OLD | NEW |
(Empty) | |
| 1 // Copyright (c) 2012 The Chromium Authors. All rights reserved. |
| 2 // Use of this source code is governed by a BSD-style license that can be |
| 3 // found in the LICENSE file. |
| 4 |
| 5 #include "components/omnibox/scored_history_match.h" |
| 6 |
| 7 #include <math.h> |
| 8 |
| 9 #include <algorithm> |
| 10 #include <vector> |
| 11 |
| 12 #include "base/logging.h" |
| 13 #include "base/numerics/safe_conversions.h" |
| 14 #include "base/strings/string_number_conversions.h" |
| 15 #include "base/strings/string_split.h" |
| 16 #include "base/strings/string_util.h" |
| 17 #include "base/strings/utf_offset_string_conversions.h" |
| 18 #include "base/strings/utf_string_conversions.h" |
| 19 #include "components/bookmarks/browser/bookmark_utils.h" |
| 20 #include "components/omnibox/history_url_provider.h" |
| 21 #include "components/omnibox/omnibox_field_trial.h" |
| 22 #include "components/omnibox/url_prefix.h" |
| 23 |
| 24 namespace { |
| 25 |
| 26 // The number of days of recency scores to precompute. |
| 27 const int kDaysToPrecomputeRecencyScoresFor = 366; |
| 28 |
| 29 // The number of raw term score buckets use; raw term scores greater this are |
| 30 // capped at the score of the largest bucket. |
| 31 const int kMaxRawTermScore = 30; |
| 32 |
| 33 // Pre-computed information to speed up calculating recency scores. |
| 34 // |days_ago_to_recency_score| is a simple array mapping how long ago a page was |
| 35 // visited (in days) to the recency score we should assign it. This allows easy |
| 36 // lookups of scores without requiring math. This is initialized by |
| 37 // InitDaysAgoToRecencyScoreArray called by |
| 38 // ScoredHistoryMatch::Init(). |
| 39 float days_ago_to_recency_score[kDaysToPrecomputeRecencyScoresFor]; |
| 40 |
| 41 // Pre-computed information to speed up calculating topicality scores. |
| 42 // |raw_term_score_to_topicality_score| is a simple array mapping how raw terms |
| 43 // scores (a weighted sum of the number of hits for the term, weighted by how |
| 44 // important the hit is: hostname, path, etc.) to the topicality score we should |
| 45 // assign it. This allows easy lookups of scores without requiring math. This |
| 46 // is initialized by InitRawTermScoreToTopicalityScoreArray() called from |
| 47 // ScoredHistoryMatch::Init(). |
| 48 float raw_term_score_to_topicality_score[kMaxRawTermScore]; |
| 49 |
| 50 // Precalculates raw_term_score_to_topicality_score, used in |
| 51 // GetTopicalityScore(). |
| 52 void InitRawTermScoreToTopicalityScoreArray() { |
| 53 for (int term_score = 0; term_score < kMaxRawTermScore; ++term_score) { |
| 54 float topicality_score; |
| 55 if (term_score < 10) { |
| 56 // If the term scores less than 10 points (no full-credit hit, or |
| 57 // no combination of hits that score that well), then the topicality |
| 58 // score is linear in the term score. |
| 59 topicality_score = 0.1 * term_score; |
| 60 } else { |
| 61 // For term scores of at least ten points, pass them through a log |
| 62 // function so a score of 10 points gets a 1.0 (to meet up exactly |
| 63 // with the linear component) and increases logarithmically until |
| 64 // maxing out at 30 points, with computes to a score around 2.1. |
| 65 topicality_score = (1.0 + 2.25 * log10(0.1 * term_score)); |
| 66 } |
| 67 raw_term_score_to_topicality_score[term_score] = topicality_score; |
| 68 } |
| 69 } |
| 70 |
| 71 // Pre-calculates days_ago_to_recency_score, used in GetRecencyScore(). |
| 72 void InitDaysAgoToRecencyScoreArray() { |
| 73 for (int days_ago = 0; days_ago < kDaysToPrecomputeRecencyScoresFor; |
| 74 days_ago++) { |
| 75 int unnormalized_recency_score; |
| 76 if (days_ago <= 4) { |
| 77 unnormalized_recency_score = 100; |
| 78 } else if (days_ago <= 14) { |
| 79 // Linearly extrapolate between 4 and 14 days so 14 days has a score |
| 80 // of 70. |
| 81 unnormalized_recency_score = 70 + (14 - days_ago) * (100 - 70) / (14 - 4); |
| 82 } else if (days_ago <= 31) { |
| 83 // Linearly extrapolate between 14 and 31 days so 31 days has a score |
| 84 // of 50. |
| 85 unnormalized_recency_score = 50 + (31 - days_ago) * (70 - 50) / (31 - 14); |
| 86 } else if (days_ago <= 90) { |
| 87 // Linearly extrapolate between 30 and 90 days so 90 days has a score |
| 88 // of 30. |
