Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(354)

Unified Diff: components/omnibox/scored_history_match.cc

Issue 1191953004: Revert of Revert of Componentize HistoryURLProvider/ScoredHistoryMatch. (Closed) Base URL: https://chromium.googlesource.com/chromium/src.git@prepare_history_url_provider_for_c14n
Patch Set: Created 5 years, 6 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
« no previous file with comments | « components/omnibox/scored_history_match.h ('k') | components/omnibox/scored_history_match_unittest.cc » ('j') | no next file with comments »
Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Index: components/omnibox/scored_history_match.cc
diff --git a/components/omnibox/scored_history_match.cc b/components/omnibox/scored_history_match.cc
new file mode 100644
index 0000000000000000000000000000000000000000..2914f7d6fa3c70c8daaede215e3f3b9c955984c7
--- /dev/null
+++ b/components/omnibox/scored_history_match.cc
@@ -0,0 +1,699 @@
+// Copyright (c) 2012 The Chromium Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include "components/omnibox/scored_history_match.h"
+
+#include <math.h>
+
+#include <algorithm>
+#include <vector>
+
+#include "base/logging.h"
+#include "base/numerics/safe_conversions.h"
+#include "base/strings/string_number_conversions.h"
+#include "base/strings/string_split.h"
+#include "base/strings/string_util.h"
+#include "base/strings/utf_offset_string_conversions.h"
+#include "base/strings/utf_string_conversions.h"
+#include "components/bookmarks/browser/bookmark_utils.h"
+#include "components/omnibox/history_url_provider.h"
+#include "components/omnibox/omnibox_field_trial.h"
+#include "components/omnibox/url_prefix.h"
+
+namespace {
+
+// The number of days of recency scores to precompute.
+const int kDaysToPrecomputeRecencyScoresFor = 366;
+
+// The number of raw term score buckets use; raw term scores greater this are
+// capped at the score of the largest bucket.
+const int kMaxRawTermScore = 30;
+
+// Pre-computed information to speed up calculating recency scores.
+// |days_ago_to_recency_score| is a simple array mapping how long ago a page was
+// visited (in days) to the recency score we should assign it. This allows easy
+// lookups of scores without requiring math. This is initialized by
+// InitDaysAgoToRecencyScoreArray called by
+// ScoredHistoryMatch::Init().
+float days_ago_to_recency_score[kDaysToPrecomputeRecencyScoresFor];
+
+// Pre-computed information to speed up calculating topicality scores.
+// |raw_term_score_to_topicality_score| is a simple array mapping how raw terms
+// scores (a weighted sum of the number of hits for the term, weighted by how
+// important the hit is: hostname, path, etc.) to the topicality score we should
+// assign it. This allows easy lookups of scores without requiring math. This
+// is initialized by InitRawTermScoreToTopicalityScoreArray() called from
+// ScoredHistoryMatch::Init().
+float raw_term_score_to_topicality_score[kMaxRawTermScore];
+
+// Precalculates raw_term_score_to_topicality_score, used in
+// GetTopicalityScore().
+void InitRawTermScoreToTopicalityScoreArray() {
+ for (int term_score = 0; term_score < kMaxRawTermScore; ++term_score) {
+ float topicality_score;
+ if (term_score < 10) {
+ // If the term scores less than 10 points (no full-credit hit, or
+ // no combination of hits that score that well), then the topicality
+ // score is linear in the term score.
+ topicality_score = 0.1 * term_score;
+ } else {
+ // For term scores of at least ten points, pass them through a log
+ // function so a score of 10 points gets a 1.0 (to meet up exactly
+ // with the linear component) and increases logarithmically until
+ // maxing out at 30 points, with computes to a score around 2.1.
+ topicality_score = (1.0 + 2.25 * log10(0.1 * term_score));
+ }
+ raw_term_score_to_topicality_score[term_score] = topicality_score;
+ }
+}
+
+// Pre-calculates days_ago_to_recency_score, used in GetRecencyScore().
+void InitDaysAgoToRecencyScoreArray() {
+ for (int days_ago = 0; days_ago < kDaysToPrecomputeRecencyScoresFor;
+ days_ago++) {
+ int unnormalized_recency_score;
+ if (days_ago <= 4) {
+ unnormalized_recency_score = 100;
+ } else if (days_ago <= 14) {
+ // Linearly extrapolate between 4 and 14 days so 14 days has a score
+ // of 70.
