Index: third_party/libwebp/utils/quant_levels_dec.c |
diff --git a/third_party/libwebp/utils/quant_levels_dec.c b/third_party/libwebp/utils/quant_levels_dec.c |
new file mode 100644 |
index 0000000000000000000000000000000000000000..5b8b8b49e6bf732a86c110c344e1fbca7287c96b |
--- /dev/null |
+++ b/third_party/libwebp/utils/quant_levels_dec.c |
@@ -0,0 +1,279 @@ |
+// Copyright 2013 Google Inc. All Rights Reserved. |
+// |
+// Use of this source code is governed by a BSD-style license |
+// that can be found in the COPYING file in the root of the source |
+// tree. An additional intellectual property rights grant can be found |
+// in the file PATENTS. All contributing project authors may |
+// be found in the AUTHORS file in the root of the source tree. |
+// ----------------------------------------------------------------------------- |
+// |
+// Implement gradient smoothing: we replace a current alpha value by its |
+// surrounding average if it's close enough (that is: the change will be less |
+// than the minimum distance between two quantized level). |
+// We use sliding window for computing the 2d moving average. |
+// |
+// Author: Skal (pascal.massimino@gmail.com) |
+ |
+#include "./quant_levels_dec.h" |
+ |
+#include <string.h> // for memset |
+ |
+#include "./utils.h" |
+ |
+// #define USE_DITHERING // uncomment to enable ordered dithering (not vital) |
+ |
+#define FIX 16 // fix-point precision for averaging |
+#define LFIX 2 // extra precision for look-up table |
+#define LUT_SIZE ((1 << (8 + LFIX)) - 1) // look-up table size |
+ |
+#if defined(USE_DITHERING) |
+ |
+#define DFIX 4 // extra precision for ordered dithering |
+#define DSIZE 4 // dithering size (must be a power of two) |
+// cf. http://en.wikipedia.org/wiki/Ordered_dithering |
+static const uint8_t kOrderedDither[DSIZE][DSIZE] = { |
+ { 0, 8, 2, 10 }, // coefficients are in DFIX fixed-point precision |
+ { 12, 4, 14, 6 }, |
+ { 3, 11, 1, 9 }, |
+ { 15, 7, 13, 5 } |
+}; |
+ |
+#else |
+#define DFIX 0 |
+#endif |
+ |
+typedef struct { |
+ int width_, height_; // dimension |
+ int row_; // current input row being processed |
+ uint8_t* src_; // input pointer |
+ uint8_t* dst_; // output pointer |
+ |
+ int radius_; // filter radius (=delay) |
+ int scale_; // normalization factor, in FIX bits precision |
+ |
+ void* mem_; // all memory |
+ |
+ // various scratch buffers |
+ uint16_t* start_; |
+ uint16_t* cur_; |
+ uint16_t* end_; |
+ uint16_t* top_; |
+ uint16_t* average_; |
+ |
+ // input levels distribution |
+ int num_levels_; // number of quantized levels |
+ int min_, max_; // min and max level values |
+ int min_level_dist_; // smallest distance between two consecutive levels |
+ |
+ int16_t* correction_; // size = 1 + 2*LUT_SIZE -> ~4k memory |
+} SmoothParams; |
+ |
+//------------------------------------------------------------------------------ |
+ |
+#define CLIP_MASK (int)(~0U << (8 + DFIX)) |
+static WEBP_INLINE uint8_t clip_8b(int v) { |
+ return (!(v & CLIP_MASK)) ? (uint8_t)(v >> DFIX) : (v < 0) ? 0u : 255u; |
+} |
+ |
+// vertical accumulation |
+static void VFilter(SmoothParams* const p) { |
