Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(201)

Side by Side Diff: src/opts/SkXfermode_opts_arm_neon.cpp

Issue 1230023011: Clean up dead xfermode opts code. (Closed) Base URL: https://skia.googlesource.com/skia.git@master
Patch Set: remove guard Created 5 years, 5 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
« no previous file with comments | « src/opts/SkXfermode_opts_arm_neon.h ('k') | src/opts/SkXfermode_opts_none.cpp » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
1 /* 1 /*
2 * Copyright 2015 Google Inc. 2 * Copyright 2015 Google Inc.
3 * 3 *
4 * Use of this source code is governed by a BSD-style license that can be 4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file. 5 * found in the LICENSE file.
6 */ 6 */
7 7
8 #include "SkXfermode.h" 8 // Including Sk4pxXfermode.h from this file should find SK_ARM_HAS_NEON is defin ed.
9 #include "SkXfermode_proccoeff.h"
10 #include "SkColorPriv.h"
11
12 #include <arm_neon.h>
13 #include "SkColor_opts_neon.h"
14 #include "SkXfermode_opts_arm_neon.h"
15 #include "Sk4pxXfermode.h" 9 #include "Sk4pxXfermode.h"
16 10
17 #define SkAlphaMulAlpha(a, b) SkMulDiv255Round(a, b) 11 SkProcCoeffXfermode* SkPlatformXfermodeFactory_impl_neon(const ProcCoeff& r, SkX fermode::Mode m);
18 12 SkProcCoeffXfermode* SkPlatformXfermodeFactory_impl_neon(const ProcCoeff& r, SkX fermode::Mode m) {
19 13 return SkCreate4pxXfermode(r, m);
20 ////////////////////////////////////////////////////////////////////////////////
21 // NEONized skia functions
22 ////////////////////////////////////////////////////////////////////////////////
23
24 static inline uint8x8_t SkAlphaMulAlpha_neon8(uint8x8_t color, uint8x8_t alpha) {
25 uint16x8_t tmp;
26 uint8x8_t ret;
27
28 tmp = vmull_u8(color, alpha);
29 tmp = vaddq_u16(tmp, vdupq_n_u16(128));
30 tmp = vaddq_u16(tmp, vshrq_n_u16(tmp, 8));
31
32 ret = vshrn_n_u16(tmp, 8);
33
34 return ret;
35 } 14 }
36
37 static inline uint16x8_t SkAlphaMulAlpha_neon8_16(uint8x8_t color, uint8x8_t alp ha) {
38 uint16x8_t ret;
39
40 ret = vmull_u8(color, alpha);
41 ret = vaddq_u16(ret, vdupq_n_u16(128));
42 ret = vaddq_u16(ret, vshrq_n_u16(ret, 8));
43
44 ret = vshrq_n_u16(ret, 8);
45
46 return ret;
47 }
48
49 static inline uint8x8_t SkDiv255Round_neon8_32_8(int32x4_t p1, int32x4_t p2) {
50 uint16x8_t tmp;
51
52 #ifdef SK_CPU_ARM64
53 tmp = vmovn_high_u32(vmovn_u32(vreinterpretq_u32_s32(p1)),
54 vreinterpretq_u32_s32(p2));
55 #else
56 tmp = vcombine_u16(vmovn_u32(vreinterpretq_u32_s32(p1)),
57 vmovn_u32(vreinterpretq_u32_s32(p2)));
58 #endif
59
60 tmp += vdupq_n_u16(128);
61 tmp += vshrq_n_u16(tmp, 8);
62
63 return vshrn_n_u16(tmp, 8);
64 }
65
66 static inline uint16x8_t SkDiv255Round_neon8_16_16(uint16x8_t prod) {
67 prod += vdupq_n_u16(128);
68 prod += vshrq_n_u16(prod, 8);
69
70 return vshrq_n_u16(prod, 8);
71 }
72
73 static inline uint8x8_t clamp_div255round_simd8_32(int32x4_t val1, int32x4_t val 2) {
74 uint8x8_t ret;
75 uint32x4_t cmp1, cmp2;
76 uint16x8_t cmp16;
77 uint8x8_t cmp8, cmp8_1;
78
79 // Test if <= 0
80 cmp1 = vcleq_s32(val1, vdupq_n_s32(0));
81 cmp2 = vcleq_s32(val2, vdupq_n_s32(0));
82 #ifdef SK_CPU_ARM64
83 cmp16 = vmovn_high_u32(vmovn_u32(cmp1), cmp2);
84 #else
85 cmp16 = vcombine_u16(vmovn_u32(cmp1), vmovn_u32(cmp2));
86 #endif
87 cmp8_1 = vmovn_u16(cmp16);
88
89 // Init to zero
90 ret = vdup_n_u8(0);
91
92 // Test if >= 255*255
93 cmp1 = vcgeq_s32(val1, vdupq_n_s32(255*255));
94 cmp2 = vcgeq_s32(val2, vdupq_n_s32(255*255));
95 #ifdef SK_CPU_ARM64
96 cmp16 = vmovn_high_u32(vmovn_u32(cmp1), cmp2);
97 #else
98 cmp16 = vcombine_u16(vmovn_u32(cmp1), vmovn_u32(cmp2));
99 #endif
100 cmp8 = vmovn_u16(cmp16);
101
102 // Insert 255 where true
103 ret = vbsl_u8(cmp8, vdup_n_u8(255), ret);
104
105 // Calc SkDiv255Round
106 uint8x8_t div = SkDiv255Round_neon8_32_8(val1, val2);
107
108 // Insert where false and previous test false
109 cmp8 = cmp8 | cmp8_1;
110 ret = vbsl_u8(cmp8, ret, div);
111
112 // Return the final combination
113 return ret;
114 }
115