+ unnormalized_recency_score = 70 + (14 - days_ago) * (100 - 70) / (14 - 4);
+ } else if (days_ago <= 31) {
+ // Linearly extrapolate between 14 and 31 days so 31 days has a score
+ // of 50.
+ unnormalized_recency_score = 50 + (31 - days_ago) * (70 - 50) / (31 - 14);
+ } else if (days_ago <= 90) {
+ // Linearly extrapolate between 30 and 90 days so 90 days has a score
+ // of 30.
+ unnormalized_recency_score = 30 + (90 - days_ago) * (50 - 30) / (90 - 30);
+ } else {
+ // Linearly extrapolate between 90 and 365 days so 365 days has a score
+ // of 10.
+ unnormalized_recency_score =
+ 10 + (365 - days_ago) * (20 - 10) / (365 - 90);
+ }
+ days_ago_to_recency_score[days_ago] = unnormalized_recency_score / 100.0;
+ if (days_ago > 0) {
+ DCHECK_LE(days_ago_to_recency_score[days_ago],
+ days_ago_to_recency_score[days_ago - 1]);
+ }
+ }
+}
+
+} // namespace
+
+// static
+const size_t ScoredHistoryMatch::kMaxVisitsToScore = 10;
+bool ScoredHistoryMatch::also_do_hup_like_scoring_ = false;
+int ScoredHistoryMatch::bookmark_value_ = 1;
+bool ScoredHistoryMatch::fix_frequency_bugs_ = false;
+bool ScoredHistoryMatch::allow_tld_matches_ = false;
+bool ScoredHistoryMatch::allow_scheme_matches_ = false;
+size_t ScoredHistoryMatch::num_title_words_to_allow_ = 10u;
+bool ScoredHistoryMatch::hqp_experimental_scoring_enabled_ = false;
+float ScoredHistoryMatch::topicality_threshold_ = -1;
+std::vector<ScoredHistoryMatch::ScoreMaxRelevance>*
+ ScoredHistoryMatch::hqp_relevance_buckets_ = nullptr;
+
+ScoredHistoryMatch::ScoredHistoryMatch()
+ : ScoredHistoryMatch(history::URLRow(),
+ VisitInfoVector(),
+ std::string(),
+ base::string16(),
+ String16Vector(),
+ WordStarts(),
+ RowWordStarts(),
+ false,
+ base::Time::Max()) {
+}
+
+ScoredHistoryMatch::ScoredHistoryMatch(
+ const history::URLRow& row,
+ const VisitInfoVector& visits,
+ const std::string& languages,
+ const base::string16& lower_string,
+ const String16Vector& terms_vector,
+ const WordStarts& terms_to_word_starts_offsets,
+ const RowWordStarts& word_starts,
+ bool is_url_bookmarked,
+ base::Time now)
+ : HistoryMatch(row, 0, false, false), raw_score(0), can_inline(false) {
+ // NOTE: Call Init() before doing any validity checking to ensure that the
+ // class is always initialized after an instance has been constructed. In
+ // particular, this ensures that the class is initialized after an instance
+ // has been constructed via the no-args constructor.
+ ScoredHistoryMatch::Init();
+
+ GURL gurl = row.url();
+ if (!gurl.is_valid())
+ return;
+
+ // Figure out where each search term appears in the URL and/or page title
+ // so that we can score as well as provide autocomplete highlighting.
+ base::OffsetAdjuster::Adjustments adjustments;
+ base::string16 url =
+ bookmarks::CleanUpUrlForMatching(gurl, languages, &adjustments);
+ base::string16 title = bookmarks::CleanUpTitleForMatching(row.title());
+ int term_num = 0;
+ for (const auto& term : terms_vector) {
+ TermMatches url_term_matches = MatchTermInString(term, url, term_num);
+ TermMatches title_term_matches = MatchTermInString(term, title, term_num);
+ if (url_term_matches.empty() && title_term_matches.empty()) {
+ // A term was not found in either URL or title - reject.
+ return;
+ }
+ url_matches.insert(url_matches.end(), url_term_matches.begin(),
+ url_term_matches.end());
+ title_matches.insert(title_matches.end(), title_term_matches.begin(),
+ title_term_matches.end());
+ ++term_num;
+ }
+
+ // Sort matches by offset and eliminate any which overlap.
