Index: src/IceTargetLoweringX8632.cpp |
diff --git a/src/IceTargetLoweringX8632.cpp b/src/IceTargetLoweringX8632.cpp |
index 506b315079909210d3b1f7c9dc1fbee21e0e53ea..af460cb06767e35512d7c2e7e57f5ed108dc466d 100644 |
--- a/src/IceTargetLoweringX8632.cpp |
+++ b/src/IceTargetLoweringX8632.cpp |
@@ -246,6 +246,25 @@ ICETYPE_TABLE |
#undef X |
} // end of namespace dummy3 |
+// A helper class to ease the settings of RandomizationPoolingPause |
+// to disable constant blinding or pooling for some translation phases. |
+class BoolFlagSaver { |
+ BoolFlagSaver() = delete; |
+ BoolFlagSaver(const BoolFlagSaver &) = delete; |
+ BoolFlagSaver &operator=(const BoolFlagSaver &) = delete; |
+ |
+public: |
+ BoolFlagSaver(bool &F, bool NewValue) : Flag(F) { |
+ OldValue = F; |
+ F = NewValue; |
+ } |
+ ~BoolFlagSaver() { Flag = OldValue; } |
+ |
+private: |
+ bool &Flag; |
Jim Stichnoth
2015/06/19 16:51:03
Can you do this?
bool &const Flag;
const bool
qining
2015/06/19 20:22:25
I can initialize OldValue in the initialization li
Jim Stichnoth
2015/06/19 23:12:15
I think I was wrong about const and Flag, sorry.
|
+ bool OldValue; |
+}; |
+ |
} // end of anonymous namespace |
BoolFoldingEntry::BoolFoldingEntry(Inst *I) |
@@ -399,8 +418,8 @@ TargetX8632::TargetX8632(Cfg *Func) |
InstructionSet(static_cast<X86InstructionSet>( |
Func->getContext()->getFlags().getTargetInstructionSet() - |
TargetInstructionSet::X86InstructionSet_Begin)), |
- IsEbpBasedFrame(false), NeedsStackAlignment(false), |
- SpillAreaSizeBytes(0) { |
+ IsEbpBasedFrame(false), NeedsStackAlignment(false), SpillAreaSizeBytes(0), |
+ RandomizationPoolingPaused(false) { |
static_assert((X86InstructionSet::End - X86InstructionSet::Begin) == |
(TargetInstructionSet::X86InstructionSet_End - |
TargetInstructionSet::X86InstructionSet_Begin), |
@@ -482,7 +501,11 @@ void TargetX8632::translateO2() { |
return; |
Func->dump("After x86 address mode opt"); |
- doLoadOpt(); |
+ // qining: disable constant blinding or pooling for load optimization |
+ { |
+ BoolFlagSaver B(RandomizationPoolingPaused, true); |
+ doLoadOpt(); |
+ } |
Func->genCode(); |
if (Func->hasError()) |
return; |
@@ -509,7 +532,13 @@ void TargetX8632::translateO2() { |
Func->dump("After linear scan regalloc"); |
if (Ctx->getFlags().getPhiEdgeSplit()) { |
- Func->advancedPhiLowering(); |
+ // qining: In general we need to pause constant blinding or pooling |
Jim Stichnoth
2015/06/19 16:51:03
Don't tag comments with your name. Use TODO(qinin
qining
2015/06/19 20:22:26
Done.
|
+ // during advanced phi lowering, unless the lowering assignment has a |
+ // physical register for the Dest Variable |
+ { |
+ BoolFlagSaver B(RandomizationPoolingPaused, true); |
+ Func->advancedPhiLowering(); |
+ } |
Func->dump("After advanced Phi lowering"); |
} |
@@ -762,8 +791,9 @@ void TargetX8632::emitVariable(const Variable *Var) const { |
Str << "%" << getRegName(Var->getRegNum(), Var->getType()); |
return; |
} |
- if (Var->getWeight().isInf()) |
+ if (Var->getWeight().isInf()) { |
llvm_unreachable("Infinite-weight Variable has no register assigned"); |
+ } |
int32_t Offset = Var->getStackOffset(); |
if (!hasFramePointer()) |
Offset += getStackAdjustment(); |
@@ -776,8 +806,9 @@ void TargetX8632::emitVariable(const Variable *Var) const { |
X8632::Address TargetX8632::stackVarToAsmOperand(const Variable *Var) const { |
if (Var->hasReg()) |
llvm_unreachable("Stack Variable has a register assigned"); |
- if (Var->getWeight().isInf()) |
+ if (Var->getWeight().isInf()) { |
llvm_unreachable("Infinite-weight Variable has no register assigned"); |
+ } |
int32_t Offset = Var->getStackOffset(); |
if (!hasFramePointer()) |
Offset += getStackAdjustment(); |
@@ -1168,12 +1199,18 @@ Operand *TargetX8632::loOperand(Operand *Operand) { |
return Var->getLo(); |
} |
if (ConstantInteger64 *Const = llvm::dyn_cast<ConstantInteger64>(Operand)) { |
- return Ctx->getConstantInt32(static_cast<uint32_t>(Const->getValue())); |
- } |
- if (OperandX8632Mem *Mem = llvm::dyn_cast<OperandX8632Mem>(Operand)) { |
- return OperandX8632Mem::create(Func, IceType_i32, Mem->getBase(), |
- Mem->getOffset(), Mem->getIndex(), |
- Mem->getShift(), Mem->getSegmentRegister()); |
+ ConstantInteger32 *ConstInt = llvm::dyn_cast<ConstantInteger32>( |
+ Ctx->getConstantInt32(static_cast<int32_t>(Const->getValue()))); |
+ return legalize(ConstInt); |
+ } |
+ if (OperandX8632Mem *Mem = llvm::cast<OperandX8632Mem>(Operand)) { |
Jim Stichnoth
2015/06/19 16:51:03
llvm::dyn_cast
qining
2015/06/19 20:22:25
Done.
