Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(277)

Side by Side Diff: src/IceTargetLoweringX8632.cpp

Issue 1185703004: Add constant blinding/pooling option for X8632 code translation (Closed) Base URL: https://chromium.googlesource.com/native_client/pnacl-subzero.git@master
Patch Set: Avoid calling randomizationOrPoolImmediate() multiple times on a same operand" Created 5 years, 6 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
OLDNEW
1 //===- subzero/src/IceTargetLoweringX8632.cpp - x86-32 lowering -----------===// 1 //===- subzero/src/IceTargetLoweringX8632.cpp - x86-32 lowering -----------===//
2 // 2 //
3 // The Subzero Code Generator 3 // The Subzero Code Generator
4 // 4 //
5 // This file is distributed under the University of Illinois Open Source 5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details. 6 // License. See LICENSE.TXT for details.
7 // 7 //
8 //===----------------------------------------------------------------------===// 8 //===----------------------------------------------------------------------===//
9 // 9 //
10 // This file implements the TargetLoweringX8632 class, which 10 // This file implements the TargetLoweringX8632 class, which
(...skipping 228 matching lines...) Expand 10 before | Expand all | Expand 10 after
239 #undef X 239 #undef X
240 // Repeat the static asserts with respect to the high-level table 240 // Repeat the static asserts with respect to the high-level table
241 // entries in case the high-level table has extra entries. 241 // entries in case the high-level table has extra entries.
242 #define X(tag, size, align, elts, elty, str) \ 242 #define X(tag, size, align, elts, elty, str) \
243 static_assert(_table1_##tag == _table2_##tag, \ 243 static_assert(_table1_##tag == _table2_##tag, \
244 "Inconsistency between ICETYPEX8632_TABLE and ICETYPE_TABLE"); 244 "Inconsistency between ICETYPEX8632_TABLE and ICETYPE_TABLE");
245 ICETYPE_TABLE 245 ICETYPE_TABLE
246 #undef X 246 #undef X
247 } // end of namespace dummy3 247 } // end of namespace dummy3
248 248
249 // A helper class to ease the settings of RandomizationPoolingPause
250 // to disable constant blinding or pooling for some translation phases.
251 class BoolFlagSaver {
252 BoolFlagSaver() = delete;
253 BoolFlagSaver(const BoolFlagSaver &) = delete;
254 BoolFlagSaver &operator=(const BoolFlagSaver &) = delete;
255
256 public:
257 BoolFlagSaver(bool &F, bool NewValue) : Flag(F) {
258 OldValue = F;
259 F = NewValue;
260 }
261 ~BoolFlagSaver() { Flag = OldValue; }
262
263 private:
264 bool &Flag;
Jim Stichnoth 2015/06/19 16:51:03 Can you do this? bool &const Flag; const bool
qining 2015/06/19 20:22:25 I can initialize OldValue in the initialization li
Jim Stichnoth 2015/06/19 23:12:15 I think I was wrong about const and Flag, sorry.
265 bool OldValue;
266 };
267
249 } // end of anonymous namespace 268 } // end of anonymous namespace
250 269
251 BoolFoldingEntry::BoolFoldingEntry(Inst *I) 270 BoolFoldingEntry::BoolFoldingEntry(Inst *I)
252 : Instr(I), IsComplex(BoolFolding::hasComplexLowering(I)), IsLiveOut(true), 271 : Instr(I), IsComplex(BoolFolding::hasComplexLowering(I)), IsLiveOut(true),
253 NumUses(0) {} 272 NumUses(0) {}
254 273
255 BoolFolding::BoolFoldingProducerKind 274 BoolFolding::BoolFoldingProducerKind
256 BoolFolding::getProducerKind(const Inst *Instr) { 275 BoolFolding::getProducerKind(const Inst *Instr) {
257 if (llvm::isa<InstIcmp>(Instr)) { 276 if (llvm::isa<InstIcmp>(Instr)) {
258 if (Instr->getSrc(0)->getType() != IceType_i64) 277 if (Instr->getSrc(0)->getType() != IceType_i64)
(...skipping 133 matching lines...) Expand 10 before | Expand all | Expand 10 after
392 void TargetX8632::initNodeForLowering(CfgNode *Node) { 411 void TargetX8632::initNodeForLowering(CfgNode *Node) {
393 FoldingInfo.init(Node); 412 FoldingInfo.init(Node);
394 FoldingInfo.dump(Func); 413 FoldingInfo.dump(Func);
395 } 414 }
396 415
397 TargetX8632::TargetX8632(Cfg *Func) 416 TargetX8632::TargetX8632(Cfg *Func)
398 : TargetLowering(Func), 417 : TargetLowering(Func),
399 InstructionSet(static_cast<X86InstructionSet>( 418 InstructionSet(static_cast<X86InstructionSet>(
400 Func->getContext()->getFlags().getTargetInstructionSet() - 419 Func->getContext()->getFlags().getTargetInstructionSet() -
401 TargetInstructionSet::X86InstructionSet_Begin)), 420 TargetInstructionSet::X86InstructionSet_Begin)),
402 IsEbpBasedFrame(false), NeedsStackAlignment(false), 421 IsEbpBasedFrame(false), NeedsStackAlignment(false), SpillAreaSizeBytes(0),
403 SpillAreaSizeBytes(0) { 422 RandomizationPoolingPaused(false) {
404 static_assert((X86InstructionSet::End - X86InstructionSet::Begin) == 423 static_assert((X86InstructionSet::End - X86InstructionSet::Begin) ==
405 (TargetInstructionSet::X86InstructionSet_End - 424 (TargetInstructionSet::X86InstructionSet_End -
406 TargetInstructionSet::X86InstructionSet_Begin), 425 TargetInstructionSet::X86InstructionSet_Begin),
407 "X86InstructionSet range different from TargetInstructionSet"); 426 "X86InstructionSet range different from TargetInstructionSet");
408 // TODO: Don't initialize IntegerRegisters and friends every time. 427 // TODO: Don't initialize IntegerRegisters and friends every time.
409 // Instead, initialize in some sort of static initializer for the 428 // Instead, initialize in some sort of static initializer for the
410 // class. 429 // class.
411 llvm::SmallBitVector IntegerRegisters(RegX8632::Reg_NUM); 430 llvm::SmallBitVector IntegerRegisters(RegX8632::Reg_NUM);
412 llvm::SmallBitVector IntegerRegistersI8(RegX8632::Reg_NUM); 431 llvm::SmallBitVector IntegerRegistersI8(RegX8632::Reg_NUM);
413 llvm::SmallBitVector FloatRegisters(RegX8632::Reg_NUM); 432 llvm::SmallBitVector FloatRegisters(RegX8632::Reg_NUM);
(...skipping 61 matching lines...) Expand 10 before | Expand all | Expand 10 after
475 return; 494 return;
476 495
477 // TODO: It should be sufficient to use the fastest liveness 496 // TODO: It should be sufficient to use the fastest liveness
478 // calculation, i.e. livenessLightweight(). However, for some 497 // calculation, i.e. livenessLightweight(). However, for some
479 // reason that slows down the rest of the translation. Investigate. 498 // reason that slows down the rest of the translation. Investigate.
480 Func->liveness(Liveness_Basic); 499 Func->liveness(Liveness_Basic);
481 if (Func->hasError()) 500 if (Func->hasError())
482 return; 501 return;
483 Func->dump("After x86 address mode opt"); 502 Func->dump("After x86 address mode opt");
484 503
485 doLoadOpt(); 504 // qining: disable constant blinding or pooling for load optimization
505 {
506 BoolFlagSaver B(RandomizationPoolingPaused, true);
507 doLoadOpt();
508 }
486 Func->genCode(); 509 Func->genCode();
487 if (Func->hasError()) 510 if (Func->hasError())
488 return; 511 return;
489 Func->dump("After x86 codegen"); 512 Func->dump("After x86 codegen");
490 513
491 // Register allocation. This requires instruction renumbering and 514 // Register allocation. This requires instruction renumbering and
492 // full liveness analysis. 515 // full liveness analysis.
493 Func->renumberInstructions(); 516 Func->renumberInstructions();
494 if (Func->hasError()) 517 if (Func->hasError())
495 return; 518 return;
496 Func->liveness(Liveness_Intervals); 519 Func->liveness(Liveness_Intervals);
497 if (Func->hasError()) 520 if (Func->hasError())
498 return; 521 return;
499 // Validate the live range computations. The expensive validation 522 // Validate the live range computations. The expensive validation
500 // call is deliberately only made when assertions are enabled. 523 // call is deliberately only made when assertions are enabled.
501 assert(Func->validateLiveness()); 524 assert(Func->validateLiveness());
502 // The post-codegen dump is done here, after liveness analysis and 525 // The post-codegen dump is done here, after liveness analysis and
503 // associated cleanup, to make the dump cleaner and more useful. 526 // associated cleanup, to make the dump cleaner and more useful.
504 Func->dump("After initial x8632 codegen"); 527 Func->dump("After initial x8632 codegen");
505 Func->getVMetadata()->init(VMK_All); 528 Func->getVMetadata()->init(VMK_All);
506 regAlloc(RAK_Global); 529 regAlloc(RAK_Global);
507 if (Func->hasError()) 530 if (Func->hasError())
508 return; 531 return;
509 Func->dump("After linear scan regalloc"); 532 Func->dump("After linear scan regalloc");
510 533
511 if (Ctx->getFlags().getPhiEdgeSplit()) { 534 if (Ctx->getFlags().getPhiEdgeSplit()) {
512 Func->advancedPhiLowering(); 535 // qining: In general we need to pause constant blinding or pooling
Jim Stichnoth 2015/06/19 16:51:03 Don't tag comments with your name. Use TODO(qinin
qining 2015/06/19 20:22:26 Done.
536 // during advanced phi lowering, unless the lowering assignment has a
537 // physical register for the Dest Variable
538 {
539 BoolFlagSaver B(RandomizationPoolingPaused, true);
540 Func->advancedPhiLowering();
541 }
513 Func->dump("After advanced Phi lowering"); 542 Func->dump("After advanced Phi lowering");
514 } 543 }
515 544
516 // Stack frame mapping. 545 // Stack frame mapping.
