w" (vsrc), [vdst] "=w" (vdst), [src] "+&r" (src) |
- : [dst] "r" (dst) |
- : |
- ); |
-#else |
- register uint8x8_t d0 asm("d0"); |
- register uint8x8_t d1 asm("d1"); |
- register uint8x8_t d2 asm("d2"); |
- register uint8x8_t d3 asm("d3"); |
- register uint8x8_t d4 asm("d4"); |
- register uint8x8_t d5 asm("d5"); |
- register uint8x8_t d6 asm("d6"); |
- register uint8x8_t d7 asm("d7"); |
- |
- asm volatile ( |
- "vld4.u8 {d0-d3},[%[src]]!;" |
- "vld4.u8 {d4-d7},[%[dst]];" |
- : "=w" (d0), "=w" (d1), "=w" (d2), "=w" (d3), |
- "=w" (d4), "=w" (d5), "=w" (d6), "=w" (d7), |
- [src] "+&r" (src) |
- : [dst] "r" (dst) |
- : |
- ); |
- vsrc.val[0] = d0; vdst.val[0] = d4; |
- vsrc.val[1] = d1; vdst.val[1] = d5; |
- vsrc.val[2] = d2; vdst.val[2] = d6; |
- vsrc.val[3] = d3; vdst.val[3] = d7; |
-#endif |
- |
- vres = procSIMD(vsrc, vdst); |
- |
- vst4_u8((uint8_t*)dst, vres); |
- |
- dst += 8; |
- |
-#else // #ifdef SK_CPU_ARM32 |
- |
- asm volatile ( |
- "ld4 {v0.8b - v3.8b}, [%[src]], #32 \t\n" |
- "ld4 {v4.8b - v7.8b}, [%[dst]] \t\n" |
- "blr %[proc] \t\n" |
- "st4 {v0.8b - v3.8b}, [%[dst]], #32 \t\n" |
- : [src] "+&r" (src), [dst] "+&r" (dst) |
- : [proc] "r" (procSIMD) |
- : "cc", "memory", |
- /* We don't know what proc is going to clobber so we must |
- * add everything that is not callee-saved. |
- */ |
- "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7", "x8", "x9", |
- "x10", "x11", "x12", "x13", "x14", "x15", "x16", "x17", "x18", |
- "x30", /* x30 implicitly clobbered by blr */ |
- "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", "v16", "v17", |
- "v18", "v19", "v20", "v21", "v22", "v23", "v24", "v25", "v26", |
- "v27", "v28", "v29", "v30", "v31" |
- ); |
- |
-#endif // #ifdef SK_CPU_ARM32 |
- |
- count -= 8; |
- } |
- // Leftovers |
- for (int i = 0; i < count; i++) { |
- dst[i] = proc(src[i], dst[i]); |
- } |
- } else { |
- for (int i = count - 1; i >= 0; --i) { |
- unsigned a = aa[i]; |
- if (0 != a) { |
- SkPMColor dstC = dst[i]; |
- SkPMColor C = proc(src[i], dstC); |
- if (a != 0xFF) { |
- C = SkFourByteInterp_neon(C, dstC, a); |
- } |
- dst[i] = C; |
- } |
- } |
- } |
-} |
- |
-void SkNEONProcCoeffXfermode::xfer16(uint16_t* SK_RESTRICT dst, |
- const SkPMColor* SK_RESTRICT src, int count, |
- const SkAlpha* SK_RESTRICT aa) const { |
- SkASSERT(dst && src && count >= 0); |
- |
- SkXfermodeProc proc = this->getProc(); |
- SkXfermodeProcSIMD procSIMD = reinterpret_cast<SkXfermodeProcSIMD>(fProcSIMD); |
- SkASSERT(procSIMD != NULL); |
- |
- if (NULL == aa) { |
- while(count >= 8) { |
- uint16x8_t vdst, vres16; |
- uint8x8x4_t vdst32, vsrc, vres; |
- |
- vdst = vld1q_u16(dst); |
- |
-#ifdef SK_CPU_ARM64 |
- vsrc = vld4_u8((uint8_t*)src); |
-#else |
-#if (__GNUC__ > 4) || ((__GNUC__ == 4) && (__GNUC_MINOR__ > 6)) |
- asm volatile ( |
- "vld4.u8 %h[vsrc], [%[src]]! \t\n" |
- : [vsrc] "=w" (vsrc), [src] "+&r" (src) |
- : : |
- ); |
-#else |
- register uint8x8_t d0 asm("d0"); |
- register uint8x8_t d1 asm("d1"); |
- register uint8x8_t d2 asm("d2"); |
- register uint8x8_t d3 asm("d3"); |
- |
- asm volatile ( |
- "vld4.u8 {d0-d3},[%[src]]!;" |
- : "=w" (d0), "=w" (d1), "=w" (d2), "=w" (d3), |
- [src] "+&r" (src) |
- : : |
- ); |
- vsrc.val[0] = d0; |
- vsrc.val[1] = d1; |
- vsrc.val[2] = d2; |
- vsrc.val[3] = d3; |
-#endif |
-#endif // #ifdef SK_CPU_ARM64 |
- |
- vdst32 = SkPixel16ToPixel32_neon8(vdst); |
- vres = procSIMD(vsrc, vdst32); |
- vres16 = SkPixel32ToPixel16_neon8(vres); |
- |
- vst1q_u16(dst, vres16); |
- |
- count -= 8; |