+ const uint8_t* src = p->src_; |
+ const int w = p->width_; |
+ uint16_t* const cur = p->cur_; |
+ const uint16_t* const top = p->top_; |
+ uint16_t* const out = p->end_; |
+ uint16_t sum = 0; // all arithmetic is modulo 16bit |
+ int x; |
+ |
+ for (x = 0; x < w; ++x) { |
+ uint16_t new_value; |
+ sum += src[x]; |
+ new_value = top[x] + sum; |
+ out[x] = new_value - cur[x]; // vertical sum of 'r' pixels. |
+ cur[x] = new_value; |
+ } |
+ // move input pointers one row down |
+ p->top_ = p->cur_; |
+ p->cur_ += w; |
+ if (p->cur_ == p->end_) p->cur_ = p->start_; // roll-over |
+ // We replicate edges, as it's somewhat easier as a boundary condition. |
+ // That's why we don't update the 'src' pointer on top/bottom area: |
+ if (p->row_ >= 0 && p->row_ < p->height_ - 1) { |
+ p->src_ += p->width_; |
+ } |
+} |
+ |
+// horizontal accumulation. We use mirror replication of missing pixels, as it's |
+// a little easier to implement (surprisingly). |
+static void HFilter(SmoothParams* const p) { |
+ const uint16_t* const in = p->end_; |
+ uint16_t* const out = p->average_; |
+ const uint32_t scale = p->scale_; |
+ const int w = p->width_; |
+ const int r = p->radius_; |
+ |
+ int x; |
+ for (x = 0; x <= r; ++x) { // left mirroring |
+ const uint16_t delta = in[x + r - 1] + in[r - x]; |
+ out[x] = (delta * scale) >> FIX; |
+ } |
+ for (; x < w - r; ++x) { // bulk middle run |
+ const uint16_t delta = in[x + r] - in[x - r - 1]; |
+ out[x] = (delta * scale) >> FIX; |
+ } |
+ for (; x < w; ++x) { // right mirroring |
+ const uint16_t delta = |
+ 2 * in[w - 1] - in[2 * w - 2 - r - x] - in[x - r - 1]; |
+ out[x] = (delta * scale) >> FIX; |
+ } |
+} |
+ |
+// emit one filtered output row |
+static void ApplyFilter(SmoothParams* const p) { |
+ const uint16_t* const average = p->average_; |
+ const int w = p->width_; |
+ const int16_t* const correction = p->correction_; |
+#if defined(USE_DITHERING) |
+ const uint8_t* const dither = kOrderedDither[p->row_ % DSIZE]; |
+#endif |
+ uint8_t* const dst = p->dst_; |
+ int x; |
+ for (x = 0; x < w; ++x) { |
+ const int v = dst[x]; |
+ if (v < p->max_ && v > p->min_) { |
+ const int c = (v << DFIX) + correction[average[x] - (v << LFIX)]; |
+#if defined(USE_DITHERING) |
+ dst[x] = clip_8b(c + dither[x % DSIZE]); |
+#else |
+ dst[x] = clip_8b(c); |
+#endif |
+ } |
+ } |
+ p->dst_ += w; // advance output pointer |
+} |
+ |
+//------------------------------------------------------------------------------ |
+// Initialize correction table |
+ |
+static void InitCorrectionLUT(int16_t* const lut, int min_dist) { |
+ // The correction curve is: |
+ // f(x) = x for x <= threshold2 |
+ // f(x) = 0 for x >= threshold1 |
+ // and a linear interpolation for range x=[threshold2, threshold1] |
+ // (along with f(-x) = -f(x) symmetry). |
+ // Note that: threshold2 = 3/4 * threshold1 |
+ const int threshold1 = min_dist << LFIX; |
+ const int threshold2 = (3 * threshold1) >> 2; |
+ const int max_threshold = threshold2 << DFIX; |
+ const int delta = threshold1 - threshold2; |
+ int i; |
+ for (i = 1; i <= LUT_SIZE; ++i) { |
+ int c = (i <= threshold2) ? (i << DFIX) |