517 Func->genFrame(); 546 Func->genFrame();
518 if (Func->hasError()) 547 if (Func->hasError())
519 return; 548 return;
520 Func->dump("After stack frame mapping"); 549 Func->dump("After stack frame mapping");
521 550
522 Func->contractEmptyNodes(); 551 Func->contractEmptyNodes();
(...skipping 232 matching lines...) Expand 10 before | Expand all | Expand 10 after
755 return RegNames[RegNum]; 784 return RegNames[RegNum];
756 } 785 }
757 } 786 }
758 787
759 void TargetX8632::emitVariable(const Variable *Var) const { 788 void TargetX8632::emitVariable(const Variable *Var) const {
760 Ostream &Str = Ctx->getStrEmit(); 789 Ostream &Str = Ctx->getStrEmit();
761 if (Var->hasReg()) { 790 if (Var->hasReg()) {
762 Str << "%" << getRegName(Var->getRegNum(), Var->getType()); 791 Str << "%" << getRegName(Var->getRegNum(), Var->getType());
763 return; 792 return;
764 } 793 }
765 if (Var->getWeight().isInf()) 794 if (Var->getWeight().isInf()) {
766 llvm_unreachable("Infinite-weight Variable has no register assigned"); 795 llvm_unreachable("Infinite-weight Variable has no register assigned");
796 }
767 int32_t Offset = Var->getStackOffset(); 797 int32_t Offset = Var->getStackOffset();
768 if (!hasFramePointer()) 798 if (!hasFramePointer())
769 Offset += getStackAdjustment(); 799 Offset += getStackAdjustment();
770 if (Offset) 800 if (Offset)
771 Str << Offset; 801 Str << Offset;
772 const Type FrameSPTy = IceType_i32; 802 const Type FrameSPTy = IceType_i32;
773 Str << "(%" << getRegName(getFrameOrStackReg(), FrameSPTy) << ")"; 803 Str << "(%" << getRegName(getFrameOrStackReg(), FrameSPTy) << ")";
774 } 804 }
775 805
776 X8632::Address TargetX8632::stackVarToAsmOperand(const Variable *Var) const { 806 X8632::Address TargetX8632::stackVarToAsmOperand(const Variable *Var) const {
777 if (Var->hasReg()) 807 if (Var->hasReg())
778 llvm_unreachable("Stack Variable has a register assigned"); 808 llvm_unreachable("Stack Variable has a register assigned");
779 if (Var->getWeight().isInf()) 809 if (Var->getWeight().isInf()) {
780 llvm_unreachable("Infinite-weight Variable has no register assigned"); 810 llvm_unreachable("Infinite-weight Variable has no register assigned");
811 }
781 int32_t Offset = Var->getStackOffset(); 812 int32_t Offset = Var->getStackOffset();
782 if (!hasFramePointer()) 813 if (!hasFramePointer())
783 Offset += getStackAdjustment(); 814 Offset += getStackAdjustment();
784 return X8632::Address(RegX8632::getEncodedGPR(getFrameOrStackReg()), Offset); 815 return X8632::Address(RegX8632::getEncodedGPR(getFrameOrStackReg()), Offset);
785 } 816 }
786 817
787 void TargetX8632::lowerArguments() { 818 void TargetX8632::lowerArguments() {
788 VarList &Args = Func->getArgs(); 819 VarList &Args = Func->getArgs();
789 // The first four arguments of vector type, regardless of their 820 // The first four arguments of vector type, regardless of their
790 // position relative to the other arguments in the argument list, are 821 // position relative to the other arguments in the argument list, are
(...skipping 370 matching lines...) Expand 10 before | Expand all | Expand 10 after
1161 Operand *TargetX8632::loOperand(Operand *Operand) { 1192 Operand *TargetX8632::loOperand(Operand *Operand) {
1162 assert(Operand->getType() == IceType_i64 || 1193 assert(Operand->getType() == IceType_i64 ||
1163 Operand->getType() == IceType_f64); 1194 Operand->getType() == IceType_f64);
1164 if (Operand->getType() != IceType_i64 && Operand->getType() != IceType_f64) 1195 if (Operand->getType() != IceType_i64 && Operand->getType() != IceType_f64)
1165 return Operand; 1196 return Operand;
1166 if (Variable *Var = llvm::dyn_cast<Variable>(Operand)) { 1197 if (Variable *Var = llvm::dyn_cast<Variable>(Operand)) {
1167 split64(Var); 1198 split64(Var);
1168 return Var->getLo(); 1199 return Var->getLo();
1169 } 1200 }
1170 if (ConstantInteger64 *Const = llvm::dyn_cast<ConstantInteger64>(Operand)) { 1201 if (ConstantInteger64 *Const = llvm::dyn_cast<ConstantInteger64>(Operand)) {
1171 return Ctx->getConstantInt32(static_cast<uint32_t>(Const->getValue())); 1202 ConstantInteger32 *ConstInt = llvm::dyn_cast<ConstantInteger32>(
1203 Ctx->getConstantInt32(static_cast<int32_t>(Const->getValue())));
1204 return legalize(ConstInt);
1172 } 1205 }
1173 if (OperandX8632Mem *Mem = llvm::dyn_cast<OperandX8632Mem>(Operand)) { 1206 if (OperandX8632Mem *Mem = llvm::cast<OperandX8632Mem>(Operand)) {
Jim Stichnoth 2015/06/19 16:51:03 llvm::dyn_cast
qining 2015/06/19 20:22:25 Done.
1174 return OperandX8632Mem::create(Func, IceType_i32, Mem->getBase(), 1207 OperandX8632Mem *MemOperand = OperandX8632Mem::create(
1175 Mem->getOffset(), Mem->getIndex(), 1208 Func, IceType_i32, Mem->getBase(), Mem->getOffset(), Mem->getIndex(),
1176 Mem->getShift(), Mem->getSegmentRegister()); 1209 Mem->getShift(), Mem->getSegmentRegister());
1210 // Test if we should randomize or pool the offset, if so randomize it or
1211 // pool it then create mem operand with the blinded/pooled constant.
1212 // Otherwise, return the mem operand as ordinary mem operand.
1213 return legalize(MemOperand);
1177 } 1214 }
1178 llvm_unreachable("Unsupported operand type"); 1215 llvm_unreachable("Unsupported operand type");
1179 return nullptr; 1216 return nullptr;
1180 } 1217 }
1181 1218
1182 Operand *TargetX8632::hiOperand(Operand *Operand) { 1219 Operand *TargetX8632::hiOperand(Operand *Operand) {
1183 assert(Operand->getType() == IceType_i64 || 1220 assert(Operand->getType() == IceType_i64 ||
1184 Operand->getType() == IceType_f64); 1221 Operand->getType() == IceType_f64);
1185 if (Operand->getType() != IceType_i64 && Operand->getType() != IceType_f64) 1222 if (Operand->getType() != IceType_i64 && Operand->getType() != IceType_f64)
1186 return Operand; 1223 return Operand;
1187 if (Variable *Var = llvm::dyn_cast<Variable>(Operand)) { 1224 if (Variable *Var = llvm::dyn_cast<Variable>(Operand)) {
1188 split64(Var); 1225 split64(Var);
1189 return Var->getHi(); 1226 return Var->getHi();
1190 } 1227 }
1191 if (ConstantInteger64 *Const = llvm::dyn_cast<ConstantInteger64>(Operand)) { 1228 if (ConstantInteger64 *Const = llvm::dyn_cast<ConstantInteger64>(Operand)) {
1192 return Ctx->getConstantInt32( 1229 ConstantInteger32 *ConstInt = llvm::dyn_cast<ConstantInteger32>(
1193 static_cast<uint32_t>(Const->getValue() >> 32)); 1230 Ctx->getConstantInt32(static_cast<int32_t>(Const->getValue() >> 32)));
1231 // check if we need to blind/pool the constant
1232 return legalize(ConstInt);
1194 } 1233 }
1195 if (OperandX8632Mem *Mem = llvm::dyn_cast<OperandX8632Mem>(Operand)) { 1234 if (OperandX8632Mem *Mem = llvm::dyn_cast<OperandX8632Mem>(Operand)) {
1196 Constant *Offset = Mem->getOffset(); 1235 Constant *Offset = Mem->getOffset();
1197 if (Offset == nullptr) { 1236 if (Offset == nullptr) {
1198 Offset = Ctx->getConstantInt32(4); 1237 Offset = Ctx->getConstantInt32(4);
1199 } else if (ConstantInteger32 *IntOffset = 1238 } else if (ConstantInteger32 *IntOffset =
1200 llvm::dyn_cast<ConstantInteger32>(Offset)) { 1239 llvm::dyn_cast<ConstantInteger32>(Offset)) {
1201 Offset = Ctx->getConstantInt32(4 + IntOffset->getValue()); 1240 Offset = Ctx->getConstantInt32(4 + IntOffset->getValue());
1202 } else if (ConstantRelocatable *SymOffset = 1241 } else if (ConstantRelocatable *SymOffset =
1203 llvm::dyn_cast<ConstantRelocatable>(Offset)) { 1242 llvm::dyn_cast<ConstantRelocatable>(Offset)) {
1204 assert(!Utils::WouldOverflowAdd(SymOffset->getOffset(), 4)); 1243 assert(!Utils::WouldOverflowAdd(SymOffset->getOffset(), 4));
1205 Offset = 1244 Offset =
1206 Ctx->getConstantSym(4 + SymOffset->getOffset(), SymOffset->getName(), 1245 Ctx->getConstantSym(4 + SymOffset->getOffset(), SymOffset->getName(),
1207 SymOffset->getSuppressMangling()); 1246 SymOffset->getSuppressMangling());
1208 } 1247 }
1209 return OperandX8632Mem::create(Func, IceType_i32, Mem->getBase(), Offset, 1248 OperandX8632Mem *MemOperand = OperandX8632Mem::create(
1210 Mem->getIndex(), Mem->getShift(), 1249 Func, IceType_i32, Mem->getBase(), Offset, Mem->getIndex(),
1211 Mem->getSegmentRegister()); 1250 Mem->getShift(), Mem->getSegmentRegister());
1251 // Test if the Offset is an eligible i32 constants for randomization and
1252 // pooling. Blind/pool it if it is. Otherwise return as oridinary mem
1253 // operand.
1254 return legalize(MemOperand);
1212 } 1255 }
1213 llvm_unreachable("Unsupported operand type"); 1256 llvm_unreachable("Unsupported operand type");
1214 return nullptr; 1257 return nullptr;
1215 } 1258 }
1216 1259
1217 llvm::SmallBitVector TargetX8632::getRegisterSet(RegSetMask Include, 1260 llvm::SmallBitVector TargetX8632::getRegisterSet(RegSetMask Include,
1218 RegSetMask Exclude) const { 1261 RegSetMask Exclude) const {
1219 llvm::SmallBitVector Registers(RegX8632::Reg_NUM); 1262 llvm::SmallBitVector Registers(RegX8632::Reg_NUM);
1220 1263
1221 #define X(val, encode, name, name16, name8, scratch, preserved, stackptr, \ 1264 #define X(val, encode, name, name16, name8, scratch, preserved, stackptr, \
(...skipping 58 matching lines...) Expand 10 before | Expand all | Expand 10 after
1280 // multiple of the required alignment at runtime. 1323 // multiple of the required alignment at runtime.
1281 Variable *T = makeReg(IceType_i32); 1324 Variable *T = makeReg(IceType_i32);
1282 _mov(T, TotalSize); 1325 _mov(T, TotalSize);
1283 _add(T, Ctx->getConstantInt32(Alignment - 1)); 1326 _add(T, Ctx->getConstantInt32(Alignment - 1));
1284 _and(T, Ctx->getConstantInt32(-Alignment)); 1327 _and(T, Ctx->getConstantInt32(-Alignment));
1285 _sub(esp, T); 1328 _sub(esp, T);
1286 } 1329 }
1287 _mov(Dest, esp); 1330 _mov(Dest, esp);
1288 } 1331 }
1289 1332
1333 // Strength-reduce scalar integer multiplication by a constant (for
1334 // i32 or narrower) for certain constants. The lea instruction can be
1335 // used to multiply by 3, 5, or 9, and the lsh instruction can be used
1336 // to multiply by powers of 2. These can be combined such that
1337 // e.g. multiplying by 100 can be done as 2 lea-based multiplies by 5,
1338 // combined with left-shifting by 2.
1339 bool TargetX8632::optimizeScalarMul(Variable *Dest, Operand *Src0,
1340 int32_t Src1) {
1341 // Disable this optimization for Om1 and O0, just to keep things
1342 // simple there.
1343 if (Ctx->getFlags().getOptLevel() < Opt_1)
1344 return false;
1345 Type Ty = Dest->getType();
1346 Variable *T = nullptr;
1347 if (Src1 == -1) {
1348 _mov(T, Src0);
1349 _neg(T);
1350 _mov(Dest, T);
1351 return true;
1352 }
1353 if (Src1 == 0) {
1354 _mov(Dest, Ctx->getConstantZero(Ty));
1355 return true;
1356 }
1357 if (Src1 == 1) {
1358 _mov(T, Src0);
1359 _mov(Dest, T);
1360 return true;
1361 }
1362 // Don't bother with the edge case where Src1 == MININT.
1363 if (Src1 == -Src1)
1364 return false;
1365 const bool Src1IsNegative = Src1 < 0;
1366 if (Src1IsNegative)
1367 Src1 = -Src1;
1368 uint32_t Count9 = 0;
1369 uint32_t Count5 = 0;
1370 uint32_t Count3 = 0;
1371 uint32_t Count2 = 0;
1372 uint32_t CountOps = 0;
1373 while (Src1 > 1) {
1374 if (Src1 % 9 == 0) {
1375 ++CountOps;
1376 ++Count9;
1377 Src1 /= 9;
1378 } else if (Src1 % 5 == 0) {
1379 ++CountOps;
1380 ++Count5;
1381 Src1 /= 5;
1382 } else if (Src1 % 3 == 0) {
1383 ++CountOps;
1384 ++Count3;
1385 Src1 /= 3;
1386 } else if (Src1 % 2 == 0) {
1387 if (Count2 == 0)
1388 ++CountOps;
1389 ++Count2;
1390 Src1 /= 2;
1391 } else {
1392 return false;
1393 }
1394 }
1395 // Lea optimization only works for i16 and i32 types, not i8.