+ // TODO(mpearson): Investigate whether this has any meaningful
+ // effect on scoring. (It's necessary at some point: removing
+ // overlaps and sorting is needed to decide what to highlight in the
+ // suggestion string. But this sort and de-overlap doesn't have to
+ // be done before scoring.)
+ url_matches = SortAndDeoverlapMatches(url_matches);
+ title_matches = SortAndDeoverlapMatches(title_matches);
+
+ // We can inline autocomplete a match if:
+ // 1) there is only one search term
+ // 2) AND the match begins immediately after one of the prefixes in
+ // URLPrefix such as http://www and https:// (note that one of these
+ // is the empty prefix, for cases where the user has typed the scheme)
+ // 3) AND the search string does not end in whitespace (making it look to
+ // the IMUI as though there is a single search term when actually there
+ // is a second, empty term).
+ // |best_inlineable_prefix| stores the inlineable prefix computed in
+ // clause (2) or NULL if no such prefix exists. (The URL is not inlineable.)
+ // Note that using the best prefix here means that when multiple
+ // prefixes match, we'll choose to inline following the longest one.
+ // For a URL like "http://www.washingtonmutual.com", this means
+ // typing "w" will inline "ashington..." instead of "ww.washington...".
+ if (!url_matches.empty() && (terms_vector.size() == 1) &&
+ !IsWhitespace(*lower_string.rbegin())) {
+ const base::string16 gurl_spec = base::UTF8ToUTF16(gurl.spec());
+ const URLPrefix* best_inlineable_prefix =
+ URLPrefix::BestURLPrefix(gurl_spec, terms_vector[0]);
+ if (best_inlineable_prefix) {
+ // When inline autocompleting this match, we're going to use the part of
+ // the URL following the end of the matching text. However, it's possible
+ // that FormatUrl(), when formatting this suggestion for display,
+ // mucks with the text. We need to ensure that the text we're thinking
+ // about highlighting isn't in the middle of a mucked sequence. In
+ // particular, for the omnibox input of "x" or "xn", we may get a match
+ // in a punycoded domain name such as http://www.xn--blahblah.com/.
+ // When FormatUrl() processes the xn--blahblah part of the hostname, it'll
+ // transform the whole thing into a series of unicode characters. It's
+ // impossible to give the user an inline autocompletion of the text
+ // following "x" or "xn" in this case because those characters no longer
+ // exist in the displayed URL string.
+ size_t offset =
+ best_inlineable_prefix->prefix.length() + terms_vector[0].length();
+ base::OffsetAdjuster::UnadjustOffset(adjustments, &offset);
+ if (offset != base::string16::npos) {
+ // Initialize innermost_match.
+ // The idea here is that matches that occur in the scheme or
+ // "www." are worse than matches which don't. For the URLs
+ // "http://www.google.com" and "http://wellsfargo.com", we want
+ // the omnibox input "w" to cause the latter URL to rank higher
+ // than the former. Note that this is not the same as checking
+ // whether one match's inlinable prefix has more components than
+ // the other match's, since in this example, both matches would
+ // have an inlinable prefix of "http://", which is one component.
+ //
+ // Instead, we look for the overall best (i.e., most components)
+ // prefix of the current URL, and then check whether the inlinable
+ // prefix has that many components. If it does, this is an
+ // "innermost" match, and should be boosted. In the example
+ // above, the best prefixes for the two URLs have two and one
+ // components respectively, while the inlinable prefixes each
+ // have one component; this means the first match is not innermost
+ // and the second match is innermost, resulting in us boosting the
+ // second match.
+ //
+ // Now, the code that implements this.
+ // The deepest prefix for this URL regardless of where the match is.
+ const URLPrefix* best_prefix =
+ URLPrefix::BestURLPrefix(gurl_spec, base::string16());
+ DCHECK(best_prefix);
+ // If the URL is inlineable, we must have a match. Note the prefix that
+ // makes it inlineable may be empty.
+ can_inline = true;
+ innermost_match = (best_inlineable_prefix->num_components ==
+ best_prefix->num_components);
+ }
+ }
+ }
+
+ const float topicality_score = GetTopicalityScore(
+ terms_vector.size(), url, terms_to_word_starts_offsets, word_starts);
+ const float frequency_score = GetFrequency(now, is_url_bookmarked, visits);
+ raw_score = base::saturated_cast<int>(GetFinalRelevancyScore(
+ topicality_score, frequency_score, *hqp_relevance_buckets_));
+
+ if (also_do_hup_like_scoring_ && can_inline) {
+ // HistoryURL-provider-like scoring gives any match that is
+ // capable of being inlined a certain minimum score. Some of these
+ // are given a higher score that lets them be shown in inline.
