| Index: third_party/libwebp/utils/quant_levels_dec.c
|
| diff --git a/third_party/libwebp/utils/quant_levels_dec.c b/third_party/libwebp/utils/quant_levels_dec.c
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..5b8b8b49e6bf732a86c110c344e1fbca7287c96b
|
| --- /dev/null
|
| +++ b/third_party/libwebp/utils/quant_levels_dec.c
|
| @@ -0,0 +1,279 @@
|
| +// Copyright 2013 Google Inc. All Rights Reserved.
|
| +//
|
| +// Use of this source code is governed by a BSD-style license
|
| +// that can be found in the COPYING file in the root of the source
|
| +// tree. An additional intellectual property rights grant can be found
|
| +// in the file PATENTS. All contributing project authors may
|
| +// be found in the AUTHORS file in the root of the source tree.
|
| +// -----------------------------------------------------------------------------
|
| +//
|
| +// Implement gradient smoothing: we replace a current alpha value by its
|
| +// surrounding average if it's close enough (that is: the change will be less
|
| +// than the minimum distance between two quantized level).
|
| +// We use sliding window for computing the 2d moving average.
|
| +//
|
| +// Author: Skal (pascal.massimino@gmail.com)
|
| +
|
| +#include "./quant_levels_dec.h"
|
| +
|
| +#include <string.h> // for memset
|
| +
|
| +#include "./utils.h"
|
| +
|
| +// #define USE_DITHERING // uncomment to enable ordered dithering (not vital)
|
| +
|
| +#define FIX 16 // fix-point precision for averaging
|
| +#define LFIX 2 // extra precision for look-up table
|
| +#define LUT_SIZE ((1 << (8 + LFIX)) - 1) // look-up table size
|
| +
|
| +#if defined(USE_DITHERING)
|
| +
|
| +#define DFIX 4 // extra precision for ordered dithering
|
| +#define DSIZE 4 // dithering size (must be a power of two)
|
| +// cf. http://en.wikipedia.org/wiki/Ordered_dithering
|
| +static const uint8_t kOrderedDither[DSIZE][DSIZE] = {
|
| + { 0, 8, 2, 10 }, // coefficients are in DFIX fixed-point precision
|
| + { 12, 4, 14, 6 },
|
| + { 3, 11, 1, 9 },
|
| + { 15, 7, 13, 5 }
|
| +};
|
| +
|
| +#else
|
| +#define DFIX 0
|
| +#endif
|
| +
|
| +typedef struct {
|
| + int width_, height_; // dimension
|
| + int row_; // current input row being processed
|
| + uint8_t* src_; // input pointer
|
| + uint8_t* dst_; // output pointer
|
| +
|
| + int radius_; // filter radius (=delay)
|
| + int scale_; // normalization factor, in FIX bits precision
|
| +
|
| + void* mem_; // all memory
|
| +
|
| + // various scratch buffers
|
| + uint16_t* start_;
|
| + uint16_t* cur_;
|
| + uint16_t* end_;
|
| + uint16_t* top_;
|
| + uint16_t* average_;
|
| +
|
| + // input levels distribution
|
| + int num_levels_; // number of quantized levels
|
| + int min_, max_; // min and max level values
|
| + int min_level_dist_; // smallest distance between two consecutive levels
|
| +
|
| + int16_t* correction_; // size = 1 + 2*LUT_SIZE -> ~4k memory
|
| +} SmoothParams;
|
| +
|
| +//------------------------------------------------------------------------------
|
| +
|
| +#define CLIP_MASK (int)(~0U << (8 + DFIX))
|
| +static WEBP_INLINE uint8_t clip_8b(int v) {
|
| + return (!(v & CLIP_MASK)) ? (uint8_t)(v >> DFIX) : (v < 0) ? 0u : 255u;
|
| +}
|
| +
|
| +// vertical accumulation
|
| +static void VFilter(SmoothParams* const p) {
|
| + const uint8_t* src = p->src_;
|
| + const int w = p->width_;
|
| + uint16_t* const cur = p->cur_;
|
| + const uint16_t* const top = p->top_;
|
| + uint16_t* const out = p->end_;
|
| + uint16_t sum = 0; // all arithmetic is modulo 16bit
|
| + int x;
|
| +
|
| + for (x = 0; x < w; ++x) {
|
| + uint16_t new_value;
|
| + sum += src[x];
|
| + new_value = top[x] + sum;
|
| + out[x] = new_value - cur[x]; // vertical sum of 'r' pixels.
|
| + cur[x] = new_value;
|
| + }
|
| + // move input pointers one row down
|
| + p->top_ = p->cur_;
|
| + p->cur_ += w;
|
| + if (p->cur_ == p->end_) p->cur_ = p->start_; // roll-over
|
| + // We replicate edges, as it's somewhat easier as a boundary condition.
|
| + // That's why we don't update the 'src' pointer on top/bottom area:
|
| + if (p->row_ >= 0 && p->row_ < p->height_ - 1) {
|
| + p->src_ += p->width_;
|
| + }
|
| +}
|
| +
|
| +// horizontal accumulation. We use mirror replication of missing pixels, as it's
|
| +// a little easier to implement (surprisingly).