116 ////////////////////////////////////////////////////////////////////////////////
117 // 1 pixel modeprocs
118 ////////////////////////////////////////////////////////////////////////////////
119
120 // kSrcATop_Mode, //!< [Da, Sc * Da + (1 - Sa) * Dc]
121 SkPMColor srcatop_modeproc_neon(SkPMColor src, SkPMColor dst) {
122 unsigned sa = SkGetPackedA32(src);
123 unsigned da = SkGetPackedA32(dst);
124 unsigned isa = 255 - sa;
125
126 uint8x8_t vda, visa, vsrc, vdst;
127
128 vda = vdup_n_u8(da);
129 visa = vdup_n_u8(isa);
130
131 uint16x8_t vsrc_wide, vdst_wide;
132 vsrc_wide = vmull_u8(vda, vreinterpret_u8_u32(vdup_n_u32(src)));
133 vdst_wide = vmull_u8(visa, vreinterpret_u8_u32(vdup_n_u32(dst)));
134
135 vsrc_wide += vdupq_n_u16(128);
136 vsrc_wide += vshrq_n_u16(vsrc_wide, 8);
137
138 vdst_wide += vdupq_n_u16(128);
139 vdst_wide += vshrq_n_u16(vdst_wide, 8);
140
141 vsrc = vshrn_n_u16(vsrc_wide, 8);
142 vdst = vshrn_n_u16(vdst_wide, 8);
143
144 vsrc += vdst;
145 vsrc = vset_lane_u8(da, vsrc, 3);
146
147 return vget_lane_u32(vreinterpret_u32_u8(vsrc), 0);
148 }
149
150 // kDstATop_Mode, //!< [Sa, Sa * Dc + Sc * (1 - Da)]
151 SkPMColor dstatop_modeproc_neon(SkPMColor src, SkPMColor dst) {
152 unsigned sa = SkGetPackedA32(src);
153 unsigned da = SkGetPackedA32(dst);
154 unsigned ida = 255 - da;
155
156 uint8x8_t vsa, vida, vsrc, vdst;
157
158 vsa = vdup_n_u8(sa);
159 vida = vdup_n_u8(ida);
160
161 uint16x8_t vsrc_wide, vdst_wide;
162 vsrc_wide = vmull_u8(vida, vreinterpret_u8_u32(vdup_n_u32(src)));
163 vdst_wide = vmull_u8(vsa, vreinterpret_u8_u32(vdup_n_u32(dst)));
164
165 vsrc_wide += vdupq_n_u16(128);
166 vsrc_wide += vshrq_n_u16(vsrc_wide, 8);
167
168 vdst_wide += vdupq_n_u16(128);
169 vdst_wide += vshrq_n_u16(vdst_wide, 8);
170
171 vsrc = vshrn_n_u16(vsrc_wide, 8);
172 vdst = vshrn_n_u16(vdst_wide, 8);
173
174 vsrc += vdst;
175 vsrc = vset_lane_u8(sa, vsrc, 3);
176
177 return vget_lane_u32(vreinterpret_u32_u8(vsrc), 0);
178 }
179
180 // kXor_Mode [Sa + Da - 2 * Sa * Da, Sc * (1 - Da) + (1 - Sa) * Dc]
181 SkPMColor xor_modeproc_neon(SkPMColor src, SkPMColor dst) {
182 unsigned sa = SkGetPackedA32(src);
183 unsigned da = SkGetPackedA32(dst);
184 unsigned ret_alpha = sa + da - (SkAlphaMulAlpha(sa, da) << 1);
185 unsigned isa = 255 - sa;
186 unsigned ida = 255 - da;
187
188 uint8x8_t vsrc, vdst, visa, vida;
189 uint16x8_t vsrc_wide, vdst_wide;
190
191 visa = vdup_n_u8(isa);
192 vida = vdup_n_u8(ida);
193 vsrc = vreinterpret_u8_u32(vdup_n_u32(src));
194 vdst = vreinterpret_u8_u32(vdup_n_u32(dst));
195
196 vsrc_wide = vmull_u8(vsrc, vida);
197 vdst_wide = vmull_u8(vdst, visa);
198
199 vsrc_wide += vdupq_n_u16(128);
200 vsrc_wide += vshrq_n_u16(vsrc_wide, 8);
201
202 vdst_wide += vdupq_n_u16(128);
203 vdst_wide += vshrq_n_u16(vdst_wide, 8);
204
205 vsrc = vshrn_n_u16(vsrc_wide, 8);
206 vdst = vshrn_n_u16(vdst_wide, 8);
207
208 vsrc += vdst;
209
210 vsrc = vset_lane_u8(ret_alpha, vsrc, 3);
211
212 return vget_lane_u32(vreinterpret_u32_u8(vsrc), 0);
213 }
214
215 // kPlus_Mode
216 SkPMColor plus_modeproc_neon(SkPMColor src, SkPMColor dst) {
217 uint8x8_t vsrc, vdst;
218 vsrc = vreinterpret_u8_u32(vdup_n_u32(src));
219 vdst = vreinterpret_u8_u32(vdup_n_u32(dst));
220 vsrc = vqadd_u8(vsrc, vdst);
221
222 return vget_lane_u32(vreinterpret_u32_u8(vsrc), 0);
223 }
224
225 // kModulate_Mode
226 SkPMColor modulate_modeproc_neon(SkPMColor src, SkPMColor dst) {
227 uint8x8_t vsrc, vdst, vres;
228 uint16x8_t vres_wide;
229
230 vsrc = vreinterpret_u8_u32(vdup_n_u32(src));
231 vdst = vreinterpret_u8_u32(vdup_n_u32(dst));
232
233 vres_wide = vmull_u8(vsrc, vdst);
234
235 vres_wide += vdupq_n_u16(128);
236 vres_wide += vshrq_n_u16(vres_wide, 8);
237
238 vres = vshrn_n_u16(vres_wide, 8);
239
240 return vget_lane_u32(vreinterpret_u32_u8(vres), 0);
241 }
242
243 ////////////////////////////////////////////////////////////////////////////////
244 // 8 pixels modeprocs
245 ////////////////////////////////////////////////////////////////////////////////
246