| 89 unnormalized_recency_score = 30 + (90 - days_ago) * (50 - 30) / (90 - 30); |
| 90 } else { |
| 91 // Linearly extrapolate between 90 and 365 days so 365 days has a score |
| 92 // of 10. |
| 93 unnormalized_recency_score = |
| 94 10 + (365 - days_ago) * (20 - 10) / (365 - 90); |
| 95 } |
| 96 days_ago_to_recency_score[days_ago] = unnormalized_recency_score / 100.0; |
| 97 if (days_ago > 0) { |
| 98 DCHECK_LE(days_ago_to_recency_score[days_ago], |
| 99 days_ago_to_recency_score[days_ago - 1]); |
| 100 } |
| 101 } |
| 102 } |
| 103 |
| 104 } // namespace |
| 105 |
| 106 // static |
| 107 const size_t ScoredHistoryMatch::kMaxVisitsToScore = 10; |
| 108 bool ScoredHistoryMatch::also_do_hup_like_scoring_ = false; |
| 109 int ScoredHistoryMatch::bookmark_value_ = 1; |
| 110 bool ScoredHistoryMatch::fix_frequency_bugs_ = false; |
| 111 bool ScoredHistoryMatch::allow_tld_matches_ = false; |
| 112 bool ScoredHistoryMatch::allow_scheme_matches_ = false; |
| 113 size_t ScoredHistoryMatch::num_title_words_to_allow_ = 10u; |
| 114 bool ScoredHistoryMatch::hqp_experimental_scoring_enabled_ = false; |
| 115 float ScoredHistoryMatch::topicality_threshold_ = -1; |
| 116 std::vector<ScoredHistoryMatch::ScoreMaxRelevance>* |
| 117 ScoredHistoryMatch::hqp_relevance_buckets_ = nullptr; |
| 118 |
| 119 ScoredHistoryMatch::ScoredHistoryMatch() |
| 120 : ScoredHistoryMatch(history::URLRow(), |
| 121 VisitInfoVector(), |
| 122 std::string(), |
| 123 base::string16(), |
| 124 String16Vector(), |
| 125 WordStarts(), |
| 126 RowWordStarts(), |
| 127 false, |
| 128 base::Time::Max()) { |
| 129 } |
| 130 |
| 131 ScoredHistoryMatch::ScoredHistoryMatch( |
| 132 const history::URLRow& row, |
| 133 const VisitInfoVector& visits, |
| 134 const std::string& languages, |
| 135 const base::string16& lower_string, |
| 136 const String16Vector& terms_vector, |
| 137 const WordStarts& terms_to_word_starts_offsets, |
| 138 const RowWordStarts& word_starts, |
| 139 bool is_url_bookmarked, |
| 140 base::Time now) |
| 141 : HistoryMatch(row, 0, false, false), raw_score(0), can_inline(false) { |
| 142 // NOTE: Call Init() before doing any validity checking to ensure that the |
| 143 // class is always initialized after an instance has been constructed. In |
| 144 // particular, this ensures that the class is initialized after an instance |
| 145 // has been constructed via the no-args constructor. |
| 146 ScoredHistoryMatch::Init(); |
| 147 |
| 148 GURL gurl = row.url(); |
| 149 if (!gurl.is_valid()) |
| 150 return; |
| 151 |
| 152 // Figure out where each search term appears in the URL and/or page title |
| 153 // so that we can score as well as provide autocomplete highlighting. |
| 154 base::OffsetAdjuster::Adjustments adjustments; |
| 155 base::string16 url = |
| 156 bookmarks::CleanUpUrlForMatching(gurl, languages, &adjustments); |
| 157 base::string16 title = bookmarks::CleanUpTitleForMatching(row.title()); |
| 158 int term_num = 0; |
| 159 for (const auto& term : terms_vector) { |
| 160 TermMatches url_term_matches = MatchTermInString(term, url, term_num); |
| 161 TermMatches title_term_matches = MatchTermInString(term, title, term_num); |
| 162 if (url_term_matches.empty() && title_term_matches.empty()) { |
| 163 // A term was not found in either URL or title - reject. |
| 164 return; |
| 165 } |
| 166 url_matches.insert(url_matches.end(), url_term_matches.begin(), |
| 167 url_term_matches.end()); |
| 168 title_matches.insert(title_matches.end(), title_term_matches.begin(), |
| 169 title_term_matches.end()); |
| 170 ++term_num; |
| 171 } |
| 172 |
| 173 // Sort matches by offset and eliminate any which overlap. |
| 174 // TODO(mpearson): Investigate whether this has any meaningful |
| 175 // effect on scoring. (It's necessary at some point: removing |
| 176 // overlaps and sorting is needed to decide what to highlight in the |
| 177 // suggestion string. But this sort and de-overlap doesn't have to |
| 178 // be done before scoring.) |
| 179 url_matches = SortAndDeoverlapMatches(url_matches); |
| 180 title_matches = SortAndDeoverlapMatches(title_matches); |
| 181 |
| 182 // We can inline autocomplete a match if: |
| 183 // 1) there is only one search term |
| 184 // 2) AND the match begins immediately after one of the prefixes in |
| 185 // URLPrefix such as http://www and https:// (note that one of these |