1396 if (Ty != IceType_i16 && Ty != IceType_i32 && (Count3 || Count5 || Count9))
1397 return false;
1398 // Limit the number of lea/shl operations for a single multiply, to
1399 // a somewhat arbitrary choice of 3.
1400 const uint32_t MaxOpsForOptimizedMul = 3;
1401 if (CountOps > MaxOpsForOptimizedMul)
1402 return false;
1403 _mov(T, Src0);
1404 Constant *Zero = Ctx->getConstantZero(IceType_i32);
1405 for (uint32_t i = 0; i < Count9; ++i) {
1406 const uint16_t Shift = 3; // log2(9-1)
1407 _lea(T, OperandX8632Mem::create(Func, IceType_void, T, Zero, T, Shift));
1408 _set_dest_nonkillable();
1409 }
1410 for (uint32_t i = 0; i < Count5; ++i) {
1411 const uint16_t Shift = 2; // log2(5-1)
1412 _lea(T, OperandX8632Mem::create(Func, IceType_void, T, Zero, T, Shift));
1413 _set_dest_nonkillable();
1414 }
1415 for (uint32_t i = 0; i < Count3; ++i) {
1416 const uint16_t Shift = 1; // log2(3-1)
1417 _lea(T, OperandX8632Mem::create(Func, IceType_void, T, Zero, T, Shift));
1418 _set_dest_nonkillable();
1419 }
1420 if (Count2) {
1421 _shl(T, Ctx->getConstantInt(Ty, Count2));
1422 }
1423 if (Src1IsNegative)
1424 _neg(T);
1425 _mov(Dest, T);
1426 return true;
1427 }
1428
1290 void TargetX8632::lowerArithmetic(const InstArithmetic *Inst) { 1429 void TargetX8632::lowerArithmetic(const InstArithmetic *Inst) {
1291 Variable *Dest = Inst->getDest(); 1430 Variable *Dest = Inst->getDest();
1292 Operand *Src0 = legalize(Inst->getSrc(0)); 1431 Operand *Src0 = legalize(Inst->getSrc(0));
1293 Operand *Src1 = legalize(Inst->getSrc(1)); 1432 Operand *Src1 = legalize(Inst->getSrc(1));
1294 if (Inst->isCommutative()) { 1433 if (Inst->isCommutative()) {
1295 if (!llvm::isa<Variable>(Src0) && llvm::isa<Variable>(Src1)) 1434 if (!llvm::isa<Variable>(Src0) && llvm::isa<Variable>(Src1))
1296 std::swap(Src0, Src1); 1435 std::swap(Src0, Src1);
1436 if (llvm::isa<Constant>(Src0) && !llvm::isa<Constant>(Src1))
1437 std::swap(Src0, Src1);
1297 } 1438 }
1298 if (Dest->getType() == IceType_i64) { 1439 if (Dest->getType() == IceType_i64) {
1440 switch (Inst->getOp()) {
Jim Stichnoth 2015/06/19 16:51:03 Add a comment explaining why these instructions ar
qining 2015/06/19 20:22:26 Done.
1441 case InstArithmetic::Udiv: {
1442 const SizeT MaxSrcs = 2;
1443 InstCall *Call = makeHelperCall(H_udiv_i64, Dest, MaxSrcs);
1444 Call->addArg(Inst->getSrc(0));
1445 Call->addArg(Inst->getSrc(1));
1446 lowerCall(Call);
1447 return;
1448 }
1449 case InstArithmetic::Sdiv: {
1450 const SizeT MaxSrcs = 2;
1451 InstCall *Call = makeHelperCall(H_sdiv_i64, Dest, MaxSrcs);
1452 Call->addArg(Inst->getSrc(0));
1453 Call->addArg(Inst->getSrc(1));
1454 lowerCall(Call);
1455 return;
1456 }
1457 case InstArithmetic::Urem: {
1458 const SizeT MaxSrcs = 2;
1459 InstCall *Call = makeHelperCall(H_urem_i64, Dest, MaxSrcs);
1460 Call->addArg(Inst->getSrc(0));
1461 Call->addArg(Inst->getSrc(1));
1462 lowerCall(Call);
1463 return;
1464 }
1465 case InstArithmetic::Srem: {
1466 const SizeT MaxSrcs = 2;
1467 InstCall *Call = makeHelperCall(H_srem_i64, Dest, MaxSrcs);
1468 Call->addArg(Inst->getSrc(0));
1469 Call->addArg(Inst->getSrc(1));
1470 lowerCall(Call);
1471 return;
1472 }
1473 default:
1474 break;
1475 }
1476
1299 Variable *DestLo = llvm::cast<Variable>(loOperand(Dest)); 1477 Variable *DestLo = llvm::cast<Variable>(loOperand(Dest));
1300 Variable *DestHi = llvm::cast<Variable>(hiOperand(Dest)); 1478 Variable *DestHi = llvm::cast<Variable>(hiOperand(Dest));
1301 Operand *Src0Lo = loOperand(Src0); 1479 Operand *Src0Lo = loOperand(Src0);
1302 Operand *Src0Hi = hiOperand(Src0); 1480 Operand *Src0Hi = hiOperand(Src0);
1303 Operand *Src1Lo = loOperand(Src1); 1481 Operand *Src1Lo = loOperand(Src1);
1304 Operand *Src1Hi = hiOperand(Src1); 1482 Operand *Src1Hi = hiOperand(Src1);
1305 Variable *T_Lo = nullptr, *T_Hi = nullptr; 1483 Variable *T_Lo = nullptr, *T_Hi = nullptr;
1306 switch (Inst->getOp()) { 1484 switch (Inst->getOp()) {
1307 case InstArithmetic::_num: 1485 case InstArithmetic::_num:
1308 llvm_unreachable("Unknown arithmetic operator"); 1486 llvm_unreachable("Unknown arithmetic operator");
(...skipping 169 matching lines...) Expand 10 before | Expand all | Expand 10 after
1478 // T_2 and T_3 are being assigned again because of the 1656 // T_2 and T_3 are being assigned again because of the
1479 // intra-block control flow, so T_2 needs the _mov_nonkillable 1657 // intra-block control flow, so T_2 needs the _mov_nonkillable
1480 // variant to avoid liveness problems. T_3 doesn't need special 1658 // variant to avoid liveness problems. T_3 doesn't need special
1481 // treatment because it is reassigned via _sar instead of _mov. 1659 // treatment because it is reassigned via _sar instead of _mov.
1482 _mov_nonkillable(T_2, T_3); 1660 _mov_nonkillable(T_2, T_3);
1483 _sar(T_3, SignExtend); 1661 _sar(T_3, SignExtend);
1484 Context.insert(Label); 1662 Context.insert(Label);
1485 _mov(DestLo, T_2); 1663 _mov(DestLo, T_2);
1486 _mov(DestHi, T_3); 1664 _mov(DestHi, T_3);
1487 } break; 1665 } break;
1488 case InstArithmetic::Udiv: {
1489 const SizeT MaxSrcs = 2;
1490 InstCall *Call = makeHelperCall(H_udiv_i64, Dest, MaxSrcs);
1491 Call->addArg(Inst->getSrc(0));
1492 Call->addArg(Inst->getSrc(1));
1493 lowerCall(Call);
1494 } break;
1495 case InstArithmetic::Sdiv: {
1496 const SizeT MaxSrcs = 2;
1497 InstCall *Call = makeHelperCall(H_sdiv_i64, Dest, MaxSrcs);
1498 Call->addArg(Inst->getSrc(0));
1499 Call->addArg(Inst->getSrc(1));
1500 lowerCall(Call);
1501 } break;
1502 case InstArithmetic::Urem: {
1503 const SizeT MaxSrcs = 2;
1504 InstCall *Call = makeHelperCall(H_urem_i64, Dest, MaxSrcs);
1505 Call->addArg(Inst->getSrc(0));
1506 Call->addArg(Inst->getSrc(1));
1507 lowerCall(Call);
1508 } break;
1509 case InstArithmetic::Srem: {
1510 const SizeT MaxSrcs = 2;
1511 InstCall *Call = makeHelperCall(H_srem_i64, Dest, MaxSrcs);
1512 Call->addArg(Inst->getSrc(0));
1513 Call->addArg(Inst->getSrc(1));
1514 lowerCall(Call);
1515 } break;
1516 case InstArithmetic::Fadd: 1666 case InstArithmetic::Fadd:
1517 case InstArithmetic::Fsub: 1667 case InstArithmetic::Fsub:
1518 case InstArithmetic::Fmul: 1668 case InstArithmetic::Fmul:
1519 case InstArithmetic::Fdiv: 1669 case InstArithmetic::Fdiv:
1520 case InstArithmetic::Frem: 1670 case InstArithmetic::Frem:
1521 llvm_unreachable("FP instruction with i64 type"); 1671 llvm_unreachable("FP instruction with i64 type");
1522 break; 1672 break;
1673 default:
Jim Stichnoth 2015/06/19 16:51:03 Don't use default, instead just explicitly list Ud
qining 2015/06/19 20:22:25 Done.
1674 llvm_unreachable("Unknown instruction with i64 type");
1675 break;
1523 } 1676 }
1524 } else if (isVectorType(Dest->getType())) { 1677 return;
1678 }
1679 if (isVectorType(Dest->getType())) {
1525 // TODO: Trap on integer divide and integer modulo by zero. 1680 // TODO: Trap on integer divide and integer modulo by zero.
1526 // See: https://code.google.com/p/nativeclient/issues/detail?id=3899 1681 // See: https://code.google.com/p/nativeclient/issues/detail?id=3899
1527 if (llvm::isa<OperandX8632Mem>(Src1)) 1682 if (llvm::isa<OperandX8632Mem>(Src1))
1528 Src1 = legalizeToVar(Src1); 1683 Src1 = legalizeToVar(Src1);
1529 switch (Inst->getOp()) { 1684 switch (Inst->getOp()) {
1530 case InstArithmetic::_num: 1685 case InstArithmetic::_num:
1531 llvm_unreachable("Unknown arithmetic operator"); 1686 llvm_unreachable("Unknown arithmetic operator");
1532 break; 1687 break;
1533 case InstArithmetic::Add: { 1688 case InstArithmetic::Add: {
1534 Variable *T = makeReg(Dest->getType()); 1689 Variable *T = makeReg(Dest->getType());
(...skipping 108 matching lines...) Expand 10 before | Expand all | Expand 10 after
1643 case InstArithmetic::Fdiv: { 1798 case InstArithmetic::Fdiv: {
1644 Variable *T = makeReg(Dest->getType()); 1799 Variable *T = makeReg(Dest->getType());
1645 _movp(T, Src0); 1800 _movp(T, Src0);
1646 _divps(T, Src1); 1801 _divps(T, Src1);
1647 _movp(Dest, T); 1802 _movp(Dest, T);
1648 } break; 1803 } break;
1649 case InstArithmetic::Frem: 1804 case InstArithmetic::Frem:
1650 scalarizeArithmetic(Inst->getOp(), Dest, Src0, Src1); 1805 scalarizeArithmetic(Inst->getOp(), Dest, Src0, Src1);
1651 break; 1806 break;
1652 } 1807 }
1653 } else { // Dest->getType() is non-i64 scalar 1808 return;
1654 Variable *T_edx = nullptr; 1809 }
1655 Variable *T = nullptr; 1810 Variable *T_edx = nullptr;
1656 switch (Inst->getOp()) { 1811 Variable *T = nullptr;
1657 case InstArithmetic::_num: 1812 switch (Inst->getOp()) {
1658 llvm_unreachable("Unknown arithmetic operator"); 1813 case InstArithmetic::_num:
1659 break; 1814 llvm_unreachable("Unknown arithmetic operator");
1660 case InstArithmetic::Add: 1815 break;
1816 case InstArithmetic::Add:
1817 _mov(T, Src0);
1818 _add(T, Src1);
1819 _mov(Dest, T);
1820 break;
1821 case InstArithmetic::And:
1822 _mov(T, Src0);
1823 _and(T, Src1);
1824 _mov(Dest, T);
1825 break;
1826 case InstArithmetic::Or:
1827 _mov(T, Src0);
1828 _or(T, Src1);
1829 _mov(Dest, T);
1830 break;
1831 case InstArithmetic::Xor:
1832 _mov(T, Src0);
1833 _xor(T, Src1);
1834 _mov(Dest, T);
1835 break;
1836 case InstArithmetic::Sub:
1837 _mov(T, Src0);
1838 _sub(T, Src1);
1839 _mov(Dest, T);
1840 break;
1841 case InstArithmetic::Mul:
1842 if (auto *C = llvm::dyn_cast<ConstantInteger32>(Src1)) {
1843 if (optimizeScalarMul(Dest, Src0, C->getValue()))
1844 return;
1845 }
1846 // The 8-bit version of imul only allows the form "imul r/m8"
1847 // where T must be in eax.