247 uint8x8x4_t dstover_modeproc_neon8(uint8x8x4_t src, uint8x8x4_t dst) {
248 uint8x8x4_t ret;
249 uint16x8_t src_scale;
250
251 src_scale = vsubw_u8(vdupq_n_u16(256), dst.val[NEON_A]);
252
253 ret.val[NEON_A] = dst.val[NEON_A] + SkAlphaMul_neon8(src.val[NEON_A], src_sc ale);
254 ret.val[NEON_R] = dst.val[NEON_R] + SkAlphaMul_neon8(src.val[NEON_R], src_sc ale);
255 ret.val[NEON_G] = dst.val[NEON_G] + SkAlphaMul_neon8(src.val[NEON_G], src_sc ale);
256 ret.val[NEON_B] = dst.val[NEON_B] + SkAlphaMul_neon8(src.val[NEON_B], src_sc ale);
257
258 return ret;
259 }
260
261 uint8x8x4_t srcin_modeproc_neon8(uint8x8x4_t src, uint8x8x4_t dst) {
262 uint8x8x4_t ret;
263 uint16x8_t scale;
264
265 scale = SkAlpha255To256_neon8(dst.val[NEON_A]);
266
267 ret.val[NEON_A] = SkAlphaMul_neon8(src.val[NEON_A], scale);
268 ret.val[NEON_R] = SkAlphaMul_neon8(src.val[NEON_R], scale);
269 ret.val[NEON_G] = SkAlphaMul_neon8(src.val[NEON_G], scale);
270 ret.val[NEON_B] = SkAlphaMul_neon8(src.val[NEON_B], scale);
271
272 return ret;
273 }
274
275 uint8x8x4_t dstin_modeproc_neon8(uint8x8x4_t src, uint8x8x4_t dst) {
276 uint8x8x4_t ret;
277 uint16x8_t scale;
278
279 scale = SkAlpha255To256_neon8(src.val[NEON_A]);
280
281 ret = SkAlphaMulQ_neon8(dst, scale);
282
283 return ret;
284 }
285
286 uint8x8x4_t srcout_modeproc_neon8(uint8x8x4_t src, uint8x8x4_t dst) {
287 uint8x8x4_t ret;
288 uint16x8_t scale = vsubw_u8(vdupq_n_u16(256), dst.val[NEON_A]);
289
290 ret = SkAlphaMulQ_neon8(src, scale);
291
292 return ret;
293 }
294
295 uint8x8x4_t dstout_modeproc_neon8(uint8x8x4_t src, uint8x8x4_t dst) {
296 uint8x8x4_t ret;
297 uint16x8_t scale = vsubw_u8(vdupq_n_u16(256), src.val[NEON_A]);
298
299 ret = SkAlphaMulQ_neon8(dst, scale);
300
301 return ret;
302 }
303
304 uint8x8x4_t srcatop_modeproc_neon8(uint8x8x4_t src, uint8x8x4_t dst) {
305 uint8x8x4_t ret;
306 uint8x8_t isa;
307
308 isa = vsub_u8(vdup_n_u8(255), src.val[NEON_A]);
309
310 ret.val[NEON_A] = dst.val[NEON_A];
311 ret.val[NEON_R] = SkAlphaMulAlpha_neon8(src.val[NEON_R], dst.val[NEON_A])
312 + SkAlphaMulAlpha_neon8(dst.val[NEON_R], isa);
313 ret.val[NEON_G] = SkAlphaMulAlpha_neon8(src.val[NEON_G], dst.val[NEON_A])
314 + SkAlphaMulAlpha_neon8(dst.val[NEON_G], isa);
315 ret.val[NEON_B] = SkAlphaMulAlpha_neon8(src.val[NEON_B], dst.val[NEON_A])
316 + SkAlphaMulAlpha_neon8(dst.val[NEON_B], isa);
317
318 return ret;
319 }
320
321 uint8x8x4_t dstatop_modeproc_neon8(uint8x8x4_t src, uint8x8x4_t dst) {
322 uint8x8x4_t ret;
323 uint8x8_t ida;
324
325 ida = vsub_u8(vdup_n_u8(255), dst.val[NEON_A]);
326
327 ret.val[NEON_A] = src.val[NEON_A];
328 ret.val[NEON_R] = SkAlphaMulAlpha_neon8(src.val[NEON_R], ida)
329 + SkAlphaMulAlpha_neon8(dst.val[NEON_R], src.val[NEON_A]);
330 ret.val[NEON_G] = SkAlphaMulAlpha_neon8(src.val[NEON_G], ida)
331 + SkAlphaMulAlpha_neon8(dst.val[NEON_G], src.val[NEON_A]);
332 ret.val[NEON_B] = SkAlphaMulAlpha_neon8(src.val[NEON_B], ida)
333 + SkAlphaMulAlpha_neon8(dst.val[NEON_B], src.val[NEON_A]);
334
335 return ret;
336 }
337
338 uint8x8x4_t xor_modeproc_neon8(uint8x8x4_t src, uint8x8x4_t dst) {
339 uint8x8x4_t ret;
340 uint8x8_t isa, ida;
341 uint16x8_t tmp_wide, tmp_wide2;
342
343 isa = vsub_u8(vdup_n_u8(255), src.val[NEON_A]);
344 ida = vsub_u8(vdup_n_u8(255), dst.val[NEON_A]);
345
346 // First calc alpha
347 tmp_wide = vmovl_u8(src.val[NEON_A]);
348 tmp_wide = vaddw_u8(tmp_wide, dst.val[NEON_A]);
349 tmp_wide2 = vshll_n_u8(SkAlphaMulAlpha_neon8(src.val[NEON_A], dst.val[NEON_A ]), 1);
350 tmp_wide = vsubq_u16(tmp_wide, tmp_wide2);
351 ret.val[NEON_A] = vmovn_u16(tmp_wide);
352
353 // Then colors
354 ret.val[NEON_R] = SkAlphaMulAlpha_neon8(src.val[NEON_R], ida)
355 + SkAlphaMulAlpha_neon8(dst.val[NEON_R], isa);
356 ret.val[NEON_G] = SkAlphaMulAlpha_neon8(src.val[NEON_G], ida)
357 + SkAlphaMulAlpha_neon8(dst.val[NEON_G], isa);
358 ret.val[NEON_B] = SkAlphaMulAlpha_neon8(src.val[NEON_B], ida)
359 + SkAlphaMulAlpha_neon8(dst.val[NEON_B], isa);
360
361 return ret;
362 }
363