| 186 // is the empty prefix, for cases where the user has typed the scheme) |
| 187 // 3) AND the search string does not end in whitespace (making it look to |
| 188 // the IMUI as though there is a single search term when actually there |
| 189 // is a second, empty term). |
| 190 // |best_inlineable_prefix| stores the inlineable prefix computed in |
| 191 // clause (2) or NULL if no such prefix exists. (The URL is not inlineable.) |
| 192 // Note that using the best prefix here means that when multiple |
| 193 // prefixes match, we'll choose to inline following the longest one. |
| 194 // For a URL like "http://www.washingtonmutual.com", this means |
| 195 // typing "w" will inline "ashington..." instead of "ww.washington...". |
| 196 if (!url_matches.empty() && (terms_vector.size() == 1) && |
| 197 !IsWhitespace(*lower_string.rbegin())) { |
| 198 const base::string16 gurl_spec = base::UTF8ToUTF16(gurl.spec()); |
| 199 const URLPrefix* best_inlineable_prefix = |
| 200 URLPrefix::BestURLPrefix(gurl_spec, terms_vector[0]); |
| 201 if (best_inlineable_prefix) { |
| 202 // When inline autocompleting this match, we're going to use the part of |
| 203 // the URL following the end of the matching text. However, it's possible |
| 204 // that FormatUrl(), when formatting this suggestion for display, |
| 205 // mucks with the text. We need to ensure that the text we're thinking |
| 206 // about highlighting isn't in the middle of a mucked sequence. In |
| 207 // particular, for the omnibox input of "x" or "xn", we may get a match |
| 208 // in a punycoded domain name such as http://www.xn--blahblah.com/. |
| 209 // When FormatUrl() processes the xn--blahblah part of the hostname, it'll |
| 210 // transform the whole thing into a series of unicode characters. It's |
| 211 // impossible to give the user an inline autocompletion of the text |
| 212 // following "x" or "xn" in this case because those characters no longer |
| 213 // exist in the displayed URL string. |
| 214 size_t offset = |
| 215 best_inlineable_prefix->prefix.length() + terms_vector[0].length(); |
| 216 base::OffsetAdjuster::UnadjustOffset(adjustments, &offset); |
| 217 if (offset != base::string16::npos) { |
| 218 // Initialize innermost_match. |
| 219 // The idea here is that matches that occur in the scheme or |
| 220 // "www." are worse than matches which don't. For the URLs |
| 221 // "http://www.google.com" and "http://wellsfargo.com", we want |
| 222 // the omnibox input "w" to cause the latter URL to rank higher |
| 223 // than the former. Note that this is not the same as checking |
| 224 // whether one match's inlinable prefix has more components than |
| 225 // the other match's, since in this example, both matches would |
| 226 // have an inlinable prefix of "http://", which is one component. |
| 227 // |
| 228 // Instead, we look for the overall best (i.e., most components) |
| 229 // prefix of the current URL, and then check whether the inlinable |
| 230 // prefix has that many components. If it does, this is an |
| 231 // "innermost" match, and should be boosted. In the example |
| 232 // above, the best prefixes for the two URLs have two and one |
| 233 // components respectively, while the inlinable prefixes each |
| 234 // have one component; this means the first match is not innermost |
| 235 // and the second match is innermost, resulting in us boosting the |
| 236 // second match. |
| 237 // |
| 238 // Now, the code that implements this. |
| 239 // The deepest prefix for this URL regardless of where the match is. |
| 240 const URLPrefix* best_prefix = |
| 241 URLPrefix::BestURLPrefix(gurl_spec, base::string16()); |
| 242 DCHECK(best_prefix); |
| 243 // If the URL is inlineable, we must have a match. Note the prefix that |
| 244 // makes it inlineable may be empty. |
| 245 can_inline = true; |
| 246 innermost_match = (best_inlineable_prefix->num_components == |
| 247 best_prefix->num_components); |
| 248 } |
| 249 } |
| 250 } |
| 251 |
| 252 const float topicality_score = GetTopicalityScore( |
| 253 terms_vector.size(), url, terms_to_word_starts_offsets, word_starts); |
| 254 const float frequency_score = GetFrequency(now, is_url_bookmarked, visits); |
| 255 raw_score = base::saturated_cast<int>(GetFinalRelevancyScore( |
| 256 topicality_score, frequency_score, *hqp_relevance_buckets_)); |
| 257 |