1848 if (isByteSizedArithType(Dest->getType())) {
1849 _mov(T, Src0, RegX8632::Reg_eax);
1850 Src1 = legalize(Src1, Legal_Reg | Legal_Mem);
1851 } else {
1661 _mov(T, Src0); 1852 _mov(T, Src0);
1662 _add(T, Src1); 1853 }
1663 _mov(Dest, T); 1854 _imul(T, Src1);
1664 break; 1855 _mov(Dest, T);
1665 case InstArithmetic::And: 1856 break;
1666 _mov(T, Src0); 1857 case InstArithmetic::Shl:
1667 _and(T, Src1); 1858 _mov(T, Src0);
1668 _mov(Dest, T); 1859 if (!llvm::isa<Constant>(Src1))
1669 break; 1860 Src1 = legalizeToVar(Src1, RegX8632::Reg_ecx);
1670 case InstArithmetic::Or: 1861 _shl(T, Src1);
1671 _mov(T, Src0); 1862 _mov(Dest, T);
1672 _or(T, Src1); 1863 break;
1673 _mov(Dest, T); 1864 case InstArithmetic::Lshr:
1674 break; 1865 _mov(T, Src0);
1675 case InstArithmetic::Xor: 1866 if (!llvm::isa<Constant>(Src1))
1676 _mov(T, Src0); 1867 Src1 = legalizeToVar(Src1, RegX8632::Reg_ecx);
1677 _xor(T, Src1); 1868 _shr(T, Src1);
1678 _mov(Dest, T); 1869 _mov(Dest, T);
1679 break; 1870 break;
1680 case InstArithmetic::Sub: 1871 case InstArithmetic::Ashr:
1681 _mov(T, Src0); 1872 _mov(T, Src0);
1682 _sub(T, Src1); 1873 if (!llvm::isa<Constant>(Src1))
1683 _mov(Dest, T); 1874 Src1 = legalizeToVar(Src1, RegX8632::Reg_ecx);
1684 break; 1875 _sar(T, Src1);
1685 case InstArithmetic::Mul: 1876 _mov(Dest, T);
1686 // TODO: Optimize for llvm::isa<Constant>(Src1) 1877 break;
1687 // TODO: Strength-reduce multiplications by a constant, 1878 case InstArithmetic::Udiv:
1688 // particularly -1 and powers of 2. Advanced: use lea to 1879 // div and idiv are the few arithmetic operators that do not allow
1689 // multiply by 3, 5, 9. 1880 // immediates as the operand.
1690 // 1881 Src1 = legalize(Src1, Legal_Reg | Legal_Mem);
1691 // The 8-bit version of imul only allows the form "imul r/m8" 1882 if (isByteSizedArithType(Dest->getType())) {
1692 // where T must be in eax. 1883 Variable *T_ah = nullptr;
1693 if (isByteSizedArithType(Dest->getType())) { 1884 Constant *Zero = Ctx->getConstantZero(IceType_i8);
1694 _mov(T, Src0, RegX8632::Reg_eax); 1885 _mov(T, Src0, RegX8632::Reg_eax);
1695 Src1 = legalize(Src1, Legal_Reg | Legal_Mem); 1886 _mov(T_ah, Zero, RegX8632::Reg_ah);
1696 } else { 1887 _div(T, Src1, T_ah);
1697 _mov(T, Src0); 1888 _mov(Dest, T);
1889 } else {
1890 Constant *Zero = Ctx->getConstantZero(IceType_i32);
1891 _mov(T, Src0, RegX8632::Reg_eax);
1892 _mov(T_edx, Zero, RegX8632::Reg_edx);
1893 _div(T, Src1, T_edx);
1894 _mov(Dest, T);
1895 }
1896 break;
1897 case InstArithmetic::Sdiv:
1898 // TODO(stichnot): Enable this after doing better performance
1899 // and cross testing.
1900 if (false && Ctx->getFlags().getOptLevel() >= Opt_1) {
1901 // Optimize division by constant power of 2, but not for Om1
1902 // or O0, just to keep things simple there.
1903 if (auto *C = llvm::dyn_cast<ConstantInteger32>(Src1)) {
1904 int32_t Divisor = C->getValue();
1905 uint32_t UDivisor = static_cast<uint32_t>(Divisor);
1906 if (Divisor > 0 && llvm::isPowerOf2_32(UDivisor)) {
1907 uint32_t LogDiv = llvm::Log2_32(UDivisor);
1908 Type Ty = Dest->getType();
1909 // LLVM does the following for dest=src/(1<<log):
1910 // t=src
1911 // sar t,typewidth-1 // -1 if src is negative, 0 if not
1912 // shr t,typewidth-log
1913 // add t,src
1914 // sar t,log
1915 // dest=t
1916 uint32_t TypeWidth = X86_CHAR_BIT * typeWidthInBytes(Ty);
1917 _mov(T, Src0);
1918 // If for some reason we are dividing by 1, just treat it
1919 // like an assignment.
1920 if (LogDiv > 0) {
1921 // The initial sar is unnecessary when dividing by 2.
1922 if (LogDiv > 1)
1923 _sar(T, Ctx->getConstantInt(Ty, TypeWidth - 1));
1924 _shr(T, Ctx->getConstantInt(Ty, TypeWidth - LogDiv));
1925 _add(T, Src0);
1926 _sar(T, Ctx->getConstantInt(Ty, LogDiv));
1927 }
1928 _mov(Dest, T);
1929 return;
1930 }
1698 } 1931 }
1699 _imul(T, Src1); 1932 }
1700 _mov(Dest, T); 1933 Src1 = legalize(Src1, Legal_Reg | Legal_Mem);
1701 break; 1934 if (isByteSizedArithType(Dest->getType())) {
1702 case InstArithmetic::Shl: 1935 _mov(T, Src0, RegX8632::Reg_eax);
1703 _mov(T, Src0); 1936 _cbwdq(T, T);
1704 if (!llvm::isa<Constant>(Src1)) 1937 _idiv(T, Src1, T);
1705 Src1 = legalizeToVar(Src1, RegX8632::Reg_ecx); 1938 _mov(Dest, T);
1706 _shl(T, Src1); 1939 } else {
1707 _mov(Dest, T); 1940 T_edx = makeReg(IceType_i32, RegX8632::Reg_edx);
1708 break; 1941 _mov(T, Src0, RegX8632::Reg_eax);
1709 case InstArithmetic::Lshr: 1942 _cbwdq(T_edx, T);
1710 _mov(T, Src0); 1943 _idiv(T, Src1, T_edx);
1711 if (!llvm::isa<Constant>(Src1)) 1944 _mov(Dest, T);
1712 Src1 = legalizeToVar(Src1, RegX8632::Reg_ecx); 1945 }
1713 _shr(T, Src1); 1946 break;
1714 _mov(Dest, T); 1947 case InstArithmetic::Urem:
1715 break; 1948 Src1 = legalize(Src1, Legal_Reg | Legal_Mem);
1716 case InstArithmetic::Ashr: 1949 if (isByteSizedArithType(Dest->getType())) {
1717 _mov(T, Src0); 1950 Variable *T_ah = nullptr;
1718 if (!llvm::isa<Constant>(Src1)) 1951 Constant *Zero = Ctx->getConstantZero(IceType_i8);
1719 Src1 = legalizeToVar(Src1, RegX8632::Reg_ecx); 1952 _mov(T, Src0, RegX8632::Reg_eax);
1720 _sar(T, Src1); 1953 _mov(T_ah, Zero, RegX8632::Reg_ah);
1721 _mov(Dest, T); 1954 _div(T_ah, Src1, T);
1722 break; 1955 _mov(Dest, T_ah);
1723 case InstArithmetic::Udiv: 1956 } else {
1724 // div and idiv are the few arithmetic operators that do not allow 1957 Constant *Zero = Ctx->getConstantZero(IceType_i32);
1725 // immediates as the operand. 1958 _mov(T_edx, Zero, RegX8632::Reg_edx);
1726 Src1 = legalize(Src1, Legal_Reg | Legal_Mem); 1959 _mov(T, Src0, RegX8632::Reg_eax);
1727 if (isByteSizedArithType(Dest->getType())) { 1960 _div(T_edx, Src1, T);
1728 Variable *T_ah = nullptr; 1961 _mov(Dest, T_edx);
1729 Constant *Zero = Ctx->getConstantZero(IceType_i8); 1962 }
1730 _mov(T, Src0, RegX8632::Reg_eax); 1963 break;
1731 _mov(T_ah, Zero, RegX8632::Reg_ah); 1964 case InstArithmetic::Srem:
1732 _div(T, Src1, T_ah); 1965 // TODO(stichnot): Enable this after doing better performance
1733 _mov(Dest, T); 1966 // and cross testing.
1734 } else { 1967 if (false && Ctx->getFlags().getOptLevel() >= Opt_1) {
1735 Constant *Zero = Ctx->getConstantZero(IceType_i32); 1968 // Optimize mod by constant power of 2, but not for Om1 or O0,
1736 _mov(T, Src0, RegX8632::Reg_eax); 1969 // just to keep things simple there.
1737 _mov(T_edx, Zero, RegX8632::Reg_edx); 1970 if (auto *C = llvm::dyn_cast<ConstantInteger32>(Src1)) {
1738 _div(T, Src1, T_edx); 1971 int32_t Divisor = C->getValue();
1739 _mov(Dest, T); 1972 uint32_t UDivisor = static_cast<uint32_t>(Divisor);
1973 if (Divisor > 0 && llvm::isPowerOf2_32(UDivisor)) {
1974 uint32_t LogDiv = llvm::Log2_32(UDivisor);
1975 Type Ty = Dest->getType();
1976 // LLVM does the following for dest=src%(1<<log):
1977 // t=src
1978 // sar t,typewidth-1 // -1 if src is negative, 0 if not
1979 // shr t,typewidth-log
1980 // add t,src
1981 // and t, -(1<<log)
1982 // sub t,src
1983 // neg t
1984 // dest=t
1985 uint32_t TypeWidth = X86_CHAR_BIT * typeWidthInBytes(Ty);
1986 // If for some reason we are dividing by 1, just assign 0.
1987 if (LogDiv == 0) {
1988 _mov(Dest, Ctx->getConstantZero(Ty));
1989 return;
1990 }
1991 _mov(T, Src0);
1992 // The initial sar is unnecessary when dividing by 2.