364 uint8x8x4_t plus_modeproc_neon8(uint8x8x4_t src, uint8x8x4_t dst) {
365 uint8x8x4_t ret;
366
367 ret.val[NEON_A] = vqadd_u8(src.val[NEON_A], dst.val[NEON_A]);
368 ret.val[NEON_R] = vqadd_u8(src.val[NEON_R], dst.val[NEON_R]);
369 ret.val[NEON_G] = vqadd_u8(src.val[NEON_G], dst.val[NEON_G]);
370 ret.val[NEON_B] = vqadd_u8(src.val[NEON_B], dst.val[NEON_B]);
371
372 return ret;
373 }
374
375 uint8x8x4_t modulate_modeproc_neon8(uint8x8x4_t src, uint8x8x4_t dst) {
376 uint8x8x4_t ret;
377
378 ret.val[NEON_A] = SkAlphaMulAlpha_neon8(src.val[NEON_A], dst.val[NEON_A]);
379 ret.val[NEON_R] = SkAlphaMulAlpha_neon8(src.val[NEON_R], dst.val[NEON_R]);
380 ret.val[NEON_G] = SkAlphaMulAlpha_neon8(src.val[NEON_G], dst.val[NEON_G]);
381 ret.val[NEON_B] = SkAlphaMulAlpha_neon8(src.val[NEON_B], dst.val[NEON_B]);
382
383 return ret;
384 }
385
386 static inline uint8x8_t srcover_color(uint8x8_t a, uint8x8_t b) {
387 uint16x8_t tmp;
388
389 tmp = vaddl_u8(a, b);
390 tmp -= SkAlphaMulAlpha_neon8_16(a, b);
391
392 return vmovn_u16(tmp);
393 }
394
395 uint8x8x4_t screen_modeproc_neon8(uint8x8x4_t src, uint8x8x4_t dst) {
396 uint8x8x4_t ret;
397
398 ret.val[NEON_A] = srcover_color(src.val[NEON_A], dst.val[NEON_A]);
399 ret.val[NEON_R] = srcover_color(src.val[NEON_R], dst.val[NEON_R]);
400 ret.val[NEON_G] = srcover_color(src.val[NEON_G], dst.val[NEON_G]);
401 ret.val[NEON_B] = srcover_color(src.val[NEON_B], dst.val[NEON_B]);
402
403 return ret;
404 }
405
406 template <bool overlay>
407 static inline uint8x8_t overlay_hardlight_color(uint8x8_t sc, uint8x8_t dc,
408 uint8x8_t sa, uint8x8_t da) {
409 /*
410 * In the end we're gonna use (rc + tmp) with a different rc
411 * coming from an alternative.
412 * The whole value (rc + tmp) can always be expressed as
413 * VAL = COM - SUB in the if case
414 * VAL = COM + SUB - sa*da in the else case
415 *
416 * with COM = 255 * (sc + dc)
417 * and SUB = sc*da + dc*sa - 2*dc*sc
418 */
419
420 // Prepare common subexpressions
421 uint16x8_t const255 = vdupq_n_u16(255);
422 uint16x8_t sc_plus_dc = vaddl_u8(sc, dc);
423 uint16x8_t scda = vmull_u8(sc, da);
424 uint16x8_t dcsa = vmull_u8(dc, sa);
425 uint16x8_t sada = vmull_u8(sa, da);
426
427 // Prepare non common subexpressions
428 uint16x8_t dc2, sc2;
429 uint32x4_t scdc2_1, scdc2_2;
430 if (overlay) {
431 dc2 = vshll_n_u8(dc, 1);
432 scdc2_1 = vmull_u16(vget_low_u16(dc2), vget_low_u16(vmovl_u8(sc)));
433 #ifdef SK_CPU_ARM64
434 scdc2_2 = vmull_high_u16(dc2, vmovl_u8(sc));
435 #else
436 scdc2_2 = vmull_u16(vget_high_u16(dc2), vget_high_u16(vmovl_u8(sc)));
437 #endif
438 } else {
439 sc2 = vshll_n_u8(sc, 1);
440 scdc2_1 = vmull_u16(vget_low_u16(sc2), vget_low_u16(vmovl_u8(dc)));
441 #ifdef SK_CPU_ARM64
442 scdc2_2 = vmull_high_u16(sc2, vmovl_u8(dc));
443 #else
444 scdc2_2 = vmull_u16(vget_high_u16(sc2), vget_high_u16(vmovl_u8(dc)));
445 #endif
446 }
447
448 // Calc COM
449 int32x4_t com1, com2;
450 com1 = vreinterpretq_s32_u32(
451 vmull_u16(vget_low_u16(const255), vget_low_u16(sc_plus_dc)));
452 com2 = vreinterpretq_s32_u32(
453 #ifdef SK_CPU_ARM64
454 vmull_high_u16(const255, sc_plus_dc));
455 #else
456 vmull_u16(vget_high_u16(const255), vget_high_u16(sc_plus_dc)));
457 #endif
458
459 // Calc SUB
460 int32x4_t sub1, sub2;
461 sub1 = vreinterpretq_s32_u32(vaddl_u16(vget_low_u16(scda), vget_low_u16(dcsa )));
462 #ifdef SK_CPU_ARM64
463 sub2 = vreinterpretq_s32_u32(vaddl_high_u16(scda, dcsa));
464 #else
465 sub2 = vreinterpretq_s32_u32(vaddl_u16(vget_high_u16(scda), vget_high_u16(dc sa)));
466 #endif
467 sub1 = vsubq_s32(sub1, vreinterpretq_s32_u32(scdc2_1));
468 sub2 = vsubq_s32(sub2, vreinterpretq_s32_u32(scdc2_2));
469
470 // Compare 2*dc <= da
471 uint16x8_t cmp;
472
473 if (overlay) {
474 cmp = vcleq_u16(dc2, vmovl_u8(da));
475 } else {
476 cmp = vcleq_u16(sc2, vmovl_u8(sa));
477 }
478
479 // Prepare variables
480 int32x4_t val1_1, val1_2;
481 int32x4_t val2_1, val2_2;
482 uint32x4_t cmp1, cmp2;
483
484 // Doing a signed lengthening allows to save a few instructions
485 // thanks to sign extension.