|
+ OperandX8632Mem *MemOperand = OperandX8632Mem::create( |
+ Func, IceType_i32, Mem->getBase(), Mem->getOffset(), Mem->getIndex(), |
+ Mem->getShift(), Mem->getSegmentRegister()); |
+ // Test if we should randomize or pool the offset, if so randomize it or |
+ // pool it then create mem operand with the blinded/pooled constant. |
+ // Otherwise, return the mem operand as ordinary mem operand. |
+ return legalize(MemOperand); |
} |
llvm_unreachable("Unsupported operand type"); |
return nullptr; |
@@ -1189,8 +1226,10 @@ Operand *TargetX8632::hiOperand(Operand *Operand) { |
return Var->getHi(); |
} |
if (ConstantInteger64 *Const = llvm::dyn_cast<ConstantInteger64>(Operand)) { |
- return Ctx->getConstantInt32( |
- static_cast<uint32_t>(Const->getValue() >> 32)); |
+ ConstantInteger32 *ConstInt = llvm::dyn_cast<ConstantInteger32>( |
+ Ctx->getConstantInt32(static_cast<int32_t>(Const->getValue() >> 32))); |
+ // check if we need to blind/pool the constant |
+ return legalize(ConstInt); |
} |
if (OperandX8632Mem *Mem = llvm::dyn_cast<OperandX8632Mem>(Operand)) { |
Constant *Offset = Mem->getOffset(); |
@@ -1206,9 +1245,13 @@ Operand *TargetX8632::hiOperand(Operand *Operand) { |
Ctx->getConstantSym(4 + SymOffset->getOffset(), SymOffset->getName(), |
SymOffset->getSuppressMangling()); |
} |
- return OperandX8632Mem::create(Func, IceType_i32, Mem->getBase(), Offset, |
- Mem->getIndex(), Mem->getShift(), |
- Mem->getSegmentRegister()); |
+ OperandX8632Mem *MemOperand = OperandX8632Mem::create( |
+ Func, IceType_i32, Mem->getBase(), Offset, Mem->getIndex(), |
+ Mem->getShift(), Mem->getSegmentRegister()); |
+ // Test if the Offset is an eligible i32 constants for randomization and |
+ // pooling. Blind/pool it if it is. Otherwise return as oridinary mem |
+ // operand. |
+ return legalize(MemOperand); |
} |
llvm_unreachable("Unsupported operand type"); |
return nullptr; |
@@ -1287,6 +1330,102 @@ void TargetX8632::lowerAlloca(const InstAlloca *Inst) { |
_mov(Dest, esp); |
} |
+// Strength-reduce scalar integer multiplication by a constant (for |
+// i32 or narrower) for certain constants. The lea instruction can be |
+// used to multiply by 3, 5, or 9, and the lsh instruction can be used |
+// to multiply by powers of 2. These can be combined such that |
+// e.g. multiplying by 100 can be done as 2 lea-based multiplies by 5, |
+// combined with left-shifting by 2. |
+bool TargetX8632::optimizeScalarMul(Variable *Dest, Operand *Src0, |
+ int32_t Src1) { |
+ // Disable this optimization for Om1 and O0, just to keep things |
+ // simple there. |
+ if (Ctx->getFlags().getOptLevel() < Opt_1) |
+ return false; |
+ Type Ty = Dest->getType(); |
+ Variable *T = nullptr; |
+ if (Src1 == -1) { |
+ _mov(T, Src0); |
+ _neg(T); |
+ _mov(Dest, T); |
+ return true; |
+ } |
+ if (Src1 == 0) { |
+ _mov(Dest, Ctx->getConstantZero(Ty)); |
+ return true; |
+ } |
+ if (Src1 == 1) { |
+ _mov(T, Src0); |
+ _mov(Dest, T); |
+ return true; |
+ } |
+ // Don't bother with the edge case where Src1 == MININT. |
+ if (Src1 == -Src1) |
+ return false; |
+ const bool Src1IsNegative = Src1 < 0; |
+ if (Src1IsNegative) |
+ Src1 = -Src1; |
+ uint32_t Count9 = 0; |
+ uint32_t Count5 = 0; |
+ uint32_t Count3 = 0; |
+ uint32_t Count2 = 0; |
+ uint32_t CountOps = 0; |
+ while (Src1 > 1) { |
+ if (Src1 % 9 == 0) { |
+ ++CountOps; |
+ ++Count9; |
+ Src1 /= 9; |
+ } else if (Src1 % 5 == 0) { |
+ ++CountOps; |
+ ++Count5; |
+ Src1 /= 5; |
+ } else if (Src1 % 3 == 0) { |
+ ++CountOps; |
+ ++Count3; |
+ Src1 /= 3; |
+ } else if (Src1 % 2 == 0) { |
+ if (Count2 == 0) |
+ ++CountOps; |
+ ++Count2; |
+ Src1 /= 2; |
+ } else { |
+ return false; |
+ } |
+ } |
+ // Lea optimization only works for i16 and i32 types, not i8. |
+ if (Ty != IceType_i16 && Ty != IceType_i32 && (Count3 || Count5 || Count9)) |
+ return false; |
+ // Limit the number of lea/shl operations for a single multiply, to |
+ // a somewhat arbitrary choice of 3. |
+ const uint32_t MaxOpsForOptimizedMul = 3; |
+ if (CountOps > MaxOpsForOptimizedMul) |
+ return false; |
+ _mov(T, Src0); |
+ Constant *Zero = Ctx->getConstantZero(IceType_i32); |
+ for (uint32_t i = 0; i < Count9; ++i) { |
+ const uint16_t Shift = 3; // log2(9-1) |
+ _lea(T, OperandX8632Mem::create(Func, IceType_void, T, Zero, T, Shift)); |
+ _set_dest_nonkillable(); |
+ } |
+ for (uint32_t i = 0; i < Count5; ++i) { |
+ const uint16_t Shift = 2; // log2(5-1) |
+ _lea(T, OperandX8632Mem::create(Func, IceType_void, T, Zero, T, Shift)); |
+ _set_dest_nonkillable(); |
+ } |
+ for (uint32_t i = 0; i < Count3; ++i) { |
+ const uint16_t Shift = 1; // log2(3-1) |
+ _lea(T, OperandX8632Mem::create(Func, IceType_void, T, Zero, T, Shift)); |
+ _set_dest_nonkillable(); |
+ } |
+ if (Count2) { |
+ _shl(T, Ctx->getConstantInt(Ty, Count2)); |
+ } |
+ if (Src1IsNegative) |
+ _neg(T); |
+ _mov(Dest, T); |
+ return true; |
+} |
+ |
void TargetX8632::lowerArithmetic(const InstArithmetic *Inst) { |
Variable *Dest = Inst->getDest(); |
Operand *Src0 = legalize(Inst->getSrc(0)); |
@@ -1294,8 +1433,47 @@ void TargetX8632::lowerArithmetic(const InstArithmetic *Inst) { |
if (Inst->isCommutative()) { |
if (!llvm::isa<Variable>(Src0) && llvm::isa<Variable>(Src1)) |
std::swap(Src0, Src1); |
+ if (llvm::isa<Constant>(Src0) && !llvm::isa<Constant>(Src1)) |
+ std::swap(Src0, Src1); |
} |
if (Dest->getType() == IceType_i64) { |
+ switch (Inst->getOp()) { |
Jim Stichnoth
2015/06/19 16:51:03
Add a comment explaining why these instructions ar
qining
2015/06/19 20:22:26
Done.