| 258 if (also_do_hup_like_scoring_ && can_inline) { |
| 259 // HistoryURL-provider-like scoring gives any match that is |
| 260 // capable of being inlined a certain minimum score. Some of these |
| 261 // are given a higher score that lets them be shown in inline. |
| 262 // This test here derives from the test in |
| 263 // HistoryURLProvider::PromoteMatchForInlineAutocomplete(). |
| 264 const bool promote_to_inline = |
| 265 (row.typed_count() > 1) || (IsHostOnly() && (row.typed_count() == 1)); |
| 266 int hup_like_score = |
| 267 promote_to_inline |
| 268 ? HistoryURLProvider::kScoreForBestInlineableResult |
| 269 : HistoryURLProvider::kBaseScoreForNonInlineableResult; |
| 270 |
| 271 // Also, if the user types the hostname of a host with a typed |
| 272 // visit, then everything from that host get given inlineable scores |
| 273 // (because the URL-that-you-typed will go first and everything |
| 274 // else will be assigned one minus the previous score, as coded |
| 275 // at the end of HistoryURLProvider::DoAutocomplete(). |
| 276 if (base::UTF8ToUTF16(gurl.host()) == terms_vector[0]) |
| 277 hup_like_score = HistoryURLProvider::kScoreForBestInlineableResult; |
| 278 |
| 279 // HistoryURLProvider has the function PromoteOrCreateShorterSuggestion() |
| 280 // that's meant to promote prefixes of the best match (if they've |
| 281 // been visited enough related to the best match) or |
| 282 // create/promote host-only suggestions (even if they've never |
| 283 // been typed). The code is complicated and we don't try to |
| 284 // duplicate the logic here. Instead, we handle a simple case: in |
| 285 // low-typed-count ranges, give host-only matches (i.e., |
| 286 // http://www.foo.com/ vs. http://www.foo.com/bar.html) a boost so |
| 287 // that the host-only match outscores all the other matches that |
| 288 // would normally have the same base score. This behavior is not |
| 289 // identical to what happens in HistoryURLProvider even in these |
| 290 // low typed count ranges--sometimes it will create/promote when |
| 291 // this test does not (indeed, we cannot create matches like HUP |
| 292 // can) and vice versa--but the underlying philosophy is similar. |
| 293 if (!promote_to_inline && IsHostOnly()) |
| 294 hup_like_score++; |
| 295 |
| 296 // All the other logic to goes into hup-like-scoring happens in |
| 297 // the tie-breaker case of MatchScoreGreater(). |
| 298 |
| 299 // Incorporate hup_like_score into raw_score. |
| 300 raw_score = std::max(raw_score, hup_like_score); |
| 301 } |
| 302 |
| 303 // Now that we're done processing this entry, correct the offsets of the |
| 304 // matches in |url_matches| so they point to offsets in the original URL |
| 305 // spec, not the cleaned-up URL string that we used for matching. |
| 306 std::vector<size_t> offsets = OffsetsFromTermMatches(url_matches); |
| 307 base::OffsetAdjuster::UnadjustOffsets(adjustments, &offsets); |
| 308 url_matches = ReplaceOffsetsInTermMatches(url_matches, offsets); |
| 309 } |
| 310 |
| 311 ScoredHistoryMatch::~ScoredHistoryMatch() { |
| 312 } |
| 313 |
| 314 // Comparison function for sorting ScoredMatches by their scores with |
| 315 // intelligent tie-breaking. |
| 316 bool ScoredHistoryMatch::MatchScoreGreater(const ScoredHistoryMatch& m1, |
| 317 const ScoredHistoryMatch& m2) { |
| 318 if (m1.raw_score != m2.raw_score) |
| 319 return m1.raw_score > m2.raw_score; |
| 320 |
| 321 // This tie-breaking logic is inspired by / largely copied from the |
| 322 // ordering logic in history_url_provider.cc CompareHistoryMatch(). |
| 323 |
| 324 // A URL that has been typed at all is better than one that has never been |
| 325 // typed. (Note "!"s on each side.) |
| 326 if (!m1.url_info.typed_count() != !m2.url_info.typed_count()) |
| 327 return m1.url_info.typed_count() > m2.url_info.typed_count(); |
| 328 |
| 329 // Innermost matches (matches after any scheme or "www.") are better than |
| 330 // non-innermost matches. |
| 331 if (m1.innermost_match != m2.innermost_match) |
| 332 return m1.innermost_match; |
| 333 |
| 334 // URLs that have been typed more often are better. |
| 335 if (m1.url_info.typed_count() != m2.url_info.typed_count()) |
| 336 return m1.url_info.typed_count() > m2.url_info.typed_count(); |
| 337 |
| 338 // For URLs that have each been typed once, a host (alone) is better |