486 cmp1 = vreinterpretq_u32_s32(vmovl_s16(vreinterpret_s16_u16(vget_low_u16(cmp ))));
487 #ifdef SK_CPU_ARM64
488 cmp2 = vreinterpretq_u32_s32(vmovl_high_s16(vreinterpretq_s16_u16(cmp)));
489 #else
490 cmp2 = vreinterpretq_u32_s32(vmovl_s16(vreinterpret_s16_u16(vget_high_u16(cm p))));
491 #endif
492
493 // Calc COM - SUB
494 val1_1 = com1 - sub1;
495 val1_2 = com2 - sub2;
496
497 // Calc COM + SUB - sa*da
498 val2_1 = com1 + sub1;
499 val2_2 = com2 + sub2;
500
501 val2_1 = vsubq_s32(val2_1, vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(sada ))));
502 #ifdef SK_CPU_ARM64
503 val2_2 = vsubq_s32(val2_2, vreinterpretq_s32_u32(vmovl_high_u16(sada)));
504 #else
505 val2_2 = vsubq_s32(val2_2, vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(sad a))));
506 #endif
507
508 // Insert where needed
509 val1_1 = vbslq_s32(cmp1, val1_1, val2_1);
510 val1_2 = vbslq_s32(cmp2, val1_2, val2_2);
511
512 // Call the clamp_div255round function
513 return clamp_div255round_simd8_32(val1_1, val1_2);
514 }
515
516 static inline uint8x8_t overlay_color(uint8x8_t sc, uint8x8_t dc,
517 uint8x8_t sa, uint8x8_t da) {
518 return overlay_hardlight_color<true>(sc, dc, sa, da);
519 }
520
521 uint8x8x4_t overlay_modeproc_neon8(uint8x8x4_t src, uint8x8x4_t dst) {
522 uint8x8x4_t ret;
523
524 ret.val[NEON_A] = srcover_color(src.val[NEON_A], dst.val[NEON_A]);
525 ret.val[NEON_R] = overlay_color(src.val[NEON_R], dst.val[NEON_R],
526 src.val[NEON_A], dst.val[NEON_A]);
527 ret.val[NEON_G] = overlay_color(src.val[NEON_G], dst.val[NEON_G],
528 src.val[NEON_A], dst.val[NEON_A]);
529 ret.val[NEON_B] = overlay_color(src.val[NEON_B], dst.val[NEON_B],
530 src.val[NEON_A], dst.val[NEON_A]);
531
532 return ret;
533 }
534
535 template <bool lighten>
536 static inline uint8x8_t lighten_darken_color(uint8x8_t sc, uint8x8_t dc,
537 uint8x8_t sa, uint8x8_t da) {
538 uint16x8_t sd, ds, cmp, tmp, tmp2;
539
540 // Prepare
541 sd = vmull_u8(sc, da);
542 ds = vmull_u8(dc, sa);
543
544 // Do test
545 if (lighten) {
546 cmp = vcgtq_u16(sd, ds);
547 } else {
548 cmp = vcltq_u16(sd, ds);
549 }
550
551 // Assign if
552 tmp = vaddl_u8(sc, dc);
553 tmp2 = tmp;
554 tmp -= SkDiv255Round_neon8_16_16(ds);
555
556 // Calc else
557 tmp2 -= SkDiv255Round_neon8_16_16(sd);
558
559 // Insert where needed
560 tmp = vbslq_u16(cmp, tmp, tmp2);
561
562 return vmovn_u16(tmp);
563 }
564
565 static inline uint8x8_t darken_color(uint8x8_t sc, uint8x8_t dc,
566 uint8x8_t sa, uint8x8_t da) {
567 return lighten_darken_color<false>(sc, dc, sa, da);
568 }
569
570 uint8x8x4_t darken_modeproc_neon8(uint8x8x4_t src, uint8x8x4_t dst) {
571 uint8x8x4_t ret;
572
573 ret.val[NEON_A] = srcover_color(src.val[NEON_A], dst.val[NEON_A]);
574 ret.val[NEON_R] = darken_color(src.val[NEON_R], dst.val[NEON_R],
575 src.val[NEON_A], dst.val[NEON_A]);
576 ret.val[NEON_G] = darken_color(src.val[NEON_G], dst.val[NEON_G],
577 src.val[NEON_A], dst.val[NEON_A]);
578 ret.val[NEON_B] = darken_color(src.val[NEON_B], dst.val[NEON_B],
579 src.val[NEON_A], dst.val[NEON_A]);
580
581 return ret;
582 }
583
584 static inline uint8x8_t lighten_color(uint8x8_t sc, uint8x8_t dc,
585 uint8x8_t sa, uint8x8_t da) {
586 return lighten_darken_color<true>(sc, dc, sa, da);
587 }
588
589 uint8x8x4_t lighten_modeproc_neon8(uint8x8x4_t src, uint8x8x4_t dst) {
590 uint8x8x4_t ret;
591
592 ret.val[NEON_A] = srcover_color(src.val[NEON_A], dst.val[NEON_A]);
593 ret.val[NEON_R] = lighten_color(src.val[NEON_R], dst.val[NEON_R],
594 src.val[NEON_A], dst.val[NEON_A]);
595 ret.val[NEON_G] = lighten_color(src.val[NEON_G], dst.val[NEON_G],
596 src.val[NEON_A], dst.val[NEON_A]);
597 ret.val[NEON_B] = lighten_color(src.val[NEON_B], dst.val[NEON_B],
598 src.val[NEON_A], dst.val[NEON_A]);
599
600 return ret;
601 }
602
603 static inline uint8x8_t hardlight_color(uint8x8_t sc, uint8x8_t dc,
604 uint8x8_t sa, uint8x8_t da) {
605 return overlay_hardlight_color<false>(sc, dc, sa, da);
606 }
607
608 uint8x8x4_t hardlight_modeproc_neon8(uint8x8x4_t src, uint8x8x4_t dst) {
609 uint8x8x4_t ret;
610
611 ret.val[NEON_A] = srcover_color(src.val[NEON_A], dst.val[NEON_A]);
612 ret.val[NEON_R] = hardlight_color(src.val[NEON_R], dst.val[NEON_R],
613 src.val[NEON_A], dst.val[NEON_A]);
614 ret.val[NEON_G] = hardlight_color(src.val[NEON_G], dst.val[NEON_G],
615 src.val[NEON_A], dst.val[NEON_A]);
616 ret.val[NEON_B] = hardlight_color(src.val[NEON_B], dst.val[NEON_B],
617 src.val[NEON_A], dst.val[NEON_A]);
618
619 return ret;
620 }
621
622 static inline uint8x8_t difference_color(uint8x8_t sc, uint8x8_t dc,
623 uint8x8_t sa, uint8x8_t da) {
624 uint16x8_t sd, ds, tmp;
625 int16x8_t val;
626
627 sd = vmull_u8(sc, da);
628 ds = vmull_u8(dc, sa);
629
630 tmp = vminq_u16(sd, ds);
631 tmp = SkDiv255Round_neon8_16_16(tmp);
632 tmp = vshlq_n_u16(tmp, 1);