1993 if (LogDiv > 1)
1994 _sar(T, Ctx->getConstantInt(Ty, TypeWidth - 1));
1995 _shr(T, Ctx->getConstantInt(Ty, TypeWidth - LogDiv));
1996 _add(T, Src0);
1997 _and(T, Ctx->getConstantInt(Ty, -(1 << LogDiv)));
1998 _sub(T, Src0);
1999 _neg(T);
2000 _mov(Dest, T);
2001 return;
2002 }
1740 } 2003 }
1741 break; 2004 }
1742 case InstArithmetic::Sdiv: 2005 Src1 = legalize(Src1, Legal_Reg | Legal_Mem);
1743 Src1 = legalize(Src1, Legal_Reg | Legal_Mem); 2006 if (isByteSizedArithType(Dest->getType())) {
1744 if (isByteSizedArithType(Dest->getType())) { 2007 Variable *T_ah = makeReg(IceType_i8, RegX8632::Reg_ah);
1745 _mov(T, Src0, RegX8632::Reg_eax); 2008 _mov(T, Src0, RegX8632::Reg_eax);
1746 _cbwdq(T, T); 2009 _cbwdq(T, T);
1747 _idiv(T, Src1, T); 2010 Context.insert(InstFakeDef::create(Func, T_ah));
1748 _mov(Dest, T); 2011 _idiv(T_ah, Src1, T);
1749 } else { 2012 _mov(Dest, T_ah);
1750 T_edx = makeReg(IceType_i32, RegX8632::Reg_edx); 2013 } else {
1751 _mov(T, Src0, RegX8632::Reg_eax); 2014 T_edx = makeReg(IceType_i32, RegX8632::Reg_edx);
1752 _cbwdq(T_edx, T); 2015 _mov(T, Src0, RegX8632::Reg_eax);
1753 _idiv(T, Src1, T_edx); 2016 _cbwdq(T_edx, T);
1754 _mov(Dest, T); 2017 _idiv(T_edx, Src1, T);
1755 } 2018 _mov(Dest, T_edx);
1756 break; 2019 }
1757 case InstArithmetic::Urem: 2020 break;
1758 Src1 = legalize(Src1, Legal_Reg | Legal_Mem); 2021 case InstArithmetic::Fadd:
1759 if (isByteSizedArithType(Dest->getType())) { 2022 _mov(T, Src0);
1760 Variable *T_ah = nullptr; 2023 _addss(T, Src1);
1761 Constant *Zero = Ctx->getConstantZero(IceType_i8); 2024 _mov(Dest, T);
1762 _mov(T, Src0, RegX8632::Reg_eax); 2025 break;
1763 _mov(T_ah, Zero, RegX8632::Reg_ah); 2026 case InstArithmetic::Fsub:
1764 _div(T_ah, Src1, T); 2027 _mov(T, Src0);
1765 _mov(Dest, T_ah); 2028 _subss(T, Src1);
1766 } else { 2029 _mov(Dest, T);
1767 Constant *Zero = Ctx->getConstantZero(IceType_i32); 2030 break;
1768 _mov(T_edx, Zero, RegX8632::Reg_edx); 2031 case InstArithmetic::Fmul:
1769 _mov(T, Src0, RegX8632::Reg_eax); 2032 _mov(T, Src0);
1770 _div(T_edx, Src1, T); 2033 _mulss(T, Src1);
1771 _mov(Dest, T_edx); 2034 _mov(Dest, T);
1772 } 2035 break;
1773 break; 2036 case InstArithmetic::Fdiv:
1774 case InstArithmetic::Srem: 2037 _mov(T, Src0);
1775 Src1 = legalize(Src1, Legal_Reg | Legal_Mem); 2038 _divss(T, Src1);
1776 if (isByteSizedArithType(Dest->getType())) { 2039 _mov(Dest, T);
1777 Variable *T_ah = makeReg(IceType_i8, RegX8632::Reg_ah); 2040 break;
1778 _mov(T, Src0, RegX8632::Reg_eax); 2041 case InstArithmetic::Frem: {
1779 _cbwdq(T, T); 2042 const SizeT MaxSrcs = 2;
1780 Context.insert(InstFakeDef::create(Func, T_ah)); 2043 Type Ty = Dest->getType();
1781 _idiv(T_ah, Src1, T); 2044 InstCall *Call = makeHelperCall(
1782 _mov(Dest, T_ah); 2045 isFloat32Asserting32Or64(Ty) ? H_frem_f32 : H_frem_f64, Dest, MaxSrcs);
1783 } else { 2046 Call->addArg(Src0);
1784 T_edx = makeReg(IceType_i32, RegX8632::Reg_edx); 2047 Call->addArg(Src1);
1785 _mov(T, Src0, RegX8632::Reg_eax); 2048 return lowerCall(Call);
1786 _cbwdq(T_edx, T); 2049 }
1787 _idiv(T_edx, Src1, T);
1788 _mov(Dest, T_edx);
1789 }
1790 break;
1791 case InstArithmetic::Fadd:
1792 _mov(T, Src0);
1793 _addss(T, Src1);
1794 _mov(Dest, T);
1795 break;
1796 case InstArithmetic::Fsub:
1797 _mov(T, Src0);
1798 _subss(T, Src1);
1799 _mov(Dest, T);
1800 break;
1801 case InstArithmetic::Fmul:
1802 _mov(T, Src0);
1803 _mulss(T, Src1);
1804 _mov(Dest, T);
1805 break;
1806 case InstArithmetic::Fdiv:
1807 _mov(T, Src0);
1808 _divss(T, Src1);
1809 _mov(Dest, T);
1810 break;
1811 case InstArithmetic::Frem: {
1812 const SizeT MaxSrcs = 2;
1813 Type Ty = Dest->getType();
1814 InstCall *Call =
1815 makeHelperCall(isFloat32Asserting32Or64(Ty) ? H_frem_f32 : H_frem_f64,
1816 Dest, MaxSrcs);
1817 Call->addArg(Src0);
1818 Call->addArg(Src1);
1819 return lowerCall(Call);
1820 } break;
1821 }
1822 } 2050 }
1823 } 2051 }
1824 2052
1825 void TargetX8632::lowerAssign(const InstAssign *Inst) { 2053 void TargetX8632::lowerAssign(const InstAssign *Inst) {
1826 Variable *Dest = Inst->getDest(); 2054 Variable *Dest = Inst->getDest();
1827 Operand *Src0 = Inst->getSrc(0); 2055 Operand *Src0 = Inst->getSrc(0);
1828 assert(Dest->getType() == Src0->getType()); 2056 assert(Dest->getType() == Src0->getType());
1829 if (Dest->getType() == IceType_i64) { 2057 if (Dest->getType() == IceType_i64) {
1830 Src0 = legalize(Src0); 2058 Src0 = legalize(Src0);
1831 Operand *Src0Lo = loOperand(Src0); 2059 Operand *Src0Lo = loOperand(Src0);
1832 Operand *Src0Hi = hiOperand(Src0); 2060 Operand *Src0Hi = hiOperand(Src0);
1833 Variable *DestLo = llvm::cast<Variable>(loOperand(Dest)); 2061 Variable *DestLo = llvm::cast<Variable>(loOperand(Dest));
1834 Variable *DestHi = llvm::cast<Variable>(hiOperand(Dest)); 2062 Variable *DestHi = llvm::cast<Variable>(hiOperand(Dest));
1835 Variable *T_Lo = nullptr, *T_Hi = nullptr; 2063 Variable *T_Lo = nullptr, *T_Hi = nullptr;
1836 _mov(T_Lo, Src0Lo); 2064 _mov(T_Lo, Src0Lo);
1837 _mov(DestLo, T_Lo); 2065 _mov(DestLo, T_Lo);
1838 _mov(T_Hi, Src0Hi); 2066 _mov(T_Hi, Src0Hi);
1839 _mov(DestHi, T_Hi); 2067 _mov(DestHi, T_Hi);
1840 } else { 2068 } else {
1841 Operand *RI; 2069 Operand *RI;
1842 if (Dest->hasReg()) 2070 if (Dest->hasReg()) {
1843 // If Dest already has a physical register, then legalize the 2071 // If Dest already has a physical register, then legalize the
1844 // Src operand into a Variable with the same register 2072 // Src operand into a Variable with the same register
1845 // assignment. This is mostly a workaround for advanced phi 2073 // assignment. This is mostly a workaround for advanced phi
1846 // lowering's ad-hoc register allocation which assumes no 2074 // lowering's ad-hoc register allocation which assumes no
1847 // register allocation is needed when at least one of the 2075 // register allocation is needed when at least one of the
1848 // operands is non-memory. 2076 // operands is non-memory.
1849 RI = legalize(Src0, Legal_Reg, Dest->getRegNum()); 2077
1850 else 2078 // qining: if we have a physical register for the dest variable,
2079 // we can enable our constant blinding or pooling again. Note
2080 // this is only for advancedPhiLowering(), the flag flip should
2081 // leave no other side effect.
2082 {
2083 BoolFlagSaver B(RandomizationPoolingPaused, false);
2084 RI = legalize(Src0, Legal_Reg, Dest->getRegNum());
2085 }
2086 } else {
1851 // If Dest could be a stack operand, then RI must be a physical 2087 // If Dest could be a stack operand, then RI must be a physical
1852 // register or a scalar integer immediate. 2088 // register or a scalar integer immediate.
1853 RI = legalize(Src0, Legal_Reg | Legal_Imm); 2089 RI = legalize(Src0, Legal_Reg | Legal_Imm);
2090 }
1854 if (isVectorType(Dest->getType())) 2091 if (isVectorType(Dest->getType()))
1855 _movp(Dest, RI); 2092 _movp(Dest, RI);
1856 else 2093 else
1857 _mov(Dest, RI); 2094 _mov(Dest, RI);
1858 } 2095 }
1859 } 2096 }
1860 2097
1861 void TargetX8632::lowerBr(const InstBr *Inst) { 2098 void TargetX8632::lowerBr(const InstBr *Inst) {
1862 if (Inst->isUnconditional()) { 2099 if (Inst->isUnconditional()) {
1863 _br(Inst->getTargetUnconditional()); 2100 _br(Inst->getTargetUnconditional());
(...skipping 1248 matching lines...) Expand 10 before | Expand all | Expand 10 after
3112 Context.insert( 3349 Context.insert(
3113 InstFakeUse::create(Func, Context.getLastInserted()->getDest())); 3350 InstFakeUse::create(Func, Context.getLastInserted()->getDest()));
3114 return; 3351 return;
3115 } 3352 }
3116 case Intrinsics::AtomicRMW: 3353 case Intrinsics::AtomicRMW:
3117 if (!Intrinsics::isMemoryOrderValid( 3354 if (!Intrinsics::isMemoryOrderValid(
3118 ID, getConstantMemoryOrder(Instr->getArg(3)))) { 3355 ID, getConstantMemoryOrder(Instr->getArg(3)))) {
3119 Func->setError("Unexpected memory ordering for AtomicRMW"); 3356 Func->setError("Unexpected memory ordering for AtomicRMW");
3120 return; 3357 return;
3121 } 3358 }
3122 lowerAtomicRMW(Instr->getDest(), 3359 lowerAtomicRMW(
3123 static_cast<uint32_t>(llvm::cast<ConstantInteger32>( 3360 Instr->getDest(),
3124 Instr->getArg(0))->getValue()), 3361 static_cast<uint32_t>(
3125 Instr->getArg(1), Instr->getArg(2)); 3362 llvm::cast<ConstantInteger32>(Instr->getArg(0))->getValue()),
3363 Instr->getArg(1), Instr->getArg(2));
3126 return; 3364 return;
3127 case Intrinsics::AtomicStore: { 3365 case Intrinsics::AtomicStore: {
3128 if (!Intrinsics::isMemoryOrderValid( 3366 if (!Intrinsics::isMemoryOrderValid(
3129 ID, getConstantMemoryOrder(Instr->getArg(2)))) { 3367 ID, getConstantMemoryOrder(Instr->getArg(2)))) {
3130 Func->setError("Unexpected memory ordering for AtomicStore"); 3368 Func->setError("Unexpected memory ordering for AtomicStore");
3131 return; 3369 return;
3132 } 3370 }
3133 // We require the memory address to be naturally aligned. 3371 // We require the memory address to be naturally aligned.
3134 // Given that is the case, then normal stores are atomic. 3372 // Given that is the case, then normal stores are atomic.
3135 // Add a fence after the store to make it visible. 3373 // Add a fence after the store to make it visible.
(...skipping 1182 matching lines...) Expand 10 before | Expand all | Expand 10 after
4318 } 4556 }
4319 } 4557 }
4320 4558
4321 void TargetX8632::lowerUnreachable(const InstUnreachable * /*Inst*/) { _ud2(); } 4559 void TargetX8632::lowerUnreachable(const InstUnreachable * /*Inst*/) { _ud2(); }
4322 4560
4323 // Turn an i64 Phi instruction into a pair of i32 Phi instructions, to 4561 // Turn an i64 Phi instruction into a pair of i32 Phi instructions, to
4324 // preserve integrity of liveness analysis. Undef values are also 4562 // preserve integrity of liveness analysis. Undef values are also
4325 // turned into zeroes, since loOperand() and hiOperand() don't expect 4563 // turned into zeroes, since loOperand() and hiOperand() don't expect
4326 // Undef input. 4564 // Undef input.