| 339 // than a page inside. |
| 340 if (m1.url_info.typed_count() == 1) { |
| 341 if (m1.IsHostOnly() != m2.IsHostOnly()) |
| 342 return m1.IsHostOnly(); |
| 343 } |
| 344 |
| 345 // URLs that have been visited more often are better. |
| 346 if (m1.url_info.visit_count() != m2.url_info.visit_count()) |
| 347 return m1.url_info.visit_count() > m2.url_info.visit_count(); |
| 348 |
| 349 // URLs that have been visited more recently are better. |
| 350 return m1.url_info.last_visit() > m2.url_info.last_visit(); |
| 351 } |
| 352 |
| 353 // static |
| 354 TermMatches ScoredHistoryMatch::FilterTermMatchesByWordStarts( |
| 355 const TermMatches& term_matches, |
| 356 const WordStarts& terms_to_word_starts_offsets, |
| 357 const WordStarts& word_starts, |
| 358 size_t start_pos, |
| 359 size_t end_pos) { |
| 360 // Return early if no filtering is needed. |
| 361 if (start_pos == std::string::npos) |
| 362 return term_matches; |
| 363 TermMatches filtered_matches; |
| 364 WordStarts::const_iterator next_word_starts = word_starts.begin(); |
| 365 WordStarts::const_iterator end_word_starts = word_starts.end(); |
| 366 for (const auto& term_match : term_matches) { |
| 367 const size_t term_offset = |
| 368 terms_to_word_starts_offsets[term_match.term_num]; |
| 369 // Advance next_word_starts until it's >= the position of the term we're |
| 370 // considering (adjusted for where the word begins within the term). |
| 371 while ((next_word_starts != end_word_starts) && |
| 372 (*next_word_starts < (term_match.offset + term_offset))) |
| 373 ++next_word_starts; |
| 374 // Add the match if it's before the position we start filtering at or |
| 375 // after the position we stop filtering at (assuming we have a position |
| 376 // to stop filtering at) or if it's at a word boundary. |
| 377 if ((term_match.offset < start_pos) || |
| 378 ((end_pos != std::string::npos) && (term_match.offset >= end_pos)) || |
| 379 ((next_word_starts != end_word_starts) && |
| 380 (*next_word_starts == term_match.offset + term_offset))) |
| 381 filtered_matches.push_back(term_match); |
| 382 } |
| 383 return filtered_matches; |
| 384 } |
| 385 |
| 386 // static |
| 387 void ScoredHistoryMatch::Init() { |
| 388 static bool initialized = false; |
| 389 |
| 390 if (initialized) |
| 391 return; |
| 392 |
| 393 initialized = true; |
| 394 also_do_hup_like_scoring_ = OmniboxFieldTrial::HQPAlsoDoHUPLikeScoring(); |
| 395 bookmark_value_ = OmniboxFieldTrial::HQPBookmarkValue(); |
| 396 fix_frequency_bugs_ = OmniboxFieldTrial::HQPFixFrequencyScoringBugs(); |
| 397 allow_tld_matches_ = OmniboxFieldTrial::HQPAllowMatchInTLDValue(); |
| 398 allow_scheme_matches_ = OmniboxFieldTrial::HQPAllowMatchInSchemeValue(); |
| 399 num_title_words_to_allow_ = OmniboxFieldTrial::HQPNumTitleWordsToAllow(); |
| 400 |
| 401 InitRawTermScoreToTopicalityScoreArray(); |
| 402 InitDaysAgoToRecencyScoreArray(); |
| 403 InitHQPExperimentalParams(); |
| 404 } |
| 405 |
| 406 float ScoredHistoryMatch::GetTopicalityScore( |
| 407 const int num_terms, |
| 408 const base::string16& url, |
| 409 const WordStarts& terms_to_word_starts_offsets, |
| 410 const RowWordStarts& word_starts) { |
| 411 // A vector that accumulates per-term scores. The strongest match--a |
| 412 // match in the hostname at a word boundary--is worth 10 points. |
| 413 // Everything else is less. In general, a match that's not at a word |
| 414 // boundary is worth about 1/4th or 1/5th of a match at the word boundary |
| 415 // in the same part of the URL/title. |
| 416 DCHECK_GT(num_terms, 0); |
| 417 std::vector<int> term_scores(num_terms, 0); |
| 418 WordStarts::const_iterator next_word_starts = |
| 419 word_starts.url_word_starts_.begin(); |
| 420 WordStarts::const_iterator end_word_starts = |
| 421 word_starts.url_word_starts_.end(); |
| 422 const size_t question_mark_pos = url.find('?'); |
| 423 const size_t colon_pos = url.find(':'); |
| 424 // The + 3 skips the // that probably appears in the protocol |
| 425 // after the colon. If the protocol doesn't have two slashes after |
| 426 // the colon, that's okay--all this ends up doing is starting our |
| 427 // search for the next / a few characters into the hostname. The |
| 428 // only times this can cause problems is if we have a protocol without |
| 429 // a // after the colon and the hostname is only one or two characters. |