+ // This test here derives from the test in
+ // HistoryURLProvider::PromoteMatchForInlineAutocomplete().
+ const bool promote_to_inline =
+ (row.typed_count() > 1) || (IsHostOnly() && (row.typed_count() == 1));
+ int hup_like_score =
+ promote_to_inline
+ ? HistoryURLProvider::kScoreForBestInlineableResult
+ : HistoryURLProvider::kBaseScoreForNonInlineableResult;
+
+ // Also, if the user types the hostname of a host with a typed
+ // visit, then everything from that host get given inlineable scores
+ // (because the URL-that-you-typed will go first and everything
+ // else will be assigned one minus the previous score, as coded
+ // at the end of HistoryURLProvider::DoAutocomplete().
+ if (base::UTF8ToUTF16(gurl.host()) == terms_vector[0])
+ hup_like_score = HistoryURLProvider::kScoreForBestInlineableResult;
+
+ // HistoryURLProvider has the function PromoteOrCreateShorterSuggestion()
+ // that's meant to promote prefixes of the best match (if they've
+ // been visited enough related to the best match) or
+ // create/promote host-only suggestions (even if they've never
+ // been typed). The code is complicated and we don't try to
+ // duplicate the logic here. Instead, we handle a simple case: in
+ // low-typed-count ranges, give host-only matches (i.e.,
+ // http://www.foo.com/ vs. http://www.foo.com/bar.html) a boost so
+ // that the host-only match outscores all the other matches that
+ // would normally have the same base score. This behavior is not
+ // identical to what happens in HistoryURLProvider even in these
+ // low typed count ranges--sometimes it will create/promote when
+ // this test does not (indeed, we cannot create matches like HUP
+ // can) and vice versa--but the underlying philosophy is similar.
+ if (!promote_to_inline && IsHostOnly())
+ hup_like_score++;
+
+ // All the other logic to goes into hup-like-scoring happens in
+ // the tie-breaker case of MatchScoreGreater().
+
+ // Incorporate hup_like_score into raw_score.
+ raw_score = std::max(raw_score, hup_like_score);
+ }
+
+ // Now that we're done processing this entry, correct the offsets of the
+ // matches in |url_matches| so they point to offsets in the original URL
+ // spec, not the cleaned-up URL string that we used for matching.
+ std::vector<size_t> offsets = OffsetsFromTermMatches(url_matches);
+ base::OffsetAdjuster::UnadjustOffsets(adjustments, &offsets);
+ url_matches = ReplaceOffsetsInTermMatches(url_matches, offsets);
+}
+
+ScoredHistoryMatch::~ScoredHistoryMatch() {
+}
+
+// Comparison function for sorting ScoredMatches by their scores with
+// intelligent tie-breaking.
+bool ScoredHistoryMatch::MatchScoreGreater(const ScoredHistoryMatch& m1,
+ const ScoredHistoryMatch& m2) {
+ if (m1.raw_score != m2.raw_score)
+ return m1.raw_score > m2.raw_score;
+
+ // This tie-breaking logic is inspired by / largely copied from the
+ // ordering logic in history_url_provider.cc CompareHistoryMatch().
+
+ // A URL that has been typed at all is better than one that has never been
+ // typed. (Note "!"s on each side.)
+ if (!m1.url_info.typed_count() != !m2.url_info.typed_count())
+ return m1.url_info.typed_count() > m2.url_info.typed_count();
+
+ // Innermost matches (matches after any scheme or "www.") are better than
+ // non-innermost matches.
+ if (m1.innermost_match != m2.innermost_match)
+ return m1.innermost_match;
+
+ // URLs that have been typed more often are better.
+ if (m1.url_info.typed_count() != m2.url_info.typed_count())
+ return m1.url_info.typed_count() > m2.url_info.typed_count();
+
+ // For URLs that have each been typed once, a host (alone) is better
+ // than a page inside.