|
+ case InstArithmetic::Udiv: { |
+ const SizeT MaxSrcs = 2; |
+ InstCall *Call = makeHelperCall(H_udiv_i64, Dest, MaxSrcs); |
+ Call->addArg(Inst->getSrc(0)); |
+ Call->addArg(Inst->getSrc(1)); |
+ lowerCall(Call); |
+ return; |
+ } |
+ case InstArithmetic::Sdiv: { |
+ const SizeT MaxSrcs = 2; |
+ InstCall *Call = makeHelperCall(H_sdiv_i64, Dest, MaxSrcs); |
+ Call->addArg(Inst->getSrc(0)); |
+ Call->addArg(Inst->getSrc(1)); |
+ lowerCall(Call); |
+ return; |
+ } |
+ case InstArithmetic::Urem: { |
+ const SizeT MaxSrcs = 2; |
+ InstCall *Call = makeHelperCall(H_urem_i64, Dest, MaxSrcs); |
+ Call->addArg(Inst->getSrc(0)); |
+ Call->addArg(Inst->getSrc(1)); |
+ lowerCall(Call); |
+ return; |
+ } |
+ case InstArithmetic::Srem: { |
+ const SizeT MaxSrcs = 2; |
+ InstCall *Call = makeHelperCall(H_srem_i64, Dest, MaxSrcs); |
+ Call->addArg(Inst->getSrc(0)); |
+ Call->addArg(Inst->getSrc(1)); |
+ lowerCall(Call); |
+ return; |
+ } |
+ default: |
+ break; |
+ } |
+ |
Variable *DestLo = llvm::cast<Variable>(loOperand(Dest)); |
Variable *DestHi = llvm::cast<Variable>(hiOperand(Dest)); |
Operand *Src0Lo = loOperand(Src0); |
@@ -1485,34 +1663,6 @@ void TargetX8632::lowerArithmetic(const InstArithmetic *Inst) { |
_mov(DestLo, T_2); |
_mov(DestHi, T_3); |
} break; |
- case InstArithmetic::Udiv: { |
- const SizeT MaxSrcs = 2; |
- InstCall *Call = makeHelperCall(H_udiv_i64, Dest, MaxSrcs); |
- Call->addArg(Inst->getSrc(0)); |
- Call->addArg(Inst->getSrc(1)); |
- lowerCall(Call); |
- } break; |
- case InstArithmetic::Sdiv: { |
- const SizeT MaxSrcs = 2; |
- InstCall *Call = makeHelperCall(H_sdiv_i64, Dest, MaxSrcs); |
- Call->addArg(Inst->getSrc(0)); |
- Call->addArg(Inst->getSrc(1)); |
- lowerCall(Call); |
- } break; |
- case InstArithmetic::Urem: { |
- const SizeT MaxSrcs = 2; |
- InstCall *Call = makeHelperCall(H_urem_i64, Dest, MaxSrcs); |
- Call->addArg(Inst->getSrc(0)); |
- Call->addArg(Inst->getSrc(1)); |
- lowerCall(Call); |
- } break; |
- case InstArithmetic::Srem: { |
- const SizeT MaxSrcs = 2; |
- InstCall *Call = makeHelperCall(H_srem_i64, Dest, MaxSrcs); |
- Call->addArg(Inst->getSrc(0)); |
- Call->addArg(Inst->getSrc(1)); |
- lowerCall(Call); |
- } break; |
case InstArithmetic::Fadd: |
case InstArithmetic::Fsub: |
case InstArithmetic::Fmul: |
@@ -1520,8 +1670,13 @@ void TargetX8632::lowerArithmetic(const InstArithmetic *Inst) { |
case InstArithmetic::Frem: |
llvm_unreachable("FP instruction with i64 type"); |
break; |
+ default: |
Jim Stichnoth
2015/06/19 16:51:03
Don't use default, instead just explicitly list Ud
qining
2015/06/19 20:22:25
Done.
|
+ llvm_unreachable("Unknown instruction with i64 type"); |
+ break; |
} |
- } else if (isVectorType(Dest->getType())) { |
+ return; |
+ } |
+ if (isVectorType(Dest->getType())) { |
// TODO: Trap on integer divide and integer modulo by zero. |
// See: https://code.google.com/p/nativeclient/issues/detail?id=3899 |
if (llvm::isa<OperandX8632Mem>(Src1)) |
@@ -1650,175 +1805,248 @@ void TargetX8632::lowerArithmetic(const InstArithmetic *Inst) { |
scalarizeArithmetic(Inst->getOp(), Dest, Src0, Src1); |
break; |
} |
- } else { // Dest->getType() is non-i64 scalar |
- Variable *T_edx = nullptr; |
- Variable *T = nullptr; |
- switch (Inst->getOp()) { |
- case InstArithmetic::_num: |
- llvm_unreachable("Unknown arithmetic operator"); |
- break; |
- case InstArithmetic::Add: |
- _mov(T, Src0); |
- _add(T, Src1); |
- _mov(Dest, T); |
- break; |
- case InstArithmetic::And: |
- _mov(T, Src0); |
- _and(T, Src1); |
- _mov(Dest, T); |
- break; |
- case InstArithmetic::Or: |
- _mov(T, Src0); |
- _or(T, Src1); |
- _mov(Dest, T); |
- break; |
- case InstArithmetic::Xor: |
+ return; |
+ } |
+ Variable *T_edx = nullptr; |
+ Variable *T = nullptr; |
+ switch (Inst->getOp()) { |
+ case InstArithmetic::_num: |
+ llvm_unreachable("Unknown arithmetic operator"); |
+ break; |
+ case InstArithmetic::Add: |
+ _mov(T, Src0); |
+ _add(T, Src1); |
+ _mov(Dest, T); |
+ break; |
+ case InstArithmetic::And: |
+ _mov(T, Src0); |
+ _and(T, Src1); |
+ _mov(Dest, T); |
+ break; |
+ case InstArithmetic::Or: |
+ _mov(T, Src0); |
+ _or(T, Src1); |
+ _mov(Dest, T); |
+ break; |
+ case InstArithmetic::Xor: |
+ _mov(T, Src0); |
+ _xor(T, Src1); |
+ _mov(Dest, T); |
+ break; |
+ case InstArithmetic::Sub: |
+ _mov(T, Src0); |
+ _sub(T, Src1); |
+ _mov(Dest, T); |
+ break; |
+ case InstArithmetic::Mul: |
+ if (auto *C = llvm::dyn_cast<ConstantInteger32>(Src1)) { |
+ if (optimizeScalarMul(Dest, Src0, C->getValue())) |
+ return; |
+ } |
+ // The 8-bit version of imul only allows the form "imul r/m8" |
+ // where T must be in eax. |
+ if (isByteSizedArithType(Dest->getType())) { |
+ _mov(T, Src0, RegX8632::Reg_eax); |
+ Src1 = legalize(Src1, Legal_Reg | Legal_Mem); |
+ } else { |
_mov(T, Src0); |
- _xor(T, Src1); |
+ } |
+ _imul(T, Src1); |
+ _mov(Dest, T); |
+ break; |
+ case InstArithmetic::Shl: |
+ _mov(T, Src0); |
+ if (!llvm::isa<Constant>(Src1)) |
+ Src1 = legalizeToVar(Src1, RegX8632::Reg_ecx); |
+ _shl(T, Src1); |
+ _mov(Dest, T); |
+ break; |
+ case InstArithmetic::Lshr: |
+ _mov(T, Src0); |
+ if (!llvm::isa<Constant>(Src1)) |
+ Src1 = legalizeToVar(Src1, RegX8632::Reg_ecx); |
+ _shr(T, Src1); |
+ _mov(Dest, T); |
+ break; |
+ case InstArithmetic::Ashr: |
+ _mov(T, Src0); |
+ if (!llvm::isa<Constant>(Src1)) |
+ Src1 = legalizeToVar(Src1, RegX8632::Reg_ecx); |
+ _sar(T, Src1); |
+ _mov(Dest, T); |
+ break; |
+ case InstArithmetic::Udiv: |
+ // div and idiv are the few arithmetic operators that do not allow |
+ // immediates as the operand. |