633
634 val = vreinterpretq_s16_u16(vaddl_u8(sc, dc));
635
636 val -= vreinterpretq_s16_u16(tmp);
637
638 val = vmaxq_s16(val, vdupq_n_s16(0));
639 val = vminq_s16(val, vdupq_n_s16(255));
640
641 return vmovn_u16(vreinterpretq_u16_s16(val));
642 }
643
644 uint8x8x4_t difference_modeproc_neon8(uint8x8x4_t src, uint8x8x4_t dst) {
645 uint8x8x4_t ret;
646
647 ret.val[NEON_A] = srcover_color(src.val[NEON_A], dst.val[NEON_A]);
648 ret.val[NEON_R] = difference_color(src.val[NEON_R], dst.val[NEON_R],
649 src.val[NEON_A], dst.val[NEON_A]);
650 ret.val[NEON_G] = difference_color(src.val[NEON_G], dst.val[NEON_G],
651 src.val[NEON_A], dst.val[NEON_A]);
652 ret.val[NEON_B] = difference_color(src.val[NEON_B], dst.val[NEON_B],
653 src.val[NEON_A], dst.val[NEON_A]);
654
655 return ret;
656 }
657
658 static inline uint8x8_t exclusion_color(uint8x8_t sc, uint8x8_t dc,
659 uint8x8_t sa, uint8x8_t da) {
660 /* The equation can be simplified to 255(sc + dc) - 2 * sc * dc */
661
662 uint16x8_t sc_plus_dc, scdc, const255;
663 int32x4_t term1_1, term1_2, term2_1, term2_2;
664
665 /* Calc (sc + dc) and (sc * dc) */
666 sc_plus_dc = vaddl_u8(sc, dc);
667 scdc = vmull_u8(sc, dc);
668
669 /* Prepare constants */
670 const255 = vdupq_n_u16(255);
671
672 /* Calc the first term */
673 term1_1 = vreinterpretq_s32_u32(
674 vmull_u16(vget_low_u16(const255), vget_low_u16(sc_plus_dc)));
675 term1_2 = vreinterpretq_s32_u32(
676 #ifdef SK_CPU_ARM64
677 vmull_high_u16(const255, sc_plus_dc));
678 #else
679 vmull_u16(vget_high_u16(const255), vget_high_u16(sc_plus_dc)));
680 #endif
681
682 /* Calc the second term */
683 term2_1 = vreinterpretq_s32_u32(vshll_n_u16(vget_low_u16(scdc), 1));
684 #ifdef SK_CPU_ARM64
685 term2_2 = vreinterpretq_s32_u32(vshll_high_n_u16(scdc, 1));
686 #else
687 term2_2 = vreinterpretq_s32_u32(vshll_n_u16(vget_high_u16(scdc), 1));
688 #endif
689
690 return clamp_div255round_simd8_32(term1_1 - term2_1, term1_2 - term2_2);
691 }
692
693 uint8x8x4_t exclusion_modeproc_neon8(uint8x8x4_t src, uint8x8x4_t dst) {
694 uint8x8x4_t ret;
695
696 ret.val[NEON_A] = srcover_color(src.val[NEON_A], dst.val[NEON_A]);
697 ret.val[NEON_R] = exclusion_color(src.val[NEON_R], dst.val[NEON_R],
698 src.val[NEON_A], dst.val[NEON_A]);
699 ret.val[NEON_G] = exclusion_color(src.val[NEON_G], dst.val[NEON_G],
700 src.val[NEON_A], dst.val[NEON_A]);
701 ret.val[NEON_B] = exclusion_color(src.val[NEON_B], dst.val[NEON_B],
702 src.val[NEON_A], dst.val[NEON_A]);
703
704 return ret;
705 }
706
707 static inline uint8x8_t blendfunc_multiply_color(uint8x8_t sc, uint8x8_t dc,
708 uint8x8_t sa, uint8x8_t da) {
709 uint32x4_t val1, val2;
710 uint16x8_t scdc, t1, t2;
711
712 t1 = vmull_u8(sc, vdup_n_u8(255) - da);
713 t2 = vmull_u8(dc, vdup_n_u8(255) - sa);
714 scdc = vmull_u8(sc, dc);
715
716 val1 = vaddl_u16(vget_low_u16(t1), vget_low_u16(t2));
717 #ifdef SK_CPU_ARM64
718 val2 = vaddl_high_u16(t1, t2);
719 #else
720 val2 = vaddl_u16(vget_high_u16(t1), vget_high_u16(t2));
721 #endif
722
723 val1 = vaddw_u16(val1, vget_low_u16(scdc));
724 #ifdef SK_CPU_ARM64
725 val2 = vaddw_high_u16(val2, scdc);
726 #else
727 val2 = vaddw_u16(val2, vget_high_u16(scdc));
728 #endif
729
730 return clamp_div255round_simd8_32(
731 vreinterpretq_s32_u32(val1), vreinterpretq_s32_u32(val2));
732 }
733
734 uint8x8x4_t multiply_modeproc_neon8(uint8x8x4_t src, uint8x8x4_t dst) {
735 uint8x8x4_t ret;
736
737 ret.val[NEON_A] = srcover_color(src.val[NEON_A], dst.val[NEON_A]);
738 ret.val[NEON_R] = blendfunc_multiply_color(src.val[NEON_R], dst.val[NEON_R],
739 src.val[NEON_A], dst.val[NEON_A]) ;
740 ret.val[NEON_G] = blendfunc_multiply_color(src.val[NEON_G], dst.val[NEON_G],
741 src.val[NEON_A], dst.val[NEON_A]) ;
742 ret.val[NEON_B] = blendfunc_multiply_color(src.val[NEON_B], dst.val[NEON_B],
743 src.val[NEON_A], dst.val[NEON_A]) ;
744
745 return ret;
746 }
747
748 ////////////////////////////////////////////////////////////////////////////////
749
750 typedef uint8x8x4_t (*SkXfermodeProcSIMD)(uint8x8x4_t src, uint8x8x4_t dst);
751
752 extern SkXfermodeProcSIMD gNEONXfermodeProcs[];
753
754 void SkNEONProcCoeffXfermode::xfer32(SkPMColor* SK_RESTRICT dst,
755 const SkPMColor* SK_RESTRICT src, int count ,
756 const SkAlpha* SK_RESTRICT aa) const {
757 SkASSERT(dst && src && count >= 0);
758
759 SkXfermodeProc proc = this->getProc();
760 SkXfermodeProcSIMD procSIMD = reinterpret_cast<SkXfermodeProcSIMD>(fProcSIMD );
761 SkASSERT(procSIMD != NULL);
762
763 if (NULL == aa) {
764 // Unrolled NEON code
765 // We'd like to just do this (modulo a few casts):
766 // vst4_u8(dst, procSIMD(vld4_u8(src), vld4_u8(dst)));
767 // src += 8;
768 // dst += 8;
769 // but that tends to generate miserable code. Here are a bunch of faster
770 // workarounds for different architectures and compilers.