+ if (m1.url_info.typed_count() == 1) {
+ if (m1.IsHostOnly() != m2.IsHostOnly())
+ return m1.IsHostOnly();
+ }
+
+ // URLs that have been visited more often are better.
+ if (m1.url_info.visit_count() != m2.url_info.visit_count())
+ return m1.url_info.visit_count() > m2.url_info.visit_count();
+
+ // URLs that have been visited more recently are better.
+ return m1.url_info.last_visit() > m2.url_info.last_visit();
+}
+
+// static
+TermMatches ScoredHistoryMatch::FilterTermMatchesByWordStarts(
+ const TermMatches& term_matches,
+ const WordStarts& terms_to_word_starts_offsets,
+ const WordStarts& word_starts,
+ size_t start_pos,
+ size_t end_pos) {
+ // Return early if no filtering is needed.
+ if (start_pos == std::string::npos)
+ return term_matches;
+ TermMatches filtered_matches;
+ WordStarts::const_iterator next_word_starts = word_starts.begin();
+ WordStarts::const_iterator end_word_starts = word_starts.end();
+ for (const auto& term_match : term_matches) {
+ const size_t term_offset =
+ terms_to_word_starts_offsets[term_match.term_num];
+ // Advance next_word_starts until it's >= the position of the term we're
+ // considering (adjusted for where the word begins within the term).
+ while ((next_word_starts != end_word_starts) &&
+ (*next_word_starts < (term_match.offset + term_offset)))
+ ++next_word_starts;
+ // Add the match if it's before the position we start filtering at or
+ // after the position we stop filtering at (assuming we have a position
+ // to stop filtering at) or if it's at a word boundary.
+ if ((term_match.offset < start_pos) ||
+ ((end_pos != std::string::npos) && (term_match.offset >= end_pos)) ||
+ ((next_word_starts != end_word_starts) &&
+ (*next_word_starts == term_match.offset + term_offset)))
+ filtered_matches.push_back(term_match);
+ }
+ return filtered_matches;
+}
+
+// static
+void ScoredHistoryMatch::Init() {
+ static bool initialized = false;
+
+ if (initialized)
+ return;
+
+ initialized = true;
+ also_do_hup_like_scoring_ = OmniboxFieldTrial::HQPAlsoDoHUPLikeScoring();
+ bookmark_value_ = OmniboxFieldTrial::HQPBookmarkValue();
+ fix_frequency_bugs_ = OmniboxFieldTrial::HQPFixFrequencyScoringBugs();
+ allow_tld_matches_ = OmniboxFieldTrial::HQPAllowMatchInTLDValue();
+ allow_scheme_matches_ = OmniboxFieldTrial::HQPAllowMatchInSchemeValue();
+ num_title_words_to_allow_ = OmniboxFieldTrial::HQPNumTitleWordsToAllow();
+
+ InitRawTermScoreToTopicalityScoreArray();
+ InitDaysAgoToRecencyScoreArray();
+ InitHQPExperimentalParams();
+}
+
+float ScoredHistoryMatch::GetTopicalityScore(
+ const int num_terms,
+ const base::string16& url,
+ const WordStarts& terms_to_word_starts_offsets,
+ const RowWordStarts& word_starts) {
+ // A vector that accumulates per-term scores. The strongest match--a
+ // match in the hostname at a word boundary--is worth 10 points.
+ // Everything else is less. In general, a match that's not at a word
+ // boundary is worth about 1/4th or 1/5th of a match at the word boundary
+ // in the same part of the URL/title.
+ DCHECK_GT(num_terms, 0);
+ std::vector<int> term_scores(num_terms, 0);
+ WordStarts::const_iterator next_word_starts =
+ word_starts.url_word_starts_.begin();
+ WordStarts::const_iterator end_word_starts =
+ word_starts.url_word_starts_.end();
+ const size_t question_mark_pos = url.find('?');
+ const size_t colon_pos = url.find(':');
+ // The + 3 skips the // that probably appears in the protocol
+ // after the colon. If the protocol doesn't have two slashes after
+ // the colon, that's okay--all this ends up doing is starting our
+ // search for the next / a few characters into the hostname. The
+ // only times this can cause problems is if we have a protocol without
+ // a // after the colon and the hostname is only one or two characters.
+ // This isn't worth worrying about.