+ Src1 = legalize(Src1, Legal_Reg | Legal_Mem); |
+ if (isByteSizedArithType(Dest->getType())) { |
+ Variable *T_ah = nullptr; |
+ Constant *Zero = Ctx->getConstantZero(IceType_i8); |
+ _mov(T, Src0, RegX8632::Reg_eax); |
+ _mov(T_ah, Zero, RegX8632::Reg_ah); |
+ _div(T, Src1, T_ah); |
_mov(Dest, T); |
- break; |
- case InstArithmetic::Sub: |
- _mov(T, Src0); |
- _sub(T, Src1); |
+ } else { |
+ Constant *Zero = Ctx->getConstantZero(IceType_i32); |
+ _mov(T, Src0, RegX8632::Reg_eax); |
+ _mov(T_edx, Zero, RegX8632::Reg_edx); |
+ _div(T, Src1, T_edx); |
_mov(Dest, T); |
- break; |
- case InstArithmetic::Mul: |
- // TODO: Optimize for llvm::isa<Constant>(Src1) |
- // TODO: Strength-reduce multiplications by a constant, |
- // particularly -1 and powers of 2. Advanced: use lea to |
- // multiply by 3, 5, 9. |
- // |
- // The 8-bit version of imul only allows the form "imul r/m8" |
- // where T must be in eax. |
- if (isByteSizedArithType(Dest->getType())) { |
- _mov(T, Src0, RegX8632::Reg_eax); |
- Src1 = legalize(Src1, Legal_Reg | Legal_Mem); |
- } else { |
- _mov(T, Src0); |
+ } |
+ break; |
+ case InstArithmetic::Sdiv: |
+ // TODO(stichnot): Enable this after doing better performance |
+ // and cross testing. |
+ if (false && Ctx->getFlags().getOptLevel() >= Opt_1) { |
+ // Optimize division by constant power of 2, but not for Om1 |
+ // or O0, just to keep things simple there. |
+ if (auto *C = llvm::dyn_cast<ConstantInteger32>(Src1)) { |
+ int32_t Divisor = C->getValue(); |
+ uint32_t UDivisor = static_cast<uint32_t>(Divisor); |
+ if (Divisor > 0 && llvm::isPowerOf2_32(UDivisor)) { |
+ uint32_t LogDiv = llvm::Log2_32(UDivisor); |
+ Type Ty = Dest->getType(); |
+ // LLVM does the following for dest=src/(1<<log): |
+ // t=src |
+ // sar t,typewidth-1 // -1 if src is negative, 0 if not |
+ // shr t,typewidth-log |
+ // add t,src |
+ // sar t,log |
+ // dest=t |
+ uint32_t TypeWidth = X86_CHAR_BIT * typeWidthInBytes(Ty); |
+ _mov(T, Src0); |
+ // If for some reason we are dividing by 1, just treat it |
+ // like an assignment. |
+ if (LogDiv > 0) { |
+ // The initial sar is unnecessary when dividing by 2. |
+ if (LogDiv > 1) |
+ _sar(T, Ctx->getConstantInt(Ty, TypeWidth - 1)); |
+ _shr(T, Ctx->getConstantInt(Ty, TypeWidth - LogDiv)); |
+ _add(T, Src0); |
+ _sar(T, Ctx->getConstantInt(Ty, LogDiv)); |
+ } |
+ _mov(Dest, T); |
+ return; |
+ } |
} |
- _imul(T, Src1); |
- _mov(Dest, T); |
- break; |
- case InstArithmetic::Shl: |
- _mov(T, Src0); |
- if (!llvm::isa<Constant>(Src1)) |
- Src1 = legalizeToVar(Src1, RegX8632::Reg_ecx); |
- _shl(T, Src1); |
- _mov(Dest, T); |
- break; |
- case InstArithmetic::Lshr: |
- _mov(T, Src0); |
- if (!llvm::isa<Constant>(Src1)) |
- Src1 = legalizeToVar(Src1, RegX8632::Reg_ecx); |
- _shr(T, Src1); |
+ } |
+ Src1 = legalize(Src1, Legal_Reg | Legal_Mem); |
+ if (isByteSizedArithType(Dest->getType())) { |
+ _mov(T, Src0, RegX8632::Reg_eax); |
+ _cbwdq(T, T); |
+ _idiv(T, Src1, T); |
_mov(Dest, T); |
- break; |
- case InstArithmetic::Ashr: |
- _mov(T, Src0); |
- if (!llvm::isa<Constant>(Src1)) |
- Src1 = legalizeToVar(Src1, RegX8632::Reg_ecx); |
- _sar(T, Src1); |
+ } else { |
+ T_edx = makeReg(IceType_i32, RegX8632::Reg_edx); |
+ _mov(T, Src0, RegX8632::Reg_eax); |
+ _cbwdq(T_edx, T); |
+ _idiv(T, Src1, T_edx); |
_mov(Dest, T); |
- break; |
- case InstArithmetic::Udiv: |
- // div and idiv are the few arithmetic operators that do not allow |
- // immediates as the operand. |
- Src1 = legalize(Src1, Legal_Reg | Legal_Mem); |
- if (isByteSizedArithType(Dest->getType())) { |
- Variable *T_ah = nullptr; |
- Constant *Zero = Ctx->getConstantZero(IceType_i8); |
- _mov(T, Src0, RegX8632::Reg_eax); |
- _mov(T_ah, Zero, RegX8632::Reg_ah); |
- _div(T, Src1, T_ah); |
- _mov(Dest, T); |
- } else { |
- Constant *Zero = Ctx->getConstantZero(IceType_i32); |
- _mov(T, Src0, RegX8632::Reg_eax); |
- _mov(T_edx, Zero, RegX8632::Reg_edx); |
- _div(T, Src1, T_edx); |
- _mov(Dest, T); |
- } |
- break; |
- case InstArithmetic::Sdiv: |
- Src1 = legalize(Src1, Legal_Reg | Legal_Mem); |
- if (isByteSizedArithType(Dest->getType())) { |
- _mov(T, Src0, RegX8632::Reg_eax); |
- _cbwdq(T, T); |
- _idiv(T, Src1, T); |
- _mov(Dest, T); |
- } else { |
- T_edx = makeReg(IceType_i32, RegX8632::Reg_edx); |
- _mov(T, Src0, RegX8632::Reg_eax); |
- _cbwdq(T_edx, T); |
- _idiv(T, Src1, T_edx); |
- _mov(Dest, T); |
- } |
- break; |
- case InstArithmetic::Urem: |
- Src1 = legalize(Src1, Legal_Reg | Legal_Mem); |
- if (isByteSizedArithType(Dest->getType())) { |
- Variable *T_ah = nullptr; |
- Constant *Zero = Ctx->getConstantZero(IceType_i8); |
- _mov(T, Src0, RegX8632::Reg_eax); |
- _mov(T_ah, Zero, RegX8632::Reg_ah); |
- _div(T_ah, Src1, T); |
- _mov(Dest, T_ah); |
- } else { |
- Constant *Zero = Ctx->getConstantZero(IceType_i32); |
- _mov(T_edx, Zero, RegX8632::Reg_edx); |
- _mov(T, Src0, RegX8632::Reg_eax); |
- _div(T_edx, Src1, T); |
- _mov(Dest, T_edx); |
- } |
- break; |
- case InstArithmetic::Srem: |
- Src1 = legalize(Src1, Legal_Reg | Legal_Mem); |
- if (isByteSizedArithType(Dest->getType())) { |
- Variable *T_ah = makeReg(IceType_i8, RegX8632::Reg_ah); |
- _mov(T, Src0, RegX8632::Reg_eax); |
- _cbwdq(T, T); |
- Context.insert(InstFakeDef::create(Func, T_ah)); |
- _idiv(T_ah, Src1, T); |
- _mov(Dest, T_ah); |
- } else { |
- T_edx = makeReg(IceType_i32, RegX8632::Reg_edx); |
- _mov(T, Src0, RegX8632::Reg_eax); |
- _cbwdq(T_edx, T); |
- _idiv(T_edx, Src1, T); |
- _mov(Dest, T_edx); |
+ } |
+ break; |
+ case InstArithmetic::Urem: |