| 430 // This isn't worth worrying about. |
| 431 const size_t end_of_hostname_pos = (colon_pos != std::string::npos) |
| 432 ? url.find('/', colon_pos + 3) |
| 433 : url.find('/'); |
| 434 size_t last_part_of_hostname_pos = (end_of_hostname_pos != std::string::npos) |
| 435 ? url.rfind('.', end_of_hostname_pos) |
| 436 : url.rfind('.'); |
| 437 // Loop through all URL matches and score them appropriately. |
| 438 // First, filter all matches not at a word boundary and in the path (or |
| 439 // later). |
| 440 url_matches = FilterTermMatchesByWordStarts( |
| 441 url_matches, terms_to_word_starts_offsets, word_starts.url_word_starts_, |
| 442 end_of_hostname_pos, std::string::npos); |
| 443 if (colon_pos != std::string::npos) { |
| 444 // Also filter matches not at a word boundary and in the scheme. |
| 445 url_matches = FilterTermMatchesByWordStarts( |
| 446 url_matches, terms_to_word_starts_offsets, word_starts.url_word_starts_, |
| 447 0, colon_pos); |
| 448 } |
| 449 for (const auto& url_match : url_matches) { |
| 450 const size_t term_offset = terms_to_word_starts_offsets[url_match.term_num]; |
| 451 // Advance next_word_starts until it's >= the position of the term we're |
| 452 // considering (adjusted for where the word begins within the term). |
| 453 while ((next_word_starts != end_word_starts) && |
| 454 (*next_word_starts < (url_match.offset + term_offset))) { |
| 455 ++next_word_starts; |
| 456 } |
| 457 const bool at_word_boundary = |
| 458 (next_word_starts != end_word_starts) && |
| 459 (*next_word_starts == url_match.offset + term_offset); |
| 460 if ((question_mark_pos != std::string::npos) && |
| 461 (url_match.offset > question_mark_pos)) { |
| 462 // The match is in a CGI ?... fragment. |
| 463 DCHECK(at_word_boundary); |
| 464 term_scores[url_match.term_num] += 5; |
| 465 } else if ((end_of_hostname_pos != std::string::npos) && |
| 466 (url_match.offset > end_of_hostname_pos)) { |
| 467 // The match is in the path. |
| 468 DCHECK(at_word_boundary); |
| 469 term_scores[url_match.term_num] += 8; |
| 470 } else if ((colon_pos == std::string::npos) || |
| 471 (url_match.offset > colon_pos)) { |
| 472 // The match is in the hostname. |
| 473 if ((last_part_of_hostname_pos == std::string::npos) || |
| 474 (url_match.offset < last_part_of_hostname_pos)) { |
| 475 // Either there are no dots in the hostname or this match isn't |
| 476 // the last dotted component. |
| 477 term_scores[url_match.term_num] += at_word_boundary ? 10 : 2; |
| 478 } else { |
| 479 // The match is in the last part of a dotted hostname (usually this |
| 480 // is the top-level domain .com, .net, etc.). |
| 481 if (allow_tld_matches_) |
| 482 term_scores[url_match.term_num] += at_word_boundary ? 10 : 0; |
| 483 } |
| 484 } else { |
| 485 // The match is in the protocol (a.k.a. scheme). |
| 486 // Matches not at a word boundary should have been filtered already. |
| 487 DCHECK(at_word_boundary); |
| 488 match_in_scheme = true; |
| 489 if (allow_scheme_matches_) |
| 490 term_scores[url_match.term_num] += 10; |
| 491 } |
| 492 } |
| 493 // Now do the analogous loop over all matches in the title. |
| 494 next_word_starts = word_starts.title_word_starts_.begin(); |
| 495 end_word_starts = word_starts.title_word_starts_.end(); |
| 496 size_t word_num = 0; |
| 497 title_matches = FilterTermMatchesByWordStarts( |
| 498 title_matches, terms_to_word_starts_offsets, |
| 499 word_starts.title_word_starts_, 0, std::string::npos); |
| 500 for (const auto& title_match : title_matches) { |
| 501 const size_t term_offset = |
| 502 terms_to_word_starts_offsets[title_match.term_num]; |
| 503 // Advance next_word_starts until it's >= the position of the term we're |
| 504 // considering (adjusted for where the word begins within the term). |
| 505 while ((next_word_starts != end_word_starts) && |
| 506 (*next_word_starts < (title_match.offset + term_offset))) { |
| 507 ++next_word_starts; |
| 508 ++word_num; |
| 509 } |
| 510 if (word_num >= num_title_words_to_allow_) |
| 511 break; // only count the first ten words |
| 512 DCHECK(next_word_starts != end_word_starts); |
| 513 DCHECK_EQ(*next_word_starts, title_match.offset + term_offset) |
| 514 << "not at word boundary"; |
| 515 term_scores[title_match.term_num] += 8; |
| 516 } |
| 517 // TODO(mpearson): Restore logic for penalizing out-of-order matches. |