+ const size_t end_of_hostname_pos = (colon_pos != std::string::npos)
+ ? url.find('/', colon_pos + 3)
+ : url.find('/');
+ size_t last_part_of_hostname_pos = (end_of_hostname_pos != std::string::npos)
+ ? url.rfind('.', end_of_hostname_pos)
+ : url.rfind('.');
+ // Loop through all URL matches and score them appropriately.
+ // First, filter all matches not at a word boundary and in the path (or
+ // later).
+ url_matches = FilterTermMatchesByWordStarts(
+ url_matches, terms_to_word_starts_offsets, word_starts.url_word_starts_,
+ end_of_hostname_pos, std::string::npos);
+ if (colon_pos != std::string::npos) {
+ // Also filter matches not at a word boundary and in the scheme.
+ url_matches = FilterTermMatchesByWordStarts(
+ url_matches, terms_to_word_starts_offsets, word_starts.url_word_starts_,
+ 0, colon_pos);
+ }
+ for (const auto& url_match : url_matches) {
+ const size_t term_offset = terms_to_word_starts_offsets[url_match.term_num];
+ // Advance next_word_starts until it's >= the position of the term we're
+ // considering (adjusted for where the word begins within the term).
+ while ((next_word_starts != end_word_starts) &&
+ (*next_word_starts < (url_match.offset + term_offset))) {
+ ++next_word_starts;
+ }
+ const bool at_word_boundary =
+ (next_word_starts != end_word_starts) &&
+ (*next_word_starts == url_match.offset + term_offset);
+ if ((question_mark_pos != std::string::npos) &&
+ (url_match.offset > question_mark_pos)) {
+ // The match is in a CGI ?... fragment.
+ DCHECK(at_word_boundary);
+ term_scores[url_match.term_num] += 5;
+ } else if ((end_of_hostname_pos != std::string::npos) &&
+ (url_match.offset > end_of_hostname_pos)) {
+ // The match is in the path.
+ DCHECK(at_word_boundary);
+ term_scores[url_match.term_num] += 8;
+ } else if ((colon_pos == std::string::npos) ||
+ (url_match.offset > colon_pos)) {
+ // The match is in the hostname.
+ if ((last_part_of_hostname_pos == std::string::npos) ||
+ (url_match.offset < last_part_of_hostname_pos)) {
+ // Either there are no dots in the hostname or this match isn't
+ // the last dotted component.
+ term_scores[url_match.term_num] += at_word_boundary ? 10 : 2;
+ } else {
+ // The match is in the last part of a dotted hostname (usually this
+ // is the top-level domain .com, .net, etc.).
+ if (allow_tld_matches_)
+ term_scores[url_match.term_num] += at_word_boundary ? 10 : 0;
+ }
+ } else {
+ // The match is in the protocol (a.k.a. scheme).
+ // Matches not at a word boundary should have been filtered already.
+ DCHECK(at_word_boundary);
+ match_in_scheme = true;
+ if (allow_scheme_matches_)
+ term_scores[url_match.term_num] += 10;
+ }
+ }
+ // Now do the analogous loop over all matches in the title.
+ next_word_starts = word_starts.title_word_starts_.begin();
+ end_word_starts = word_starts.title_word_starts_.end();
+ size_t word_num = 0;
+ title_matches = FilterTermMatchesByWordStarts(
+ title_matches, terms_to_word_starts_offsets,
+ word_starts.title_word_starts_, 0, std::string::npos);
+ for (const auto& title_match : title_matches) {
+ const size_t term_offset =
+ terms_to_word_starts_offsets[title_match.term_num];
+ // Advance next_word_starts until it's >= the position of the term we're
+ // considering (adjusted for where the word begins within the term).
+ while ((next_word_starts != end_word_starts) &&
+ (*next_word_starts < (title_match.offset + term_offset))) {
+ ++next_word_starts;
+ ++word_num;
+ }
+ if (word_num >= num_title_words_to_allow_)
+ break; // only count the first ten words
+ DCHECK(next_word_starts != end_word_starts);
+ DCHECK_EQ(*next_word_starts, title_match.offset + term_offset)
+ << "not at word boundary";
+ term_scores[title_match.term_num] += 8;
+ }
+ // TODO(mpearson): Restore logic for penalizing out-of-order matches.
+ // (Perhaps discount them by 0.8?)
+ // TODO(mpearson): Consider: if the earliest match occurs late in the string,
+ // should we discount it?
+ // TODO(mpearson): Consider: do we want to score based on how much of the
+ // input string the input covers? (I'm leaning toward no.)