+ Src1 = legalize(Src1, Legal_Reg | Legal_Mem); |
+ if (isByteSizedArithType(Dest->getType())) { |
+ Variable *T_ah = nullptr; |
+ Constant *Zero = Ctx->getConstantZero(IceType_i8); |
+ _mov(T, Src0, RegX8632::Reg_eax); |
+ _mov(T_ah, Zero, RegX8632::Reg_ah); |
+ _div(T_ah, Src1, T); |
+ _mov(Dest, T_ah); |
+ } else { |
+ Constant *Zero = Ctx->getConstantZero(IceType_i32); |
+ _mov(T_edx, Zero, RegX8632::Reg_edx); |
+ _mov(T, Src0, RegX8632::Reg_eax); |
+ _div(T_edx, Src1, T); |
+ _mov(Dest, T_edx); |
+ } |
+ break; |
+ case InstArithmetic::Srem: |
+ // TODO(stichnot): Enable this after doing better performance |
+ // and cross testing. |
+ if (false && Ctx->getFlags().getOptLevel() >= Opt_1) { |
+ // Optimize mod by constant power of 2, but not for Om1 or O0, |
+ // just to keep things simple there. |
+ if (auto *C = llvm::dyn_cast<ConstantInteger32>(Src1)) { |
+ int32_t Divisor = C->getValue(); |
+ uint32_t UDivisor = static_cast<uint32_t>(Divisor); |
+ if (Divisor > 0 && llvm::isPowerOf2_32(UDivisor)) { |
+ uint32_t LogDiv = llvm::Log2_32(UDivisor); |
+ Type Ty = Dest->getType(); |
+ // LLVM does the following for dest=src%(1<<log): |
+ // t=src |
+ // sar t,typewidth-1 // -1 if src is negative, 0 if not |
+ // shr t,typewidth-log |
+ // add t,src |
+ // and t, -(1<<log) |
+ // sub t,src |
+ // neg t |
+ // dest=t |
+ uint32_t TypeWidth = X86_CHAR_BIT * typeWidthInBytes(Ty); |
+ // If for some reason we are dividing by 1, just assign 0. |
+ if (LogDiv == 0) { |
+ _mov(Dest, Ctx->getConstantZero(Ty)); |
+ return; |
+ } |
+ _mov(T, Src0); |
+ // The initial sar is unnecessary when dividing by 2. |
+ if (LogDiv > 1) |
+ _sar(T, Ctx->getConstantInt(Ty, TypeWidth - 1)); |
+ _shr(T, Ctx->getConstantInt(Ty, TypeWidth - LogDiv)); |
+ _add(T, Src0); |
+ _and(T, Ctx->getConstantInt(Ty, -(1 << LogDiv))); |
+ _sub(T, Src0); |
+ _neg(T); |
+ _mov(Dest, T); |
+ return; |
+ } |
} |
- break; |
- case InstArithmetic::Fadd: |
- _mov(T, Src0); |
- _addss(T, Src1); |
- _mov(Dest, T); |
- break; |
- case InstArithmetic::Fsub: |
- _mov(T, Src0); |
- _subss(T, Src1); |
- _mov(Dest, T); |
- break; |
- case InstArithmetic::Fmul: |
- _mov(T, Src0); |
- _mulss(T, Src1); |
- _mov(Dest, T); |
- break; |
- case InstArithmetic::Fdiv: |
- _mov(T, Src0); |
- _divss(T, Src1); |
- _mov(Dest, T); |
- break; |
- case InstArithmetic::Frem: { |
- const SizeT MaxSrcs = 2; |
- Type Ty = Dest->getType(); |
- InstCall *Call = |
- makeHelperCall(isFloat32Asserting32Or64(Ty) ? H_frem_f32 : H_frem_f64, |
- Dest, MaxSrcs); |
- Call->addArg(Src0); |
- Call->addArg(Src1); |
- return lowerCall(Call); |
- } break; |
} |
+ Src1 = legalize(Src1, Legal_Reg | Legal_Mem); |
+ if (isByteSizedArithType(Dest->getType())) { |
+ Variable *T_ah = makeReg(IceType_i8, RegX8632::Reg_ah); |
+ _mov(T, Src0, RegX8632::Reg_eax); |
+ _cbwdq(T, T); |
+ Context.insert(InstFakeDef::create(Func, T_ah)); |
+ _idiv(T_ah, Src1, T); |
+ _mov(Dest, T_ah); |
+ } else { |
+ T_edx = makeReg(IceType_i32, RegX8632::Reg_edx); |
+ _mov(T, Src0, RegX8632::Reg_eax); |
+ _cbwdq(T_edx, T); |
+ _idiv(T_edx, Src1, T); |
+ _mov(Dest, T_edx); |
+ } |
+ break; |
+ case InstArithmetic::Fadd: |
+ _mov(T, Src0); |
+ _addss(T, Src1); |
+ _mov(Dest, T); |
+ break; |
+ case InstArithmetic::Fsub: |
+ _mov(T, Src0); |
+ _subss(T, Src1); |
+ _mov(Dest, T); |
+ break; |
+ case InstArithmetic::Fmul: |
+ _mov(T, Src0); |
+ _mulss(T, Src1); |
+ _mov(Dest, T); |
+ break; |
+ case InstArithmetic::Fdiv: |
+ _mov(T, Src0); |
+ _divss(T, Src1); |
+ _mov(Dest, T); |
+ break; |
+ case InstArithmetic::Frem: { |
+ const SizeT MaxSrcs = 2; |
+ Type Ty = Dest->getType(); |
+ InstCall *Call = makeHelperCall( |
+ isFloat32Asserting32Or64(Ty) ? H_frem_f32 : H_frem_f64, Dest, MaxSrcs); |
+ Call->addArg(Src0); |
+ Call->addArg(Src1); |
+ return lowerCall(Call); |
+ } |
} |
} |
@@ -1839,18 +2067,27 @@ void TargetX8632::lowerAssign(const InstAssign *Inst) { |
_mov(DestHi, T_Hi); |
} else { |
Operand *RI; |
- if (Dest->hasReg()) |
+ if (Dest->hasReg()) { |
// If Dest already has a physical register, then legalize the |
// Src operand into a Variable with the same register |
// assignment. This is mostly a workaround for advanced phi |
// lowering's ad-hoc register allocation which assumes no |
// register allocation is needed when at least one of the |
// operands is non-memory. |
- RI = legalize(Src0, Legal_Reg, Dest->getRegNum()); |
- else |
+ |
+ // qining: if we have a physical register for the dest variable, |
+ // we can enable our constant blinding or pooling again. Note |
+ // this is only for advancedPhiLowering(), the flag flip should |
+ // leave no other side effect. |
+ { |
+ BoolFlagSaver B(RandomizationPoolingPaused, false); |
+ RI = legalize(Src0, Legal_Reg, Dest->getRegNum()); |
+ } |
+ } else { |
// If Dest could be a stack operand, then RI must be a physical |
// register or a scalar integer immediate. |
RI = legalize(Src0, Legal_Reg | Legal_Imm); |
+ } |
if (isVectorType(Dest->getType())) |
_movp(Dest, RI); |
else |
@@ -3119,10 +3356,11 @@ void TargetX8632::lowerIntrinsicCall(const InstIntrinsicCall *Instr) { |
Func->setError("Unexpected memory ordering for AtomicRMW"); |
return; |
} |
- lowerAtomicRMW(Instr->getDest(), |
- static_cast<uint32_t>(llvm::cast<ConstantInteger32>( |
- Instr->getArg(0))->getValue()), |
- Instr->getArg(1), Instr->getArg(2)); |
+ lowerAtomicRMW( |
+ Instr->getDest(), |
+ static_cast<uint32_t>( |
+ llvm::cast<ConstantInteger32>(Instr->getArg(0))->getValue()), |
+ Instr->getArg(1), Instr->getArg(2)); |