4327 void TargetX8632::prelowerPhis() { 4565 void TargetX8632::prelowerPhis() {
4566 // Pause constant blinding or pooling, blinding or pooling will be done later
4567 // during phi lowering assignments
4568 BoolFlagSaver B(RandomizationPoolingPaused, true);
4569
4328 CfgNode *Node = Context.getNode(); 4570 CfgNode *Node = Context.getNode();
4329 for (Inst &I : Node->getPhis()) { 4571 for (Inst &I : Node->getPhis()) {
4330 auto Phi = llvm::dyn_cast<InstPhi>(&I); 4572 auto Phi = llvm::dyn_cast<InstPhi>(&I);
4331 if (Phi->isDeleted()) 4573 if (Phi->isDeleted())
4332 continue; 4574 continue;
4333 Variable *Dest = Phi->getDest(); 4575 Variable *Dest = Phi->getDest();
4334 if (Dest->getType() == IceType_i64) { 4576 if (Dest->getType() == IceType_i64) {
4335 Variable *DestLo = llvm::cast<Variable>(loOperand(Dest)); 4577 Variable *DestLo = llvm::cast<Variable>(loOperand(Dest));
4336 Variable *DestHi = llvm::cast<Variable>(hiOperand(Dest)); 4578 Variable *DestHi = llvm::cast<Variable>(hiOperand(Dest));
4337 InstPhi *PhiLo = InstPhi::create(Func, Phi->getSrcSize(), DestLo); 4579 InstPhi *PhiLo = InstPhi::create(Func, Phi->getSrcSize(), DestLo);
(...skipping 79 matching lines...) Expand 10 before | Expand all | Expand 10 after
4417 // assignment, add Dest to the set of available registers, and 4659 // assignment, add Dest to the set of available registers, and
4418 // remove Src from the set of available registers. Iteration is 4660 // remove Src from the set of available registers. Iteration is
4419 // done backwards to enable incremental updates of the available 4661 // done backwards to enable incremental updates of the available
4420 // register set, and the lowered instruction numbers may be out of 4662 // register set, and the lowered instruction numbers may be out of
4421 // order, but that can be worked around by renumbering the block 4663 // order, but that can be worked around by renumbering the block
4422 // afterwards if necessary. 4664 // afterwards if necessary.
4423 for (const Inst &I : reverse_range(Assignments)) { 4665 for (const Inst &I : reverse_range(Assignments)) {
4424 Context.rewind(); 4666 Context.rewind();
4425 auto Assign = llvm::dyn_cast<InstAssign>(&I); 4667 auto Assign = llvm::dyn_cast<InstAssign>(&I);
4426 Variable *Dest = Assign->getDest(); 4668 Variable *Dest = Assign->getDest();
4669
4670 // qining: Here is an ugly hack for phi.ll test.
4671 // In function test_split_undef_int_vec, the advanced phi
4672 // lowering process will find an assignment of undefined
4673 // vector. This vector, as the Src here, will crash if it
4674 // go through legalize(). legalize() will create new variable
4675 // with makeVectorOfZeros(), but this new variable will be
4676 // assigned a stack slot. This will fail the assertion in
4677 // IceInstX8632.cpp:789, as XmmEmitterRegOp() complain:
4678 // Var->hasReg() fails. Note this failure is irrelevant to
4679 // randomization or pooling of constants.
4680 // So, we do not call legalize() to add pool label for the
4681 // src operands of phi assignment instructions.
4682 // Instead, we manually add pool label for constant float and
4683 // constant double values here.
4684 // Note going through legalize() does not affect the testing
4685 // results of SPEC2K and xtests.
4427 Operand *Src = Assign->getSrc(0); 4686 Operand *Src = Assign->getSrc(0);
4687 if (!llvm::isa<ConstantUndef>(Assign->getSrc(0))) {
4688 Src = legalize(Src);
4689 }
4690
4428 Variable *SrcVar = llvm::dyn_cast<Variable>(Src); 4691 Variable *SrcVar = llvm::dyn_cast<Variable>(Src);
4429 // Use normal assignment lowering, except lower mem=mem specially 4692 // Use normal assignment lowering, except lower mem=mem specially
4430 // so we can register-allocate at the same time. 4693 // so we can register-allocate at the same time.
4431 if (!isMemoryOperand(Dest) || !isMemoryOperand(Src)) { 4694 if (!isMemoryOperand(Dest) || !isMemoryOperand(Src)) {
4432 lowerAssign(Assign); 4695 lowerAssign(Assign);
4433 } else { 4696 } else {
4434 assert(Dest->getType() == Src->getType()); 4697 assert(Dest->getType() == Src->getType());
4435 const llvm::SmallBitVector &RegsForType = 4698 const llvm::SmallBitVector &RegsForType =
4436 getRegisterSetForType(Dest->getType()); 4699 getRegisterSetForType(Dest->getType());
4437 llvm::SmallBitVector AvailRegsForType = RegsForType & Available; 4700 llvm::SmallBitVector AvailRegsForType = RegsForType & Available;
(...skipping 155 matching lines...) Expand 10 before | Expand all | Expand 10 after
4593 // Assert that a physical register is allowed. To date, all calls 4856 // Assert that a physical register is allowed. To date, all calls
4594 // to legalize() allow a physical register. If a physical register 4857 // to legalize() allow a physical register. If a physical register
4595 // needs to be explicitly disallowed, then new code will need to be 4858 // needs to be explicitly disallowed, then new code will need to be
4596 // written to force a spill. 4859 // written to force a spill.
4597 assert(Allowed & Legal_Reg); 4860 assert(Allowed & Legal_Reg);
4598 // If we're asking for a specific physical register, make sure we're 4861 // If we're asking for a specific physical register, make sure we're
4599 // not allowing any other operand kinds. (This could be future 4862 // not allowing any other operand kinds. (This could be future
4600 // work, e.g. allow the shl shift amount to be either an immediate 4863 // work, e.g. allow the shl shift amount to be either an immediate
4601 // or in ecx.) 4864 // or in ecx.)
4602 assert(RegNum == Variable::NoRegister || Allowed == Legal_Reg); 4865 assert(RegNum == Variable::NoRegister || Allowed == Legal_Reg);
4866
4603 if (auto Mem = llvm::dyn_cast<OperandX8632Mem>(From)) { 4867 if (auto Mem = llvm::dyn_cast<OperandX8632Mem>(From)) {
4604 // Before doing anything with a Mem operand, we need to ensure 4868 // Before doing anything with a Mem operand, we need to ensure
4605 // that the Base and Index components are in physical registers. 4869 // that the Base and Index components are in physical registers.
4606 Variable *Base = Mem->getBase(); 4870 Variable *Base = Mem->getBase();
4607 Variable *Index = Mem->getIndex(); 4871 Variable *Index = Mem->getIndex();
4608 Variable *RegBase = nullptr; 4872 Variable *RegBase = nullptr;
4609 Variable *RegIndex = nullptr; 4873 Variable *RegIndex = nullptr;
4610 if (Base) { 4874 if (Base) {
4611 RegBase = legalizeToVar(Base); 4875 RegBase = legalizeToVar(Base);
4612 } 4876 }
4613 if (Index) { 4877 if (Index) {
4614 RegIndex = legalizeToVar(Index); 4878 RegIndex = legalizeToVar(Index);
4615 } 4879 }
4616 if (Base != RegBase || Index != RegIndex) { 4880 if (Base != RegBase || Index != RegIndex) {
4617 From = 4881 Mem =
4618 OperandX8632Mem::create(Func, Ty, RegBase, Mem->getOffset(), RegIndex, 4882 OperandX8632Mem::create(Func, Ty, RegBase, Mem->getOffset(), RegIndex,
4619 Mem->getShift(), Mem->getSegmentRegister()); 4883 Mem->getShift(), Mem->getSegmentRegister());
4620 } 4884 }
4621 4885
4886 // qining: For all Memory Operands, we do randomization/pooling here
4887 From = randomizeOrPoolImmediate(Mem);
4888
4622 if (!(Allowed & Legal_Mem)) { 4889 if (!(Allowed & Legal_Mem)) {
4623 From = copyToReg(From, RegNum); 4890 From = copyToReg(From, RegNum);
4624 } 4891 }
4625 return From; 4892 return From;
4626 } 4893 }
4627 if (llvm::isa<Constant>(From)) { 4894 if (llvm::isa<Constant>(From)) {
Jim Stichnoth 2015/06/19 16:51:03 Change to something like: if (auto *Const = llvm
qining 2015/06/19 20:22:25 Done.
4628 if (llvm::isa<ConstantUndef>(From)) { 4895 if (llvm::isa<ConstantUndef>(From)) {
4629 // Lower undefs to zero. Another option is to lower undefs to an 4896 // Lower undefs to zero. Another option is to lower undefs to an
4630 // uninitialized register; however, using an uninitialized register 4897 // uninitialized register; however, using an uninitialized register
4631 // results in less predictable code. 4898 // results in less predictable code.
4632 // 4899 //
4633 // If in the future the implementation is changed to lower undef 4900 // If in the future the implementation is changed to lower undef
4634 // values to uninitialized registers, a FakeDef will be needed: 4901 // values to uninitialized registers, a FakeDef will be needed:
4635 // Context.insert(InstFakeDef::create(Func, Reg)); 4902 // Context.insert(InstFakeDef::create(Func, Reg));
4636 // This is in order to ensure that the live range of Reg is not 4903 // This is in order to ensure that the live range of Reg is not
4637 // overestimated. If the constant being lowered is a 64 bit value, 4904 // overestimated. If the constant being lowered is a 64 bit value,
4638 // then the result should be split and the lo and hi components will 4905 // then the result should be split and the lo and hi components will
4639 // need to go in uninitialized registers. 4906 // need to go in uninitialized registers.
4640 if (isVectorType(Ty)) 4907 if (isVectorType(Ty))
4641 return makeVectorOfZeros(Ty, RegNum); 4908 return makeVectorOfZeros(Ty, RegNum);
4642 From = Ctx->getConstantZero(Ty); 4909 From = Ctx->getConstantZero(Ty);
4643 } 4910 }
4644 // There should be no constants of vector type (other than undef). 4911 // There should be no constants of vector type (other than undef).
4645 assert(!isVectorType(Ty)); 4912 assert(!isVectorType(Ty));
4913
4914 // If the operand is an 32 bit constant integer, we should check
4915 // whether we need to randomize it or pool it.
4916 if (ConstantInteger32 *C = llvm::dyn_cast<ConstantInteger32>(From)) {
4917 Operand *NewFrom = randomizeOrPoolImmediate(C, RegNum);
4918 if (NewFrom != From) {
4919 return NewFrom;
4920 }
4921 }
4922
4646 // Convert a scalar floating point constant into an explicit 4923 // Convert a scalar floating point constant into an explicit
4647 // memory operand. 4924 // memory operand.
4648 if (isScalarFloatingType(Ty)) { 4925 if (isScalarFloatingType(Ty)) {
4649 Variable *Base = nullptr; 4926 Variable *Base = nullptr;
4650 std::string Buffer; 4927 std::string Buffer;
4651 llvm::raw_string_ostream StrBuf(Buffer); 4928 llvm::raw_string_ostream StrBuf(Buffer);
4652 llvm::cast<Constant>(From)->emitPoolLabel(StrBuf); 4929 llvm::cast<Constant>(From)->emitPoolLabel(StrBuf);
4930 llvm::cast<Constant>(From)->shouldBePooled = true;
4653 Constant *Offset = Ctx->getConstantSym(0, StrBuf.str(), true); 4931 Constant *Offset = Ctx->getConstantSym(0, StrBuf.str(), true);
4654 From = OperandX8632Mem::create(Func, Ty, Base, Offset); 4932 From = OperandX8632Mem::create(Func, Ty, Base, Offset);
4655 } 4933 }
4656 bool NeedsReg = false; 4934 bool NeedsReg = false;
4657 if (!(Allowed & Legal_Imm) && !isScalarFloatingType(Ty)) 4935 if (!(Allowed & Legal_Imm) && !isScalarFloatingType(Ty))
4658 // Immediate specifically not allowed 4936 // Immediate specifically not allowed
4659 NeedsReg = true; 4937 NeedsReg = true;
4660 if (!(Allowed & Legal_Mem) && isScalarFloatingType(Ty)) 4938 if (!(Allowed & Legal_Mem) && isScalarFloatingType(Ty))
4661 // On x86, FP constants are lowered to mem operands. 4939 // On x86, FP constants are lowered to mem operands.