+
+ // Compute the topicality_score as the sum of transformed term_scores.
+ float topicality_score = 0;
+ for (int term_score : term_scores) {
+ // Drop this URL if it seems like a term didn't appear or, more precisely,
+ // didn't appear in a part of the URL or title that we trust enough
+ // to give it credit for. For instance, terms that appear in the middle
+ // of a CGI parameter get no credit. Almost all the matches dropped
+ // due to this test would look stupid if shown to the user.
+ if (term_score == 0)
+ return 0;
+ topicality_score += raw_term_score_to_topicality_score[std::min(
+ term_score, kMaxRawTermScore - 1)];
+ }
+ // TODO(mpearson): If there are multiple terms, consider taking the
+ // geometric mean of per-term scores rather than the arithmetic mean.
+
+ const float final_topicality_score = topicality_score / num_terms;
+
+ // Demote the URL if the topicality score is less than threshold.
+ if (hqp_experimental_scoring_enabled_ &&
+ (final_topicality_score < topicality_threshold_)) {
+ return 0.0;
+ }
+
+ return final_topicality_score;
+}
+
+float ScoredHistoryMatch::GetRecencyScore(int last_visit_days_ago) const {
+ // Lookup the score in days_ago_to_recency_score, treating
+ // everything older than what we've precomputed as the oldest thing
+ // we've precomputed. The std::max is to protect against corruption
+ // in the database (in case last_visit_days_ago is negative).
+ return days_ago_to_recency_score[std::max(
+ std::min(last_visit_days_ago, kDaysToPrecomputeRecencyScoresFor - 1), 0)];
+}
+
+float ScoredHistoryMatch::GetFrequency(const base::Time& now,
+ const bool bookmarked,
+ const VisitInfoVector& visits) const {
+ // Compute the weighted average |value_of_transition| over the last at
+ // most kMaxVisitsToScore visits, where each visit is weighted using
+ // GetRecencyScore() based on how many days ago it happened. Use
+ // kMaxVisitsToScore as the denominator for the average regardless of
+ // how many visits there were in order to penalize a match that has
+ // fewer visits than kMaxVisitsToScore.
+ float summed_visit_points = 0;
+ const size_t max_visit_to_score =
+ std::min(visits.size(), ScoredHistoryMatch::kMaxVisitsToScore);
+ for (size_t i = 0; i < max_visit_to_score; ++i) {
+ const ui::PageTransition page_transition = fix_frequency_bugs_ ?
+ ui::PageTransitionStripQualifier(visits[i].second) : visits[i].second;
+ int value_of_transition =
+ (page_transition == ui::PAGE_TRANSITION_TYPED) ? 20 : 1;
+ if (bookmarked)
+ value_of_transition = std::max(value_of_transition, bookmark_value_);
+ const float bucket_weight =
+ GetRecencyScore((now - visits[i].first).InDays());
+ summed_visit_points += (value_of_transition * bucket_weight);
+ }
+ if (fix_frequency_bugs_)
+ return summed_visit_points / ScoredHistoryMatch::kMaxVisitsToScore;
+ return visits.size() * summed_visit_points /
+ ScoredHistoryMatch::kMaxVisitsToScore;
+}
+
+// static
+float ScoredHistoryMatch::GetFinalRelevancyScore(
+ float topicality_score,
+ float frequency_score,
+ const std::vector<ScoreMaxRelevance>& hqp_relevance_buckets) {
+ DCHECK(hqp_relevance_buckets.size() > 0);
+ DCHECK_EQ(hqp_relevance_buckets[0].first, 0.0);
+
+ if (topicality_score == 0)
+ return 0;
+ // Here's how to interpret intermediate_score: Suppose the omnibox
+ // has one input term. Suppose we have a URL for which the omnibox
+ // input term has a single URL hostname hit at a word boundary. (This
+ // implies topicality_score = 1.0.). Then the intermediate_score for
+ // this URL will depend entirely on the frequency_score with
+ // this interpretation:
+ // - a single typed visit more than three months ago, no other visits -> 0.2
+ // - a visit every three days, no typed visits -> 0.706
+ // - a visit every day, no typed visits -> 0.916
+ // - a single typed visit yesterday, no other visits -> 2.0
+ // - a typed visit once a week -> 11.77
+ // - a typed visit every three days -> 14.12
+ // - at least ten typed visits today -> 20.0 (maximum score)
+ //
+ // The below code maps intermediate_score to the range [0, 1399].