return; |
case Intrinsics::AtomicStore: { |
if (!Intrinsics::isMemoryOrderValid( |
@@ -4325,6 +4563,10 @@ void TargetX8632::lowerUnreachable(const InstUnreachable * /*Inst*/) { _ud2(); } |
// turned into zeroes, since loOperand() and hiOperand() don't expect |
// Undef input. |
void TargetX8632::prelowerPhis() { |
+ // Pause constant blinding or pooling, blinding or pooling will be done later |
+ // during phi lowering assignments |
+ BoolFlagSaver B(RandomizationPoolingPaused, true); |
+ |
CfgNode *Node = Context.getNode(); |
for (Inst &I : Node->getPhis()) { |
auto Phi = llvm::dyn_cast<InstPhi>(&I); |
@@ -4424,7 +4666,28 @@ void TargetX8632::lowerPhiAssignments(CfgNode *Node, |
Context.rewind(); |
auto Assign = llvm::dyn_cast<InstAssign>(&I); |
Variable *Dest = Assign->getDest(); |
+ |
+ // qining: Here is an ugly hack for phi.ll test. |
+ // In function test_split_undef_int_vec, the advanced phi |
+ // lowering process will find an assignment of undefined |
+ // vector. This vector, as the Src here, will crash if it |
+ // go through legalize(). legalize() will create new variable |
+ // with makeVectorOfZeros(), but this new variable will be |
+ // assigned a stack slot. This will fail the assertion in |
+ // IceInstX8632.cpp:789, as XmmEmitterRegOp() complain: |
+ // Var->hasReg() fails. Note this failure is irrelevant to |
+ // randomization or pooling of constants. |
+ // So, we do not call legalize() to add pool label for the |
+ // src operands of phi assignment instructions. |
+ // Instead, we manually add pool label for constant float and |
+ // constant double values here. |
+ // Note going through legalize() does not affect the testing |
+ // results of SPEC2K and xtests. |
Operand *Src = Assign->getSrc(0); |
+ if (!llvm::isa<ConstantUndef>(Assign->getSrc(0))) { |
+ Src = legalize(Src); |
+ } |
+ |
Variable *SrcVar = llvm::dyn_cast<Variable>(Src); |
// Use normal assignment lowering, except lower mem=mem specially |
// so we can register-allocate at the same time. |
@@ -4600,6 +4863,7 @@ Operand *TargetX8632::legalize(Operand *From, LegalMask Allowed, |
// work, e.g. allow the shl shift amount to be either an immediate |
// or in ecx.) |
assert(RegNum == Variable::NoRegister || Allowed == Legal_Reg); |
+ |
if (auto Mem = llvm::dyn_cast<OperandX8632Mem>(From)) { |
// Before doing anything with a Mem operand, we need to ensure |
// that the Base and Index components are in physical registers. |
@@ -4614,11 +4878,14 @@ Operand *TargetX8632::legalize(Operand *From, LegalMask Allowed, |
RegIndex = legalizeToVar(Index); |
} |
if (Base != RegBase || Index != RegIndex) { |
- From = |
+ Mem = |
OperandX8632Mem::create(Func, Ty, RegBase, Mem->getOffset(), RegIndex, |
Mem->getShift(), Mem->getSegmentRegister()); |
} |
+ // qining: For all Memory Operands, we do randomization/pooling here |
+ From = randomizeOrPoolImmediate(Mem); |
+ |
if (!(Allowed & Legal_Mem)) { |
From = copyToReg(From, RegNum); |
} |
@@ -4643,6 +4910,16 @@ Operand *TargetX8632::legalize(Operand *From, LegalMask Allowed, |
} |
// There should be no constants of vector type (other than undef). |
assert(!isVectorType(Ty)); |
+ |
+ // If the operand is an 32 bit constant integer, we should check |
+ // whether we need to randomize it or pool it. |
+ if (ConstantInteger32 *C = llvm::dyn_cast<ConstantInteger32>(From)) { |
+ Operand *NewFrom = randomizeOrPoolImmediate(C, RegNum); |
+ if (NewFrom != From) { |
+ return NewFrom; |
+ } |
+ } |
+ |
// Convert a scalar floating point constant into an explicit |
// memory operand. |
if (isScalarFloatingType(Ty)) { |
@@ -4650,6 +4927,7 @@ Operand *TargetX8632::legalize(Operand *From, LegalMask Allowed, |
std::string Buffer; |
llvm::raw_string_ostream StrBuf(Buffer); |
llvm::cast<Constant>(From)->emitPoolLabel(StrBuf); |
+ llvm::cast<Constant>(From)->shouldBePooled = true; |
Constant *Offset = Ctx->getConstantSym(0, StrBuf.str(), true); |
From = OperandX8632Mem::create(Func, Ty, Base, Offset); |
} |
@@ -4706,25 +4984,38 @@ Operand *TargetX8632::legalizeSrc0ForCmp(Operand *Src0, Operand *Src1) { |
return legalize(Src0, IsSrc1ImmOrReg ? (Legal_Reg | Legal_Mem) : Legal_Reg); |
} |
-OperandX8632Mem *TargetX8632::formMemoryOperand(Operand *Operand, Type Ty, |
+OperandX8632Mem *TargetX8632::formMemoryOperand(Operand *Opnd, Type Ty, |
bool DoLegalize) { |
- OperandX8632Mem *Mem = llvm::dyn_cast<OperandX8632Mem>(Operand); |
+ OperandX8632Mem *Mem = llvm::dyn_cast<OperandX8632Mem>(Opnd); |
// It may be the case that address mode optimization already creates |
// an OperandX8632Mem, so in that case it wouldn't need another level |
// of transformation. |
if (!Mem) { |
- Variable *Base = llvm::dyn_cast<Variable>(Operand); |
- Constant *Offset = llvm::dyn_cast<Constant>(Operand); |
+ Variable *Base = llvm::dyn_cast<Variable>(Opnd); |
+ Constant *Offset = llvm::dyn_cast<Constant>(Opnd); |
assert(Base || Offset); |
if (Offset) { |
- // Make sure Offset is not undef. |
- Offset = llvm::cast<Constant>(legalize(Offset)); |
+ // qining: during memory operand building, we do not |
+ // blind or pool the constant offset, we will work on |
+ // the whole memory operand later as one entity later, |
+ // this save one instruction. By turning blinding and |
+ // pooling off, we guarantee legalize(Offset) will return |
+ // a constant* |
+ { |
+ BoolFlagSaver B(RandomizationPoolingPaused, true); |
+ |
+ Offset = llvm::cast<Constant>(legalize(Offset)); |
+ } |
+ |
assert(llvm::isa<ConstantInteger32>(Offset) || |
llvm::isa<ConstantRelocatable>(Offset)); |