771 while (count >= 8) {
772
773 #ifdef SK_CPU_ARM32
774 uint8x8x4_t vsrc, vdst, vres;
775 #if (__GNUC__ > 4) || ((__GNUC__ == 4) && (__GNUC_MINOR__ > 6))
776 asm volatile (
777 "vld4.u8 %h[vsrc], [%[src]]! \t\n"
778 "vld4.u8 %h[vdst], [%[dst]] \t\n"
779 : [vsrc] "=w" (vsrc), [vdst] "=w" (vdst), [src] "+&r" (src)
780 : [dst] "r" (dst)
781 :
782 );
783 #else
784 register uint8x8_t d0 asm("d0");
785 register uint8x8_t d1 asm("d1");
786 register uint8x8_t d2 asm("d2");
787 register uint8x8_t d3 asm("d3");
788 register uint8x8_t d4 asm("d4");
789 register uint8x8_t d5 asm("d5");
790 register uint8x8_t d6 asm("d6");
791 register uint8x8_t d7 asm("d7");
792
793 asm volatile (
794 "vld4.u8 {d0-d3},[%[src]]!;"
795 "vld4.u8 {d4-d7},[%[dst]];"
796 : "=w" (d0), "=w" (d1), "=w" (d2), "=w" (d3),
797 "=w" (d4), "=w" (d5), "=w" (d6), "=w" (d7),
798 [src] "+&r" (src)
799 : [dst] "r" (dst)
800 :
801 );
802 vsrc.val[0] = d0; vdst.val[0] = d4;
803 vsrc.val[1] = d1; vdst.val[1] = d5;
804 vsrc.val[2] = d2; vdst.val[2] = d6;
805 vsrc.val[3] = d3; vdst.val[3] = d7;
806 #endif
807
808 vres = procSIMD(vsrc, vdst);
809
810 vst4_u8((uint8_t*)dst, vres);
811
812 dst += 8;
813
814 #else // #ifdef SK_CPU_ARM32
815
816 asm volatile (
817 "ld4 {v0.8b - v3.8b}, [%[src]], #32 \t\n"
818 "ld4 {v4.8b - v7.8b}, [%[dst]] \t\n"
819 "blr %[proc] \t\n"
820 "st4 {v0.8b - v3.8b}, [%[dst]], #32 \t\n"
821 : [src] "+&r" (src), [dst] "+&r" (dst)
822 : [proc] "r" (procSIMD)
823 : "cc", "memory",
824 /* We don't know what proc is going to clobber so we must
825 * add everything that is not callee-saved.
826 */
827 "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7", "x8", "x9",
828 "x10", "x11", "x12", "x13", "x14", "x15", "x16", "x17", "x18",
829 "x30", /* x30 implicitly clobbered by blr */
830 "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", "v16", "v17",
831 "v18", "v19", "v20", "v21", "v22", "v23", "v24", "v25", "v26",
832 "v27", "v28", "v29", "v30", "v31"
833 );
834
835 #endif // #ifdef SK_CPU_ARM32
836
837 count -= 8;
838 }
839 // Leftovers
840 for (int i = 0; i < count; i++) {
841 dst[i] = proc(src[i], dst[i]);
842 }
843 } else {
844 for (int i = count - 1; i >= 0; --i) {
845 unsigned a = aa[i];
846 if (0 != a) {
847 SkPMColor dstC = dst[i];
848 SkPMColor C = proc(src[i], dstC);
849 if (a != 0xFF) {
850 C = SkFourByteInterp_neon(C, dstC, a);
851 }
852 dst[i] = C;
853 }
854 }
855 }
856 }
857
858 void SkNEONProcCoeffXfermode::xfer16(uint16_t* SK_RESTRICT dst,
859 const SkPMColor* SK_RESTRICT src, int count ,
860 const SkAlpha* SK_RESTRICT aa) const {
861 SkASSERT(dst && src && count >= 0);
862
863 SkXfermodeProc proc = this->getProc();
864 SkXfermodeProcSIMD procSIMD = reinterpret_cast<SkXfermodeProcSIMD>(fProcSIMD );
865 SkASSERT(procSIMD != NULL);
866
867 if (NULL == aa) {
868 while(count >= 8) {
869 uint16x8_t vdst, vres16;
870 uint8x8x4_t vdst32, vsrc, vres;
871
872 vdst = vld1q_u16(dst);
873
874 #ifdef SK_CPU_ARM64
875 vsrc = vld4_u8((uint8_t*)src);
876 #else
877 #if (__GNUC__ > 4) || ((__GNUC__ == 4) && (__GNUC_MINOR__ > 6))
878 asm volatile (
879 "vld4.u8 %h[vsrc], [%[src]]! \t\n"
880 : [vsrc] "=w" (vsrc), [src] "+&r" (src)
881 : :
882 );
883 #else
884 register uint8x8_t d0 asm("d0");
885 register uint8x8_t d1 asm("d1");
886 register uint8x8_t d2 asm("d2");
887 register uint8x8_t d3 asm("d3");
888
889 asm volatile (
890 "vld4.u8 {d0-d3},[%[src]]!;"
891 : "=w" (d0), "=w" (d1), "=w" (d2), "=w" (d3),
892 [src] "+&r" (src)
893 : :
894 );
895 vsrc.val[0] = d0;
896 vsrc.val[1] = d1;
897 vsrc.val[2] = d2;
898 vsrc.val[3] = d3;
899 #endif
900 #endif // #ifdef SK_CPU_ARM64
901
902 vdst32 = SkPixel16ToPixel32_neon8(vdst);