4662 NeedsReg = true; 4940 NeedsReg = true;
(...skipping 36 matching lines...) Expand 10 before | Expand all | Expand 10 after
4699 bool IsSrc1ImmOrReg = false; 4977 bool IsSrc1ImmOrReg = false;
4700 if (llvm::isa<Constant>(Src1)) { 4978 if (llvm::isa<Constant>(Src1)) {
4701 IsSrc1ImmOrReg = true; 4979 IsSrc1ImmOrReg = true;
4702 } else if (Variable *Var = llvm::dyn_cast<Variable>(Src1)) { 4980 } else if (Variable *Var = llvm::dyn_cast<Variable>(Src1)) {
4703 if (Var->hasReg()) 4981 if (Var->hasReg())
4704 IsSrc1ImmOrReg = true; 4982 IsSrc1ImmOrReg = true;
4705 } 4983 }
4706 return legalize(Src0, IsSrc1ImmOrReg ? (Legal_Reg | Legal_Mem) : Legal_Reg); 4984 return legalize(Src0, IsSrc1ImmOrReg ? (Legal_Reg | Legal_Mem) : Legal_Reg);
4707 } 4985 }
4708 4986
4709 OperandX8632Mem *TargetX8632::formMemoryOperand(Operand *Operand, Type Ty, 4987 OperandX8632Mem *TargetX8632::formMemoryOperand(Operand *Opnd, Type Ty,
4710 bool DoLegalize) { 4988 bool DoLegalize) {
4711 OperandX8632Mem *Mem = llvm::dyn_cast<OperandX8632Mem>(Operand); 4989 OperandX8632Mem *Mem = llvm::dyn_cast<OperandX8632Mem>(Opnd);
4712 // It may be the case that address mode optimization already creates 4990 // It may be the case that address mode optimization already creates
4713 // an OperandX8632Mem, so in that case it wouldn't need another level 4991 // an OperandX8632Mem, so in that case it wouldn't need another level
4714 // of transformation. 4992 // of transformation.
4715 if (!Mem) { 4993 if (!Mem) {
4716 Variable *Base = llvm::dyn_cast<Variable>(Operand); 4994 Variable *Base = llvm::dyn_cast<Variable>(Opnd);
4717 Constant *Offset = llvm::dyn_cast<Constant>(Operand); 4995 Constant *Offset = llvm::dyn_cast<Constant>(Opnd);
4718 assert(Base || Offset); 4996 assert(Base || Offset);
4719 if (Offset) { 4997 if (Offset) {
4720 // Make sure Offset is not undef. 4998 // qining: during memory operand building, we do not
4721 Offset = llvm::cast<Constant>(legalize(Offset)); 4999 // blind or pool the constant offset, we will work on
5000 // the whole memory operand later as one entity later,
5001 // this save one instruction. By turning blinding and
5002 // pooling off, we guarantee legalize(Offset) will return
5003 // a constant*
5004 {
5005 BoolFlagSaver B(RandomizationPoolingPaused, true);
5006
5007 Offset = llvm::cast<Constant>(legalize(Offset));
5008 }
5009
4722 assert(llvm::isa<ConstantInteger32>(Offset) || 5010 assert(llvm::isa<ConstantInteger32>(Offset) ||
4723 llvm::isa<ConstantRelocatable>(Offset)); 5011 llvm::isa<ConstantRelocatable>(Offset));
4724 } 5012 }
4725 Mem = OperandX8632Mem::create(Func, Ty, Base, Offset); 5013 Mem = OperandX8632Mem::create(Func, Ty, Base, Offset);
4726 } 5014 }
4727 return llvm::cast<OperandX8632Mem>(DoLegalize ? legalize(Mem) : Mem); 5015 // qining: do legalization, which contains randomization/pooling
5016 // or do randomization/pooling.
5017 return llvm::cast<OperandX8632Mem>(
5018 DoLegalize ? legalize(Mem) : randomizeOrPoolImmediate(Mem));
4728 } 5019 }
4729 5020
4730 Variable *TargetX8632::makeReg(Type Type, int32_t RegNum) { 5021 Variable *TargetX8632::makeReg(Type Type, int32_t RegNum) {
4731 // There aren't any 64-bit integer registers for x86-32. 5022 // There aren't any 64-bit integer registers for x86-32.
4732 assert(Type != IceType_i64); 5023 assert(Type != IceType_i64);
4733 Variable *Reg = Func->makeVariable(Type); 5024 Variable *Reg = Func->makeVariable(Type);
4734 if (RegNum == Variable::NoRegister) 5025 if (RegNum == Variable::NoRegister)
4735 Reg->setWeightInfinite(); 5026 Reg->setWeightInfinite();
4736 else 5027 else
4737 Reg->setRegNum(RegNum); 5028 Reg->setRegNum(RegNum);
(...skipping 220 matching lines...) Expand 10 before | Expand all | Expand 10 after
4958 typedef ConstantDouble IceType; 5249 typedef ConstantDouble IceType;
4959 static const Type Ty = IceType_f64; 5250 static const Type Ty = IceType_f64;
4960 static const char *TypeName; 5251 static const char *TypeName;
4961 static const char *AsmTag; 5252 static const char *AsmTag;
4962 static const char *PrintfString; 5253 static const char *PrintfString;
4963 }; 5254 };
4964 const char *PoolTypeConverter<double>::TypeName = "double"; 5255 const char *PoolTypeConverter<double>::TypeName = "double";
4965 const char *PoolTypeConverter<double>::AsmTag = ".quad"; 5256 const char *PoolTypeConverter<double>::AsmTag = ".quad";
4966 const char *PoolTypeConverter<double>::PrintfString = "0x%llx"; 5257 const char *PoolTypeConverter<double>::PrintfString = "0x%llx";
4967 5258
5259 // Add converter for int type constant pooling
5260 template <> struct PoolTypeConverter<int> {
Jim Stichnoth 2015/06/19 16:51:03 Please use uint32_t/uint16_t/uint8_t instead of in
qining 2015/06/19 20:22:26 Done. I think both signed and unsigned should be f
5261 typedef uint32_t PrimitiveIntType;
5262 typedef ConstantInteger32 IceType;
5263 static const Type Ty = IceType_i32;
5264 static const char *TypeName;
5265 static const char *AsmTag;
5266 static const char *PrintfString;
5267 };
5268 const char *PoolTypeConverter<int>::TypeName = "i32";
5269 const char *PoolTypeConverter<int>::AsmTag = ".long";
5270 const char *PoolTypeConverter<int>::PrintfString = "0x%x";
5271
5272 // Add converter for int type constant pooling
5273 template <> struct PoolTypeConverter<short> {
5274 typedef uint32_t PrimitiveIntType;
5275 typedef ConstantInteger32 IceType;
5276 static const Type Ty = IceType_i16;
5277 static const char *TypeName;
5278 static const char *AsmTag;
5279 static const char *PrintfString;
5280 };
5281 const char *PoolTypeConverter<short>::TypeName = "i16";
5282 const char *PoolTypeConverter<short>::AsmTag = ".short";
5283 const char *PoolTypeConverter<short>::PrintfString = "0x%x";
5284
5285 // Add converter for int type constant pooling
5286 template <> struct PoolTypeConverter<char> {
5287 typedef uint32_t PrimitiveIntType;
5288 typedef ConstantInteger32 IceType;
5289 static const Type Ty = IceType_i8;
5290 static const char *TypeName;
5291 static const char *AsmTag;
5292 static const char *PrintfString;
5293 };
5294 const char *PoolTypeConverter<char>::TypeName = "i8";
5295 const char *PoolTypeConverter<char>::AsmTag = ".byte";
5296 const char *PoolTypeConverter<char>::PrintfString = "0x%x";
5297
4968 template <typename T> 5298 template <typename T>
4969 void TargetDataX8632::emitConstantPool(GlobalContext *Ctx) { 5299 void TargetDataX8632::emitConstantPool(GlobalContext *Ctx) {
4970 if (!ALLOW_DUMP) 5300 if (!ALLOW_DUMP)
4971 return; 5301 return;
4972 Ostream &Str = Ctx->getStrEmit(); 5302 Ostream &Str = Ctx->getStrEmit();
4973 Type Ty = T::Ty; 5303 Type Ty = T::Ty;
4974 SizeT Align = typeAlignInBytes(Ty); 5304 SizeT Align = typeAlignInBytes(Ty);
4975 ConstantList Pool = Ctx->getConstantPool(Ty); 5305 ConstantList Pool = Ctx->getConstantPool(Ty);
4976 5306
4977 Str << "\t.section\t.rodata.cst" << Align << ",\"aM\",@progbits," << Align 5307 Str << "\t.section\t.rodata.cst" << Align << ",\"aM\",@progbits," << Align
4978 << "\n"; 5308 << "\n";
4979 Str << "\t.align\t" << Align << "\n"; 5309 Str << "\t.align\t" << Align << "\n";
4980 for (Constant *C : Pool) { 5310 for (Constant *C : Pool) {
5311 if (!C->shouldBePooled)
5312 continue;
4981 typename T::IceType *Const = llvm::cast<typename T::IceType>(C); 5313 typename T::IceType *Const = llvm::cast<typename T::IceType>(C);
4982 typename T::IceType::PrimType Value = Const->getValue(); 5314 typename T::IceType::PrimType Value = Const->getValue();
4983 // Use memcpy() to copy bits from Value into RawValue in a way 5315 // Use memcpy() to copy bits from Value into RawValue in a way
4984 // that avoids breaking strict-aliasing rules. 5316 // that avoids breaking strict-aliasing rules.
4985 typename T::PrimitiveIntType RawValue; 5317 typename T::PrimitiveIntType RawValue;
4986 memcpy(&RawValue, &Value, sizeof(Value)); 5318 memcpy(&RawValue, &Value, sizeof(Value));
4987 char buf[30]; 5319 char buf[30];
4988 int CharsPrinted = 5320 int CharsPrinted =
4989 snprintf(buf, llvm::array_lengthof(buf), T::PrintfString, RawValue); 5321 snprintf(buf, llvm::array_lengthof(buf), T::PrintfString, RawValue);
4990 assert(CharsPrinted >= 0 && 5322 assert(CharsPrinted >= 0 &&
4991 (size_t)CharsPrinted < llvm::array_lengthof(buf)); 5323 (size_t)CharsPrinted < llvm::array_lengthof(buf));
4992 (void)CharsPrinted; // avoid warnings if asserts are disabled 5324 (void)CharsPrinted; // avoid warnings if asserts are disabled
4993 Const->emitPoolLabel(Str); 5325 Const->emitPoolLabel(Str);
4994 Str << ":\n\t" << T::AsmTag << "\t" << buf << "\t# " << T::TypeName << " " 5326 Str << ":\n\t" << T::AsmTag << "\t" << buf << "\t# " << T::TypeName << " "
4995 << Value << "\n"; 5327 << Value << "\n";
4996 } 5328 }
4997 } 5329 }
4998 5330
4999 void TargetDataX8632::lowerConstants() const { 5331 void TargetDataX8632::lowerConstants() const {
5000 if (Ctx->getFlags().getDisableTranslation()) 5332 if (Ctx->getFlags().getDisableTranslation())
5001 return; 5333 return;
5002 // No need to emit constants from the int pool since (for x86) they 5334 // No need to emit constants from the int pool since (for x86) they
5003 // are embedded as immediates in the instructions, just emit float/double. 5335 // are embedded as immediates in the instructions, just emit float/double.