} |
Mem = OperandX8632Mem::create(Func, Ty, Base, Offset); |
} |
- return llvm::cast<OperandX8632Mem>(DoLegalize ? legalize(Mem) : Mem); |
+ // qining: do legalization, which contains randomization/pooling |
+ // or do randomization/pooling. |
+ return llvm::cast<OperandX8632Mem>( |
+ DoLegalize ? legalize(Mem) : randomizeOrPoolImmediate(Mem)); |
} |
Variable *TargetX8632::makeReg(Type Type, int32_t RegNum) { |
@@ -4965,6 +5256,45 @@ const char *PoolTypeConverter<double>::TypeName = "double"; |
const char *PoolTypeConverter<double>::AsmTag = ".quad"; |
const char *PoolTypeConverter<double>::PrintfString = "0x%llx"; |
+// Add converter for int type constant pooling |
+template <> struct PoolTypeConverter<int> { |
Jim Stichnoth
2015/06/19 16:51:03
Please use uint32_t/uint16_t/uint8_t instead of in
qining
2015/06/19 20:22:26
Done. I think both signed and unsigned should be f
|
+ typedef uint32_t PrimitiveIntType; |
+ typedef ConstantInteger32 IceType; |
+ static const Type Ty = IceType_i32; |
+ static const char *TypeName; |
+ static const char *AsmTag; |
+ static const char *PrintfString; |
+}; |
+const char *PoolTypeConverter<int>::TypeName = "i32"; |
+const char *PoolTypeConverter<int>::AsmTag = ".long"; |
+const char *PoolTypeConverter<int>::PrintfString = "0x%x"; |
+ |
+// Add converter for int type constant pooling |
+template <> struct PoolTypeConverter<short> { |
+ typedef uint32_t PrimitiveIntType; |
+ typedef ConstantInteger32 IceType; |
+ static const Type Ty = IceType_i16; |
+ static const char *TypeName; |
+ static const char *AsmTag; |
+ static const char *PrintfString; |
+}; |
+const char *PoolTypeConverter<short>::TypeName = "i16"; |
+const char *PoolTypeConverter<short>::AsmTag = ".short"; |
+const char *PoolTypeConverter<short>::PrintfString = "0x%x"; |
+ |
+// Add converter for int type constant pooling |
+template <> struct PoolTypeConverter<char> { |
+ typedef uint32_t PrimitiveIntType; |
+ typedef ConstantInteger32 IceType; |
+ static const Type Ty = IceType_i8; |
+ static const char *TypeName; |
+ static const char *AsmTag; |
+ static const char *PrintfString; |
+}; |
+const char *PoolTypeConverter<char>::TypeName = "i8"; |
+const char *PoolTypeConverter<char>::AsmTag = ".byte"; |
+const char *PoolTypeConverter<char>::PrintfString = "0x%x"; |
+ |
template <typename T> |
void TargetDataX8632::emitConstantPool(GlobalContext *Ctx) { |
if (!ALLOW_DUMP) |
@@ -4978,6 +5308,8 @@ void TargetDataX8632::emitConstantPool(GlobalContext *Ctx) { |
<< "\n"; |
Str << "\t.align\t" << Align << "\n"; |
for (Constant *C : Pool) { |
+ if (!C->shouldBePooled) |
+ continue; |
typename T::IceType *Const = llvm::cast<typename T::IceType>(C); |
typename T::IceType::PrimType Value = Const->getValue(); |
// Use memcpy() to copy bits from Value into RawValue in a way |
@@ -5004,12 +5336,22 @@ void TargetDataX8632::lowerConstants() const { |
switch (Ctx->getFlags().getOutFileType()) { |
case FT_Elf: { |
ELFObjectWriter *Writer = Ctx->getObjectWriter(); |
+ |
+ Writer->writeConstantPool<ConstantInteger32>(IceType_i8); |
+ Writer->writeConstantPool<ConstantInteger32>(IceType_i16); |
+ Writer->writeConstantPool<ConstantInteger32>(IceType_i32); |
+ |
Writer->writeConstantPool<ConstantFloat>(IceType_f32); |
Writer->writeConstantPool<ConstantDouble>(IceType_f64); |
} break; |
case FT_Asm: |
case FT_Iasm: { |
OstreamLocker L(Ctx); |
+ |
+ emitConstantPool<PoolTypeConverter<char>>(Ctx); |
+ emitConstantPool<PoolTypeConverter<short>>(Ctx); |
+ emitConstantPool<PoolTypeConverter<int>>(Ctx); |
+ |
emitConstantPool<PoolTypeConverter<float>>(Ctx); |
emitConstantPool<PoolTypeConverter<double>>(Ctx); |
} break; |
@@ -5019,4 +5361,197 @@ void TargetDataX8632::lowerConstants() const { |
TargetHeaderX8632::TargetHeaderX8632(GlobalContext *Ctx) |
: TargetHeaderLowering(Ctx) {} |
+// Blind/pool an Immediate |
+Operand *TargetX8632::randomizeOrPoolImmediate(Constant *Immediate, |
+ int32_t RegNum) { |
+ assert(llvm::isa<ConstantInteger32>(Immediate) || |
+ llvm::isa<ConstantRelocatable>(Immediate)); |
+ if (Ctx->getFlags().getRandomizeAndPoolImmediatesOption() == RPI_None || |
+ RandomizationPoolingPaused == true) { |
+ // immediates randomization/pool turned off |
+ return Immediate; |
+ } |
+ if (Constant *C = llvm::dyn_cast_or_null<Constant>(Immediate)) { |
+ if (C->shouldBeRandomizedOrPooled(Ctx)) { |
+ Ctx->statsUpdateRPImms(); |
+ if (Ctx->getFlags().getRandomizeAndPoolImmediatesOption() == |
+ RPI_Randomize) { |
+ // blind the constant |
+ // FROM: |
+ // imm |
+ // TO: |
+ // insert: mov imm+cookie, Reg |
+ // insert: lea -cookie[Reg], Reg |
Jim Stichnoth
2015/06/19 16:51:03
Explain in a comment that lea is used (as opposed
qining
2015/06/19 20:22:26
Done.
|
+ // => Reg |
+ // If we have already assigned a phy register, we must come from |
+ // andvancedPhiLowering()=>lowerAssign(). In this case we should reuse |
+ // the assigned register as this assignment is that start of its use-def |
+ // chain. So we add RegNum argument here. |
+ Variable *Reg = makeReg(IceType_i32, RegNum); |
+ ConstantInteger32 *Integer = llvm::cast<ConstantInteger32>(Immediate); |
+ uint32_t Value = Integer->getValue(); |
+ uint32_t Cookie = Ctx->getRandomizationCookie(); |
+ _mov(Reg, Ctx->getConstantInt(IceType_i32, Cookie + Value)); |
+ Constant *Offset = Ctx->getConstantInt(IceType_i32, 0 - Cookie); |
+ _lea(Reg, |
+ OperandX8632Mem::create(Func, IceType_i32, Reg, Offset, NULL, 0)); |
Jim Stichnoth
2015/06/19 16:51:03
nullptr
qining
2015/06/19 20:22:26
Done.