903 vres = procSIMD(vsrc, vdst32);
904 vres16 = SkPixel32ToPixel16_neon8(vres);
905
906 vst1q_u16(dst, vres16);
907
908 count -= 8;
909 dst += 8;
910 #ifdef SK_CPU_ARM64
911 src += 8;
912 #endif
913 }
914 for (int i = 0; i < count; i++) {
915 SkPMColor dstC = SkPixel16ToPixel32(dst[i]);
916 dst[i] = SkPixel32ToPixel16_ToU16(proc(src[i], dstC));
917 }
918 } else {
919 for (int i = count - 1; i >= 0; --i) {
920 unsigned a = aa[i];
921 if (0 != a) {
922 SkPMColor dstC = SkPixel16ToPixel32(dst[i]);
923 SkPMColor C = proc(src[i], dstC);
924 if (0xFF != a) {
925 C = SkFourByteInterp_neon(C, dstC, a);
926 }
927 dst[i] = SkPixel32ToPixel16_ToU16(C);
928 }
929 }
930 }
931 }
932
933 #ifndef SK_IGNORE_TO_STRING
934 void SkNEONProcCoeffXfermode::toString(SkString* str) const {
935 this->INHERITED::toString(str);
936 }
937 #endif
938
939 ////////////////////////////////////////////////////////////////////////////////
940
941 SkXfermodeProcSIMD gNEONXfermodeProcs[] = {
942 NULL, // kClear_Mode
943 NULL, // kSrc_Mode
944 NULL, // kDst_Mode
945 NULL, // kSrcOver_Mode
946 dstover_modeproc_neon8,
947 srcin_modeproc_neon8,
948 dstin_modeproc_neon8,
949 srcout_modeproc_neon8,
950 dstout_modeproc_neon8,
951 srcatop_modeproc_neon8,
952 dstatop_modeproc_neon8,
953 xor_modeproc_neon8,
954 plus_modeproc_neon8,
955 modulate_modeproc_neon8,
956 screen_modeproc_neon8,
957
958 overlay_modeproc_neon8,
959 darken_modeproc_neon8,
960 lighten_modeproc_neon8,
961 NULL, // kColorDodge_Mode
962 NULL, // kColorBurn_Mode
963 hardlight_modeproc_neon8,
964 NULL, // kSoftLight_Mode
965 difference_modeproc_neon8,
966 exclusion_modeproc_neon8,
967 multiply_modeproc_neon8,
968
969 NULL, // kHue_Mode
970 NULL, // kSaturation_Mode
971 NULL, // kColor_Mode
972 NULL, // kLuminosity_Mode
973 };
974
975 SK_COMPILE_ASSERT(
976 SK_ARRAY_COUNT(gNEONXfermodeProcs) == SkXfermode::kLastMode + 1,
977 mode_count_arm
978 );
979
980 SkXfermodeProc gNEONXfermodeProcs1[] = {
981 NULL, // kClear_Mode
982 NULL, // kSrc_Mode
983 NULL, // kDst_Mode
984 NULL, // kSrcOver_Mode
985 NULL, // kDstOver_Mode
986 NULL, // kSrcIn_Mode
987 NULL, // kDstIn_Mode
988 NULL, // kSrcOut_Mode
989 NULL, // kDstOut_Mode
990 srcatop_modeproc_neon,
991 dstatop_modeproc_neon,
992 xor_modeproc_neon,
993 plus_modeproc_neon,
994 modulate_modeproc_neon,
995 NULL, // kScreen_Mode
996
997 NULL, // kOverlay_Mode
998 NULL, // kDarken_Mode
999 NULL, // kLighten_Mode
1000 NULL, // kColorDodge_Mode
1001 NULL, // kColorBurn_Mode
1002 NULL, // kHardLight_Mode
1003 NULL, // kSoftLight_Mode
1004 NULL, // kDifference_Mode
1005 NULL, // kExclusion_Mode
1006 NULL, // kMultiply_Mode
1007
1008 NULL, // kHue_Mode
1009 NULL, // kSaturation_Mode
1010 NULL, // kColor_Mode
1011 NULL, // kLuminosity_Mode
1012 };
1013
1014 SK_COMPILE_ASSERT(
1015 SK_ARRAY_COUNT(gNEONXfermodeProcs1) == SkXfermode::kLastMode + 1,
1016 mode1_count_arm
1017 );
1018
1019 SkProcCoeffXfermode* SkPlatformXfermodeFactory_impl_neon(const ProcCoeff& rec,
1020 SkXfermode::Mode mode) {
1021 if (auto xfermode = SkCreate4pxXfermode(rec, mode)) {
1022 return xfermode;
1023 }
1024 // TODO: Sk4pxXfermode now covers every mode found in this file. Delete the m all!
1025 if (auto proc = gNEONXfermodeProcs[mode]) {
1026 return SkNEW_ARGS(SkNEONProcCoeffXfermode, (rec, mode, (void*)proc));
1027 }
1028 return NULL;
1029 }
1030
1031 SkXfermodeProc SkPlatformXfermodeProcFactory_impl_neon(SkXfermode::Mode mode) {
1032 return gNEONXfermodeProcs1[mode];
1033 }
OLDNEW
« no previous file with comments | « src/opts/SkXfermode_opts_arm_neon.h ('k') | src/opts/SkXfermode_opts_none.cpp » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698