5004 switch (Ctx->getFlags().getOutFileType()) { 5336 switch (Ctx->getFlags().getOutFileType()) {
5005 case FT_Elf: { 5337 case FT_Elf: {
5006 ELFObjectWriter *Writer = Ctx->getObjectWriter(); 5338 ELFObjectWriter *Writer = Ctx->getObjectWriter();
5339
5340 Writer->writeConstantPool<ConstantInteger32>(IceType_i8);
5341 Writer->writeConstantPool<ConstantInteger32>(IceType_i16);
5342 Writer->writeConstantPool<ConstantInteger32>(IceType_i32);
5343
5007 Writer->writeConstantPool<ConstantFloat>(IceType_f32); 5344 Writer->writeConstantPool<ConstantFloat>(IceType_f32);
5008 Writer->writeConstantPool<ConstantDouble>(IceType_f64); 5345 Writer->writeConstantPool<ConstantDouble>(IceType_f64);
5009 } break; 5346 } break;
5010 case FT_Asm: 5347 case FT_Asm:
5011 case FT_Iasm: { 5348 case FT_Iasm: {
5012 OstreamLocker L(Ctx); 5349 OstreamLocker L(Ctx);
5350
5351 emitConstantPool<PoolTypeConverter<char>>(Ctx);
5352 emitConstantPool<PoolTypeConverter<short>>(Ctx);
5353 emitConstantPool<PoolTypeConverter<int>>(Ctx);
5354
5013 emitConstantPool<PoolTypeConverter<float>>(Ctx); 5355 emitConstantPool<PoolTypeConverter<float>>(Ctx);
5014 emitConstantPool<PoolTypeConverter<double>>(Ctx); 5356 emitConstantPool<PoolTypeConverter<double>>(Ctx);
5015 } break; 5357 } break;
5016 } 5358 }
5017 } 5359 }
5018 5360
5019 TargetHeaderX8632::TargetHeaderX8632(GlobalContext *Ctx) 5361 TargetHeaderX8632::TargetHeaderX8632(GlobalContext *Ctx)
5020 : TargetHeaderLowering(Ctx) {} 5362 : TargetHeaderLowering(Ctx) {}
5021 5363
5364 // Blind/pool an Immediate
5365 Operand *TargetX8632::randomizeOrPoolImmediate(Constant *Immediate,
5366 int32_t RegNum) {
5367 assert(llvm::isa<ConstantInteger32>(Immediate) ||
5368 llvm::isa<ConstantRelocatable>(Immediate));
5369 if (Ctx->getFlags().getRandomizeAndPoolImmediatesOption() == RPI_None ||
5370 RandomizationPoolingPaused == true) {
5371 // immediates randomization/pool turned off
5372 return Immediate;
5373 }
5374 if (Constant *C = llvm::dyn_cast_or_null<Constant>(Immediate)) {
5375 if (C->shouldBeRandomizedOrPooled(Ctx)) {
5376 Ctx->statsUpdateRPImms();
5377 if (Ctx->getFlags().getRandomizeAndPoolImmediatesOption() ==
5378 RPI_Randomize) {
5379 // blind the constant
5380 // FROM:
5381 // imm
5382 // TO:
5383 // insert: mov imm+cookie, Reg
5384 // insert: lea -cookie[Reg], Reg
Jim Stichnoth 2015/06/19 16:51:03 Explain in a comment that lea is used (as opposed
qining 2015/06/19 20:22:26 Done.
5385 // => Reg
5386 // If we have already assigned a phy register, we must come from
5387 // andvancedPhiLowering()=>lowerAssign(). In this case we should reuse
5388 // the assigned register as this assignment is that start of its use-def
5389 // chain. So we add RegNum argument here.
5390 Variable *Reg = makeReg(IceType_i32, RegNum);
5391 ConstantInteger32 *Integer = llvm::cast<ConstantInteger32>(Immediate);
5392 uint32_t Value = Integer->getValue();
5393 uint32_t Cookie = Ctx->getRandomizationCookie();
5394 _mov(Reg, Ctx->getConstantInt(IceType_i32, Cookie + Value));
5395 Constant *Offset = Ctx->getConstantInt(IceType_i32, 0 - Cookie);
5396 _lea(Reg,
5397 OperandX8632Mem::create(Func, IceType_i32, Reg, Offset, NULL, 0));
Jim Stichnoth 2015/06/19 16:51:03 nullptr
qining 2015/06/19 20:22:26 Done.
5398 // make sure liveness analysis won't kill this variable, otherwise a
5399 // liveness
5400 // assertion will be triggered.
5401 _set_dest_nonkillable();
5402 if (Immediate->getType() != IceType_i32) {
5403 Variable *TruncReg = makeReg(Immediate->getType(), RegNum);
5404 _mov(TruncReg, Reg);
5405 return TruncReg;
5406 }
5407 return Reg;
5408 }
5409 if (Ctx->getFlags().getRandomizeAndPoolImmediatesOption() == RPI_Pool) {
5410 // pool the constant
5411 // FROM:
5412 // imm
5413 // TO:
5414 // insert: mov $label, Reg
5415 // => Reg
5416 assert(Ctx->getFlags().getRandomizeAndPoolImmediatesOption() ==
5417 RPI_Pool);
5418 Immediate->shouldBePooled = true;
5419 // if we have already assigned a phy register, we must come from
5420 // andvancedPhiLowering()=>lowerAssign(). In this case we should reuse
5421 // the assigned register as this assignment is that start of its use-def
5422 // chain. So we add RegNum argument here.
5423 Variable *Reg = makeReg(Immediate->getType(), RegNum);
5424 IceString Label;
5425 llvm::raw_string_ostream Label_stream(Label);
5426 Immediate->emitPoolLabel(Label_stream);
5427 const RelocOffsetT Offset = 0;
5428 const bool SuppressMangling = true;
5429 Constant *Symbol =
5430 Ctx->getConstantSym(Offset, Label_stream.str(), SuppressMangling);
5431 OperandX8632Mem *MemOperand =
5432 OperandX8632Mem::create(Func, Immediate->getType(), NULL, Symbol);
5433 _mov(Reg, MemOperand);
5434 return Reg;
5435 }
5436 assert("Unsupported -randomize-pool-immediates option" && false);
5437 }
5438 }
5439 // the constant Immediate is not eligible for blinding/pooling
5440 return Immediate;
5441 }
5442
5443 OperandX8632Mem *
5444 TargetX8632::randomizeOrPoolImmediate(OperandX8632Mem *MemOperand,
5445 int32_t RegNum) {
5446 assert(MemOperand);
5447 if (Ctx->getFlags().getRandomizeAndPoolImmediatesOption() == RPI_None ||
5448 RandomizationPoolingPaused == true) {
5449 // immediates randomization/pooling is turned off
5450 return MemOperand;
5451 }
5452
5453 if (Constant *C = llvm::dyn_cast_or_null<Constant>(MemOperand->getOffset())) {
5454 if (C->shouldBeRandomizedOrPooled(Ctx)) {
5455 // The offset of this mem operand should be blinded or pooled
5456 Ctx->statsUpdateRPImms();
5457 if (Ctx->getFlags().getRandomizeAndPoolImmediatesOption() ==
5458 RPI_Randomize) {
5459 // blind the constant offset
5460 // FROM:
5461 // offset[base, index, shift]
5462 // TO:
5463 // insert: lea offset+cookie[base], RegTemp
5464 // => -cookie[RegTemp, index, shift]
5465 uint32_t Value =
5466 llvm::dyn_cast<ConstantInteger32>(MemOperand->getOffset())
5467 ->getValue();
5468 uint32_t Cookie = Ctx->getRandomizationCookie();
5469 Constant *Mask1 = Ctx->getConstantInt(
5470 MemOperand->getOffset()->getType(), Cookie + Value);
5471 Constant *Mask2 =
5472 Ctx->getConstantInt(MemOperand->getOffset()->getType(), 0 - Cookie);
5473
5474 // qining: if the offset value is -cookie, this memory operand should
5475 // have already been randomized, we just return it.
5476 if(Value == -Cookie) return MemOperand;
Jim Stichnoth 2015/06/19 16:51:03 make format Also, there's an interesting one-in-f
qining 2015/06/19 20:22:25 I think Cookie==MIN_INT should still be fine. Ass
5477
5478 // qining: We need to make sure the MemOperand->getBase() has a physical
5479 // register, if it is a variable!
5480 if (MemOperand->getBase() != NULL)
5481 MemOperand->getBase()->setWeightInfinite();
5482 OperandX8632Mem *TempMemOperand = OperandX8632Mem::create(
5483 Func, MemOperand->getType(), MemOperand->getBase(), Mask1);
5484 // If we have already assigned a physical register, we must come from
5485 // advancedPhiLowering()=>lowerAssign(). In this case we should reuse
5486 // the assigned register as this assignment is that start of its use-def
5487 // chain. So we add RegNum argument here.
5488 Variable *RegTemp = makeReg(MemOperand->getOffset()->getType(), RegNum);
5489 _lea(RegTemp, TempMemOperand);
5490 // As source operand doesn't use the dstreg, we don't need to add
5491 // _set_dest_nonkillable().
5492 // qining: but if we use the same Dest Reg, that is, with RegNum
5493 // assigned, we should add this _set_dest_nonkillable()
5494 if (RegNum != Variable::NoRegister)
5495 _set_dest_nonkillable();
5496
5497 OperandX8632Mem *NewMemOperand = OperandX8632Mem::create(
5498 Func, MemOperand->getType(), RegTemp, Mask2, MemOperand->getIndex(),
5499 MemOperand->getShift(), MemOperand->getSegmentRegister());
5500
5501 return NewMemOperand;
5502 }
5503 if (Ctx->getFlags().getRandomizeAndPoolImmediatesOption() == RPI_Pool) {
5504 // pool the constant offset
5505 // FROM:
5506 // offset[base, index, shift]
5507 // TO:
5508 // insert: mov $label, RegTemp
5509 // insert: lea [base, RegTemp], RegTemp
5510 // =>[RegTemp, index, shift]
5511 assert(Ctx->getFlags().getRandomizeAndPoolImmediatesOption() ==
5512 RPI_Pool);
5513 // qining: Mem operand should never exist as source operands in phi
5514 // lowering
5515 // assignments, so there is no need to reuse any registers here.
5516 // However, for phi lowering, we should not ask for new physical
5517 // registers in general.
5518 // However, if we do meet MemOperand during phi lowering, we should not
5519 // blind or pool the immediates for now
5520 if (RegNum != Variable::NoRegister)
5521 return MemOperand;
5522 Variable *RegTemp = makeReg(IceType_i32);
5523 IceString Label;
5524 llvm::raw_string_ostream Label_stream(Label);
5525 MemOperand->getOffset()->emitPoolLabel(Label_stream);
5526 MemOperand->getOffset()->shouldBePooled = true;
5527 const RelocOffsetT SymOffset = 0;
5528 bool SuppressMangling = true;
5529 Constant *Symbol = Ctx->getConstantSym(SymOffset, Label_stream.str(),
5530 SuppressMangling);
5531 OperandX8632Mem *SymbolOperand = OperandX8632Mem::create(
5532 Func, MemOperand->getOffset()->getType(), NULL, Symbol);
5533 _mov(RegTemp, SymbolOperand);
5534 // qining: We need to make sure the MemOperand->getBase() has a physical
5535 // register! If we do not have base register here, we won't need an
5536 // extra lea instruction anymore.
5537 if (MemOperand->getBase()) {
5538 OperandX8632Mem *CalculateOperand = OperandX8632Mem::create(
5539 Func, MemOperand->getType(), MemOperand->getBase(), NULL, RegTemp,
5540 0, MemOperand->getSegmentRegister());
5541 _lea(RegTemp, CalculateOperand);
5542 _set_dest_nonkillable();
5543 }
5544 OperandX8632Mem *NewMemOperand = OperandX8632Mem::create(
5545 Func, MemOperand->getType(), RegTemp, NULL, MemOperand->getIndex(),
5546 MemOperand->getShift(), MemOperand->getSegmentRegister());
5547 return NewMemOperand;
5548 }
5549 assert("Unsupported -randomize-pool-immediates option" && false);
5550 }
5551 }
5552 // the offset is not eligible for blinding or pooling, return the original
5553 // mem operand
5554 return MemOperand;
5555 }
5556
5022 } // end of namespace Ice 5557 } // end of namespace Ice
OLDNEW

Powered by Google App Engine
This is Rietveld 408576698