|
+ // make sure liveness analysis won't kill this variable, otherwise a |
+ // liveness |
+ // assertion will be triggered. |
+ _set_dest_nonkillable(); |
+ if (Immediate->getType() != IceType_i32) { |
+ Variable *TruncReg = makeReg(Immediate->getType(), RegNum); |
+ _mov(TruncReg, Reg); |
+ return TruncReg; |
+ } |
+ return Reg; |
+ } |
+ if (Ctx->getFlags().getRandomizeAndPoolImmediatesOption() == RPI_Pool) { |
+ // pool the constant |
+ // FROM: |
+ // imm |
+ // TO: |
+ // insert: mov $label, Reg |
+ // => Reg |
+ assert(Ctx->getFlags().getRandomizeAndPoolImmediatesOption() == |
+ RPI_Pool); |
+ Immediate->shouldBePooled = true; |
+ // if we have already assigned a phy register, we must come from |
+ // andvancedPhiLowering()=>lowerAssign(). In this case we should reuse |
+ // the assigned register as this assignment is that start of its use-def |
+ // chain. So we add RegNum argument here. |
+ Variable *Reg = makeReg(Immediate->getType(), RegNum); |
+ IceString Label; |
+ llvm::raw_string_ostream Label_stream(Label); |
+ Immediate->emitPoolLabel(Label_stream); |
+ const RelocOffsetT Offset = 0; |
+ const bool SuppressMangling = true; |
+ Constant *Symbol = |
+ Ctx->getConstantSym(Offset, Label_stream.str(), SuppressMangling); |
+ OperandX8632Mem *MemOperand = |
+ OperandX8632Mem::create(Func, Immediate->getType(), NULL, Symbol); |
+ _mov(Reg, MemOperand); |
+ return Reg; |
+ } |
+ assert("Unsupported -randomize-pool-immediates option" && false); |
+ } |
+ } |
+ // the constant Immediate is not eligible for blinding/pooling |
+ return Immediate; |
+} |
+ |
+OperandX8632Mem * |
+TargetX8632::randomizeOrPoolImmediate(OperandX8632Mem *MemOperand, |
+ int32_t RegNum) { |
+ assert(MemOperand); |
+ if (Ctx->getFlags().getRandomizeAndPoolImmediatesOption() == RPI_None || |
+ RandomizationPoolingPaused == true) { |
+ // immediates randomization/pooling is turned off |
+ return MemOperand; |
+ } |
+ |
+ if (Constant *C = llvm::dyn_cast_or_null<Constant>(MemOperand->getOffset())) { |
+ if (C->shouldBeRandomizedOrPooled(Ctx)) { |
+ // The offset of this mem operand should be blinded or pooled |
+ Ctx->statsUpdateRPImms(); |
+ if (Ctx->getFlags().getRandomizeAndPoolImmediatesOption() == |
+ RPI_Randomize) { |
+ // blind the constant offset |
+ // FROM: |
+ // offset[base, index, shift] |
+ // TO: |
+ // insert: lea offset+cookie[base], RegTemp |
+ // => -cookie[RegTemp, index, shift] |
+ uint32_t Value = |
+ llvm::dyn_cast<ConstantInteger32>(MemOperand->getOffset()) |
+ ->getValue(); |
+ uint32_t Cookie = Ctx->getRandomizationCookie(); |
+ Constant *Mask1 = Ctx->getConstantInt( |
+ MemOperand->getOffset()->getType(), Cookie + Value); |
+ Constant *Mask2 = |
+ Ctx->getConstantInt(MemOperand->getOffset()->getType(), 0 - Cookie); |
+ |
+ // qining: if the offset value is -cookie, this memory operand should |
+ // have already been randomized, we just return it. |
+ if(Value == -Cookie) return MemOperand; |
Jim Stichnoth
2015/06/19 16:51:03
make format
Also, there's an interesting one-in-f
qining
2015/06/19 20:22:25
I think Cookie==MIN_INT should still be fine.
Ass
|
+ |
+ // qining: We need to make sure the MemOperand->getBase() has a physical |
+ // register, if it is a variable! |
+ if (MemOperand->getBase() != NULL) |
+ MemOperand->getBase()->setWeightInfinite(); |
+ OperandX8632Mem *TempMemOperand = OperandX8632Mem::create( |
+ Func, MemOperand->getType(), MemOperand->getBase(), Mask1); |
+ // If we have already assigned a physical register, we must come from |
+ // advancedPhiLowering()=>lowerAssign(). In this case we should reuse |
+ // the assigned register as this assignment is that start of its use-def |
+ // chain. So we add RegNum argument here. |
+ Variable *RegTemp = makeReg(MemOperand->getOffset()->getType(), RegNum); |
+ _lea(RegTemp, TempMemOperand); |
+ // As source operand doesn't use the dstreg, we don't need to add |
+ // _set_dest_nonkillable(). |
+ // qining: but if we use the same Dest Reg, that is, with RegNum |
+ // assigned, we should add this _set_dest_nonkillable() |
+ if (RegNum != Variable::NoRegister) |
+ _set_dest_nonkillable(); |
+ |
+ OperandX8632Mem *NewMemOperand = OperandX8632Mem::create( |
+ Func, MemOperand->getType(), RegTemp, Mask2, MemOperand->getIndex(), |
+ MemOperand->getShift(), MemOperand->getSegmentRegister()); |
+ |
+ return NewMemOperand; |
+ } |
+ if (Ctx->getFlags().getRandomizeAndPoolImmediatesOption() == RPI_Pool) { |
+ // pool the constant offset |
+ // FROM: |
+ // offset[base, index, shift] |
+ // TO: |
+ // insert: mov $label, RegTemp |
+ // insert: lea [base, RegTemp], RegTemp |
+ // =>[RegTemp, index, shift] |
+ assert(Ctx->getFlags().getRandomizeAndPoolImmediatesOption() == |
+ RPI_Pool); |
+ // qining: Mem operand should never exist as source operands in phi |
+ // lowering |
+ // assignments, so there is no need to reuse any registers here. |
+ // However, for phi lowering, we should not ask for new physical |
+ // registers in general. |
+ // However, if we do meet MemOperand during phi lowering, we should not |
+ // blind or pool the immediates for now |
+ if (RegNum != Variable::NoRegister) |
+ return MemOperand; |
+ Variable *RegTemp = makeReg(IceType_i32); |
+ IceString Label; |
+ llvm::raw_string_ostream Label_stream(Label); |
+ MemOperand->getOffset()->emitPoolLabel(Label_stream); |
+ MemOperand->getOffset()->shouldBePooled = true; |
+ const RelocOffsetT SymOffset = 0; |
+ bool SuppressMangling = true; |
+ Constant *Symbol = Ctx->getConstantSym(SymOffset, Label_stream.str(), |
+ SuppressMangling); |
+ OperandX8632Mem *SymbolOperand = OperandX8632Mem::create( |
+ Func, MemOperand->getOffset()->getType(), NULL, Symbol); |
+ _mov(RegTemp, SymbolOperand); |
+ // qining: We need to make sure the MemOperand->getBase() has a physical |
+ // register! If we do not have base register here, we won't need an |
+ // extra lea instruction anymore. |
+ if (MemOperand->getBase()) { |
+ OperandX8632Mem *CalculateOperand = OperandX8632Mem::create( |
+ Func, MemOperand->getType(), MemOperand->getBase(), NULL, RegTemp, |
+ 0, MemOperand->getSegmentRegister()); |
+ _lea(RegTemp, CalculateOperand); |
+ _set_dest_nonkillable(); |
+ } |
+ OperandX8632Mem *NewMemOperand = OperandX8632Mem::create( |
+ Func, MemOperand->getType(), RegTemp, NULL, MemOperand->getIndex(), |
+ MemOperand->getShift(), MemOperand->getSegmentRegister()); |
+ return NewMemOperand; |
+ } |
+ assert("Unsupported -randomize-pool-immediates option" && false); |
+ } |
+ } |
+ // the offset is not eligible for blinding or pooling, return the original |
+ // mem operand |
+ return MemOperand; |
+} |
+ |
} // end of namespace Ice |