+ // For example:
+ // HQP default scoring buckets: "0.0:400,1.5:600,12.0:1300,20.0:1399"
+ // We will linearly interpolate the scores between:
+ // 0 to 1.5 --> 400 to 600
+ // 1.5 to 12.0 --> 600 to 1300
+ // 12.0 to 20.0 --> 1300 to 1399
+ // >= 20.0 --> 1399
+ //
+ // The score maxes out at 1399 (i.e., cannot beat a good inlineable result
+ // from HistoryURL provider).
+ const float intermediate_score = topicality_score * frequency_score;
+
+ // Find the threshold where intermediate score is greater than bucket.
+ size_t i = 1;
+ for (; i < hqp_relevance_buckets.size(); ++i) {
+ const ScoreMaxRelevance& hqp_bucket = hqp_relevance_buckets[i];
+ if (intermediate_score >= hqp_bucket.first) {
+ continue;
+ }
+ const ScoreMaxRelevance& previous_bucket = hqp_relevance_buckets[i - 1];
+ const float slope = ((hqp_bucket.second - previous_bucket.second) /
+ (hqp_bucket.first - previous_bucket.first));
+ return (previous_bucket.second +
+ (slope * (intermediate_score - previous_bucket.first)));
+ }
+ // It will reach this stage when the score is > highest bucket score.
+ // Return the highest bucket score.
+ return hqp_relevance_buckets[i - 1].second;
+}
+
+// static
+void ScoredHistoryMatch::InitHQPExperimentalParams() {
+ // These are default HQP relevance scoring buckets.
+ // See GetFinalRelevancyScore() for details.
+ std::string hqp_relevance_buckets_str = "0.0:400,1.5:600,12.0:1300,20.0:1399";
+
+ // Fetch the experiment params if they are any.
+ hqp_experimental_scoring_enabled_ =
+ OmniboxFieldTrial::HQPExperimentalScoringEnabled();
+
+ if (hqp_experimental_scoring_enabled_) {
+ // Add the topicality threshold from experiment params.
+ float hqp_experimental_topicality_threhold =
+ OmniboxFieldTrial::HQPExperimentalTopicalityThreshold();
+ topicality_threshold_ = hqp_experimental_topicality_threhold;
+
+ // Add the HQP experimental scoring buckets.
+ std::string hqp_experimental_scoring_buckets =
+ OmniboxFieldTrial::HQPExperimentalScoringBuckets();
+ if (!hqp_experimental_scoring_buckets.empty())
+ hqp_relevance_buckets_str = hqp_experimental_scoring_buckets;
+ }
+
+ // Parse the hqp_relevance_buckets_str string once and store them in vector
+ // which is easy to access.
+ hqp_relevance_buckets_ =
+ new std::vector<ScoredHistoryMatch::ScoreMaxRelevance>();
+
+ bool is_valid_bucket_str = GetHQPBucketsFromString(hqp_relevance_buckets_str,
+ hqp_relevance_buckets_);
+ DCHECK(is_valid_bucket_str);
+}
+
+// static
+bool ScoredHistoryMatch::GetHQPBucketsFromString(
+ const std::string& buckets_str,
+ std::vector<ScoreMaxRelevance>* hqp_buckets) {
+ DCHECK(hqp_buckets != NULL);
+ DCHECK(!buckets_str.empty());
+
+ base::StringPairs kv_pairs;
+ if (base::SplitStringIntoKeyValuePairs(buckets_str, ':', ',', &kv_pairs)) {
+ for (base::StringPairs::const_iterator it = kv_pairs.begin();
+ it != kv_pairs.end(); ++it) {
+ ScoreMaxRelevance bucket;
+ bool is_valid_intermediate_score =
+ base::StringToDouble(it->first, &bucket.first);
+ DCHECK(is_valid_intermediate_score);
+ bool is_valid_hqp_score = base::StringToInt(it->second, &bucket.second);
+ DCHECK(is_valid_hqp_score);
+ hqp_buckets->push_back(bucket);
+ }
+ return true;
+ }
+ return false;
+}
« no previous file with comments | « components/omnibox/scored_history_match.h ('k') | components/omnibox/scored_history_match_unittest.cc » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698