| 518 // (Perhaps discount them by 0.8?) |
| 519 // TODO(mpearson): Consider: if the earliest match occurs late in the string, |
| 520 // should we discount it? |
| 521 // TODO(mpearson): Consider: do we want to score based on how much of the |
| 522 // input string the input covers? (I'm leaning toward no.) |
| 523 |
| 524 // Compute the topicality_score as the sum of transformed term_scores. |
| 525 float topicality_score = 0; |
| 526 for (int term_score : term_scores) { |
| 527 // Drop this URL if it seems like a term didn't appear or, more precisely, |
| 528 // didn't appear in a part of the URL or title that we trust enough |
| 529 // to give it credit for. For instance, terms that appear in the middle |
| 530 // of a CGI parameter get no credit. Almost all the matches dropped |
| 531 // due to this test would look stupid if shown to the user. |
| 532 if (term_score == 0) |
| 533 return 0; |
| 534 topicality_score += raw_term_score_to_topicality_score[std::min( |
| 535 term_score, kMaxRawTermScore - 1)]; |
| 536 } |
| 537 // TODO(mpearson): If there are multiple terms, consider taking the |
| 538 // geometric mean of per-term scores rather than the arithmetic mean. |
| 539 |
| 540 const float final_topicality_score = topicality_score / num_terms; |
| 541 |
| 542 // Demote the URL if the topicality score is less than threshold. |
| 543 if (hqp_experimental_scoring_enabled_ && |
| 544 (final_topicality_score < topicality_threshold_)) { |
| 545 return 0.0; |
| 546 } |
| 547 |
| 548 return final_topicality_score; |
| 549 } |
| 550 |
| 551 float ScoredHistoryMatch::GetRecencyScore(int last_visit_days_ago) const { |
| 552 // Lookup the score in days_ago_to_recency_score, treating |
| 553 // everything older than what we've precomputed as the oldest thing |
| 554 // we've precomputed. The std::max is to protect against corruption |
| 555 // in the database (in case last_visit_days_ago is negative). |
| 556 return days_ago_to_recency_score[std::max( |
| 557 std::min(last_visit_days_ago, kDaysToPrecomputeRecencyScoresFor - 1), 0)]; |
| 558 } |
| 559 |
| 560 float ScoredHistoryMatch::GetFrequency(const base::Time& now, |
| 561 const bool bookmarked, |
| 562 const VisitInfoVector& visits) const { |
| 563 // Compute the weighted average |value_of_transition| over the last at |
| 564 // most kMaxVisitsToScore visits, where each visit is weighted using |
| 565 // GetRecencyScore() based on how many days ago it happened. Use |
| 566 // kMaxVisitsToScore as the denominator for the average regardless of |
| 567 // how many visits there were in order to penalize a match that has |
| 568 // fewer visits than kMaxVisitsToScore. |
| 569 float summed_visit_points = 0; |
| 570 const size_t max_visit_to_score = |
| 571 std::min(visits.size(), ScoredHistoryMatch::kMaxVisitsToScore); |
| 572 for (size_t i = 0; i < max_visit_to_score; ++i) { |
| 573 const ui::PageTransition page_transition = fix_frequency_bugs_ ? |
| 574 ui::PageTransitionStripQualifier(visits[i].second) : visits[i].second; |
| 575 int value_of_transition = |
| 576 (page_transition == ui::PAGE_TRANSITION_TYPED) ? 20 : 1; |
| 577 if (bookmarked) |
| 578 value_of_transition = std::max(value_of_transition, bookmark_value_); |
| 579 const float bucket_weight = |
| 580 GetRecencyScore((now - visits[i].first).InDays()); |
| 581 summed_visit_points += (value_of_transition * bucket_weight); |
| 582 } |
| 583 if (fix_frequency_bugs_) |
| 584 return summed_visit_points / ScoredHistoryMatch::kMaxVisitsToScore; |
| 585 return visits.size() * summed_visit_points / |
| 586 ScoredHistoryMatch::kMaxVisitsToScore; |
| 587 } |
| 588 |
| 589 // static |
| 590 float ScoredHistoryMatch::GetFinalRelevancyScore( |
| 591 float topicality_score, |
| 592 float frequency_score, |
| 593 const std::vector<ScoreMaxRelevance>& hqp_relevance_buckets) { |
| 594 DCHECK(hqp_relevance_buckets.size() > 0); |
| 595 DCHECK_EQ(hqp_relevance_buckets[0].first, 0.0); |
| 596 |
| 597 if (topicality_score == 0) |
| 598 return 0; |
| 599 // Here's how to interpret intermediate_score: Suppose the omnibox |
| 600 // has one input term. Suppose we have a URL for which the omnibox |
| 601 // input term has a single URL hostname hit at a word boundary. (This |
| 602 // implies topicality_score = 1.0.). Then the intermediate_score for |