+ : (i < threshold1) ? max_threshold * (threshold1 - i) / delta |
+ : 0; |
+ c >>= LFIX; |
+ lut[+i] = +c; |
+ lut[-i] = -c; |
+ } |
+ lut[0] = 0; |
+} |
+ |
+static void CountLevels(const uint8_t* const data, int size, |
+ SmoothParams* const p) { |
+ int i, last_level; |
+ uint8_t used_levels[256] = { 0 }; |
+ p->min_ = 255; |
+ p->max_ = 0; |
+ for (i = 0; i < size; ++i) { |
+ const int v = data[i]; |
+ if (v < p->min_) p->min_ = v; |
+ if (v > p->max_) p->max_ = v; |
+ used_levels[v] = 1; |
+ } |
+ // Compute the mininum distance between two non-zero levels. |
+ p->min_level_dist_ = p->max_ - p->min_; |
+ last_level = -1; |
+ for (i = 0; i < 256; ++i) { |
+ if (used_levels[i]) { |
+ ++p->num_levels_; |
+ if (last_level >= 0) { |
+ const int level_dist = i - last_level; |
+ if (level_dist < p->min_level_dist_) { |
+ p->min_level_dist_ = level_dist; |
+ } |
+ } |
+ last_level = i; |
+ } |
+ } |
+} |
+ |
+// Initialize all params. |
+static int InitParams(uint8_t* const data, int width, int height, |
+ int radius, SmoothParams* const p) { |
+ const int R = 2 * radius + 1; // total size of the kernel |
+ |
+ const size_t size_scratch_m = (R + 1) * width * sizeof(*p->start_); |
+ const size_t size_m = width * sizeof(*p->average_); |
+ const size_t size_lut = (1 + 2 * LUT_SIZE) * sizeof(*p->correction_); |
+ const size_t total_size = size_scratch_m + size_m + size_lut; |
+ uint8_t* mem = (uint8_t*)WebPSafeMalloc(1U, total_size); |
+ |
+ if (mem == NULL) return 0; |
+ p->mem_ = (void*)mem; |
+ |
+ p->start_ = (uint16_t*)mem; |
+ p->cur_ = p->start_; |
+ p->end_ = p->start_ + R * width; |
+ p->top_ = p->end_ - width; |
+ memset(p->top_, 0, width * sizeof(*p->top_)); |
+ mem += size_scratch_m; |
+ |
+ p->average_ = (uint16_t*)mem; |
+ mem += size_m; |
+ |
+ p->width_ = width; |
+ p->height_ = height; |
+ p->src_ = data; |
+ p->dst_ = data; |
+ p->radius_ = radius; |
+ p->scale_ = (1 << (FIX + LFIX)) / (R * R); // normalization constant |
+ p->row_ = -radius; |
+ |
+ // analyze the input distribution so we can best-fit the threshold |
+ CountLevels(data, width * height, p); |
+ |
+ // correction table |
+ p->correction_ = ((int16_t*)mem) + LUT_SIZE; |
+ InitCorrectionLUT(p->correction_, p->min_level_dist_); |
+ |
+ return 1; |
+} |
+ |
+static void CleanupParams(SmoothParams* const p) { |
+ WebPSafeFree(p->mem_); |
+} |
+ |
+int WebPDequantizeLevels(uint8_t* const data, int width, int height, |
+ int strength) { |
+ const int radius = 4 * strength / 100; |
+ if (strength < 0 || strength > 100) return 0; |
+ if (data == NULL || width <= 0 || height <= 0) return 0; // bad params |
+ if (radius > 0) { |
+ SmoothParams p; |
+ memset(&p, 0, sizeof(p)); |
+ if (!InitParams(data, width, height, radius, &p)) return 0; |
+ if (p.num_levels_ > 2) { |
+ for (; p.row_ < p.height_; ++p.row_) { |
+ VFilter(&p); // accumulate average of input |
+ // Need to wait few rows in order to prime the filter, |
+ // before emitting some output. |
+ if (p.row_ >= p.radius_) { |
+ HFilter(&p); |
+ ApplyFilter(&p); |
+ } |
+ } |
+ } |
+ CleanupParams(&p); |
+ } |
+ return 1; |
+} |