- dst += 8; |
-#ifdef SK_CPU_ARM64 |
- src += 8; |
-#endif |
- } |
- for (int i = 0; i < count; i++) { |
- SkPMColor dstC = SkPixel16ToPixel32(dst[i]); |
- dst[i] = SkPixel32ToPixel16_ToU16(proc(src[i], dstC)); |
- } |
- } else { |
- for (int i = count - 1; i >= 0; --i) { |
- unsigned a = aa[i]; |
- if (0 != a) { |
- SkPMColor dstC = SkPixel16ToPixel32(dst[i]); |
- SkPMColor C = proc(src[i], dstC); |
- if (0xFF != a) { |
- C = SkFourByteInterp_neon(C, dstC, a); |
- } |
- dst[i] = SkPixel32ToPixel16_ToU16(C); |
- } |
- } |
- } |
-} |
- |
-#ifndef SK_IGNORE_TO_STRING |
-void SkNEONProcCoeffXfermode::toString(SkString* str) const { |
- this->INHERITED::toString(str); |
-} |
-#endif |
- |
-//////////////////////////////////////////////////////////////////////////////// |
- |
-SkXfermodeProcSIMD gNEONXfermodeProcs[] = { |
- NULL, // kClear_Mode |
- NULL, // kSrc_Mode |
- NULL, // kDst_Mode |
- NULL, // kSrcOver_Mode |
- dstover_modeproc_neon8, |
- srcin_modeproc_neon8, |
- dstin_modeproc_neon8, |
- srcout_modeproc_neon8, |
- dstout_modeproc_neon8, |
- srcatop_modeproc_neon8, |
- dstatop_modeproc_neon8, |
- xor_modeproc_neon8, |
- plus_modeproc_neon8, |
- modulate_modeproc_neon8, |
- screen_modeproc_neon8, |
- |
- overlay_modeproc_neon8, |
- darken_modeproc_neon8, |
- lighten_modeproc_neon8, |
- NULL, // kColorDodge_Mode |
- NULL, // kColorBurn_Mode |
- hardlight_modeproc_neon8, |
- NULL, // kSoftLight_Mode |
- difference_modeproc_neon8, |
- exclusion_modeproc_neon8, |
- multiply_modeproc_neon8, |
- |
- NULL, // kHue_Mode |
- NULL, // kSaturation_Mode |
- NULL, // kColor_Mode |
- NULL, // kLuminosity_Mode |
-}; |
- |
-SK_COMPILE_ASSERT( |
- SK_ARRAY_COUNT(gNEONXfermodeProcs) == SkXfermode::kLastMode + 1, |
- mode_count_arm |
-); |
- |
-SkXfermodeProc gNEONXfermodeProcs1[] = { |
- NULL, // kClear_Mode |
- NULL, // kSrc_Mode |
- NULL, // kDst_Mode |
- NULL, // kSrcOver_Mode |
- NULL, // kDstOver_Mode |
- NULL, // kSrcIn_Mode |
- NULL, // kDstIn_Mode |
- NULL, // kSrcOut_Mode |
- NULL, // kDstOut_Mode |
- srcatop_modeproc_neon, |
- dstatop_modeproc_neon, |
- xor_modeproc_neon, |
- plus_modeproc_neon, |
- modulate_modeproc_neon, |
- NULL, // kScreen_Mode |
- |
- NULL, // kOverlay_Mode |
- NULL, // kDarken_Mode |
- NULL, // kLighten_Mode |
- NULL, // kColorDodge_Mode |
- NULL, // kColorBurn_Mode |
- NULL, // kHardLight_Mode |
- NULL, // kSoftLight_Mode |
- NULL, // kDifference_Mode |
- NULL, // kExclusion_Mode |
- NULL, // kMultiply_Mode |
- |
- NULL, // kHue_Mode |
- NULL, // kSaturation_Mode |
- NULL, // kColor_Mode |
- NULL, // kLuminosity_Mode |
-}; |
- |
-SK_COMPILE_ASSERT( |
- SK_ARRAY_COUNT(gNEONXfermodeProcs1) == SkXfermode::kLastMode + 1, |
- mode1_count_arm |
-); |
- |
-SkProcCoeffXfermode* SkPlatformXfermodeFactory_impl_neon(const ProcCoeff& rec, |
- SkXfermode::Mode mode) { |
- if (auto xfermode = SkCreate4pxXfermode(rec, mode)) { |
- return xfermode; |
- } |
- // TODO: Sk4pxXfermode now covers every mode found in this file. Delete them all! |
- if (auto proc = gNEONXfermodeProcs[mode]) { |
- return SkNEW_ARGS(SkNEONProcCoeffXfermode, (rec, mode, (void*)proc)); |
- } |
- return NULL; |
-} |
- |
-SkXfermodeProc SkPlatformXfermodeProcFactory_impl_neon(SkXfermode::Mode mode) { |
- return gNEONXfermodeProcs1[mode]; |
+SkProcCoeffXfermode* SkPlatformXfermodeFactory_impl_neon(const ProcCoeff& r, SkXfermode::Mode m); |
+SkProcCoeffXfermode* SkPlatformXfermodeFactory_impl_neon(const ProcCoeff& r, SkXfermode::Mode m) { |
+ return SkCreate4pxXfermode(r, m); |
} |