| 603 // this URL will depend entirely on the frequency_score with |
| 604 // this interpretation: |
| 605 // - a single typed visit more than three months ago, no other visits -> 0.2 |
| 606 // - a visit every three days, no typed visits -> 0.706 |
| 607 // - a visit every day, no typed visits -> 0.916 |
| 608 // - a single typed visit yesterday, no other visits -> 2.0 |
| 609 // - a typed visit once a week -> 11.77 |
| 610 // - a typed visit every three days -> 14.12 |
| 611 // - at least ten typed visits today -> 20.0 (maximum score) |
| 612 // |
| 613 // The below code maps intermediate_score to the range [0, 1399]. |
| 614 // For example: |
| 615 // HQP default scoring buckets: "0.0:400,1.5:600,12.0:1300,20.0:1399" |
| 616 // We will linearly interpolate the scores between: |
| 617 // 0 to 1.5 --> 400 to 600 |
| 618 // 1.5 to 12.0 --> 600 to 1300 |
| 619 // 12.0 to 20.0 --> 1300 to 1399 |
| 620 // >= 20.0 --> 1399 |
| 621 // |
| 622 // The score maxes out at 1399 (i.e., cannot beat a good inlineable result |
| 623 // from HistoryURL provider). |
| 624 const float intermediate_score = topicality_score * frequency_score; |
| 625 |
| 626 // Find the threshold where intermediate score is greater than bucket. |
| 627 size_t i = 1; |
| 628 for (; i < hqp_relevance_buckets.size(); ++i) { |
| 629 const ScoreMaxRelevance& hqp_bucket = hqp_relevance_buckets[i]; |
| 630 if (intermediate_score >= hqp_bucket.first) { |
| 631 continue; |
| 632 } |
| 633 const ScoreMaxRelevance& previous_bucket = hqp_relevance_buckets[i - 1]; |
| 634 const float slope = ((hqp_bucket.second - previous_bucket.second) / |
| 635 (hqp_bucket.first - previous_bucket.first)); |
| 636 return (previous_bucket.second + |
| 637 (slope * (intermediate_score - previous_bucket.first))); |
| 638 } |
| 639 // It will reach this stage when the score is > highest bucket score. |
| 640 // Return the highest bucket score. |
| 641 return hqp_relevance_buckets[i - 1].second; |
| 642 } |
| 643 |
| 644 // static |
| 645 void ScoredHistoryMatch::InitHQPExperimentalParams() { |
| 646 // These are default HQP relevance scoring buckets. |
| 647 // See GetFinalRelevancyScore() for details. |
| 648 std::string hqp_relevance_buckets_str = "0.0:400,1.5:600,12.0:1300,20.0:1399"; |
| 649 |
| 650 // Fetch the experiment params if they are any. |
| 651 hqp_experimental_scoring_enabled_ = |
| 652 OmniboxFieldTrial::HQPExperimentalScoringEnabled(); |
| 653 |
| 654 if (hqp_experimental_scoring_enabled_) { |
| 655 // Add the topicality threshold from experiment params. |
| 656 float hqp_experimental_topicality_threhold = |
| 657 OmniboxFieldTrial::HQPExperimentalTopicalityThreshold(); |
| 658 topicality_threshold_ = hqp_experimental_topicality_threhold; |
| 659 |
| 660 // Add the HQP experimental scoring buckets. |
| 661 std::string hqp_experimental_scoring_buckets = |
| 662 OmniboxFieldTrial::HQPExperimentalScoringBuckets(); |
| 663 if (!hqp_experimental_scoring_buckets.empty()) |
| 664 hqp_relevance_buckets_str = hqp_experimental_scoring_buckets; |
| 665 } |
| 666 |
| 667 // Parse the hqp_relevance_buckets_str string once and store them in vector |
| 668 // which is easy to access. |
| 669 hqp_relevance_buckets_ = |
| 670 new std::vector<ScoredHistoryMatch::ScoreMaxRelevance>(); |
| 671 |
| 672 bool is_valid_bucket_str = GetHQPBucketsFromString(hqp_relevance_buckets_str, |
| 673 hqp_relevance_buckets_); |
| 674 DCHECK(is_valid_bucket_str); |
| 675 } |
| 676 |
| 677 // static |
| 678 bool ScoredHistoryMatch::GetHQPBucketsFromString( |
| 679 const std::string& buckets_str, |
| 680 std::vector<ScoreMaxRelevance>* hqp_buckets) { |
| 681 DCHECK(hqp_buckets != NULL); |
| 682 DCHECK(!buckets_str.empty()); |
| 683 |
| 684 base::StringPairs kv_pairs; |
| 685 if (base::SplitStringIntoKeyValuePairs(buckets_str, ':', ',', &kv_pairs)) { |
| 686 for (base::StringPairs::const_iterator it = kv_pairs.begin(); |
| 687 it != kv_pairs.end(); ++it) { |
| 688 ScoreMaxRelevance bucket; |
| 689 bool is_valid_intermediate_score = |
| 690 base::StringToDouble(it->first, &bucket.first); |
| 691 DCHECK(is_valid_intermediate_score); |
| 692 bool is_valid_hqp_score = base::StringToInt(it->second, &bucket.second); |
| 693 DCHECK(is_valid_hqp_score); |
| 694 hqp_buckets->push_back(bucket); |
| 695 } |
| 696 return true; |
| 697 } |
| 698 return false; |
| 699 } |
OLD | NEW |