|
| +static void HFilter(SmoothParams* const p) {
|
| + const uint16_t* const in = p->end_;
|
| + uint16_t* const out = p->average_;
|
| + const uint32_t scale = p->scale_;
|
| + const int w = p->width_;
|
| + const int r = p->radius_;
|
| +
|
| + int x;
|
| + for (x = 0; x <= r; ++x) { // left mirroring
|
| + const uint16_t delta = in[x + r - 1] + in[r - x];
|
| + out[x] = (delta * scale) >> FIX;
|
| + }
|
| + for (; x < w - r; ++x) { // bulk middle run
|
| + const uint16_t delta = in[x + r] - in[x - r - 1];
|
| + out[x] = (delta * scale) >> FIX;
|
| + }
|
| + for (; x < w; ++x) { // right mirroring
|
| + const uint16_t delta =
|
| + 2 * in[w - 1] - in[2 * w - 2 - r - x] - in[x - r - 1];
|
| + out[x] = (delta * scale) >> FIX;
|
| + }
|
| +}
|
| +
|
| +// emit one filtered output row
|
| +static void ApplyFilter(SmoothParams* const p) {
|
| + const uint16_t* const average = p->average_;
|
| + const int w = p->width_;
|
| + const int16_t* const correction = p->correction_;
|
| +#if defined(USE_DITHERING)
|
| + const uint8_t* const dither = kOrderedDither[p->row_ % DSIZE];
|
| +#endif
|
| + uint8_t* const dst = p->dst_;
|
| + int x;
|
| + for (x = 0; x < w; ++x) {
|
| + const int v = dst[x];
|
| + if (v < p->max_ && v > p->min_) {
|
| + const int c = (v << DFIX) + correction[average[x] - (v << LFIX)];
|
| +#if defined(USE_DITHERING)
|
| + dst[x] = clip_8b(c + dither[x % DSIZE]);
|
| +#else
|
| + dst[x] = clip_8b(c);
|
| +#endif
|
| + }
|
| + }
|
| + p->dst_ += w; // advance output pointer
|
| +}
|
| +
|
| +//------------------------------------------------------------------------------
|
| +// Initialize correction table
|
| +
|
| +static void InitCorrectionLUT(int16_t* const lut, int min_dist) {
|
| + // The correction curve is:
|
| + // f(x) = x for x <= threshold2
|
| + // f(x) = 0 for x >= threshold1
|
| + // and a linear interpolation for range x=[threshold2, threshold1]
|
| + // (along with f(-x) = -f(x) symmetry).
|
| + // Note that: threshold2 = 3/4 * threshold1
|
| + const int threshold1 = min_dist << LFIX;
|
| + const int threshold2 = (3 * threshold1) >> 2;
|
| + const int max_threshold = threshold2 << DFIX;
|
| + const int delta = threshold1 - threshold2;
|
| + int i;
|
| + for (i = 1; i <= LUT_SIZE; ++i) {
|
| + int c = (i <= threshold2) ? (i << DFIX)
|
| + : (i < threshold1) ? max_threshold * (threshold1 - i) / delta
|
| + : 0;
|
| + c >>= LFIX;
|
| + lut[+i] = +c;
|
| + lut[-i] = -c;
|
| + }
|
| + lut[0] = 0;
|
| +}
|
| +
|
| +static void CountLevels(const uint8_t* const data, int size,
|
| + SmoothParams* const p) {
|
| + int i, last_level;
|
| + uint8_t used_levels[256] = { 0 };
|
| + p->min_ = 255;
|
| + p->max_ = 0;
|
| + for (i = 0; i < size; ++i) {
|
| + const int v = data[i];
|
| + if (v < p->min_) p->min_ = v;
|
| + if (v > p->max_) p->max_ = v;
|
| + used_levels[v] = 1;
|
| + }
|
| + // Compute the mininum distance between two non-zero levels.
|
| + p->min_level_dist_ = p->max_ - p->min_;
|
| + last_level = -1;
|
| + for (i = 0; i < 256; ++i) {
|
| + if (used_levels[i]) {
|
| + ++p->num_levels_;
|
| + if (last_level >= 0) {
|
| + const int level_dist = i - last_level;
|
| + if (level_dist < p->min_level_dist_) {
|
| + p->min_level_dist_ = level_dist;
|
| + }
|
| + }
|
| + last_level = i;
|
| + }
|
| + }
|
| +}
|
| +
|
| +// Initialize all params.
|
| +static int InitParams(uint8_t* const data, int width, int height,
|
| + int radius, SmoothParams* const p) {
|
| + const int R = 2 * radius + 1; // total size of the kernel
|
| +
|
| + const size_t size_scratch_m = (R + 1) * width * sizeof(*p->start_);
|
| + const size_t size_m = width * sizeof(*p->average_);
|
| + const size_t size_lut = (1 + 2 * LUT_SIZE) * sizeof(*p->correction_);
|
| + const size_t total_size = size_scratch_m + size_m + size_lut;
|
| + uint8_t* mem = (uint8_t*)WebPSafeMalloc(1U, total_size);
|
| +
|
| + if (mem == NULL) return 0;
|
| + p->mem_ = (void*)mem;
|
| +
|
| + p->start_ = (uint16_t*)mem;
|
| + p->cur_ = p->start_;
|
| + p->end_ = p->start_ + R * width;
|
| + p->top_ = p->end_ - width;
|
| + memset(p->top_, 0, width * sizeof(*p->top_));
|
| + mem += size_scratch_m;
|
| +
|
| + p->average_ = (uint16_t*)mem;
|
| + mem += size_m;
|
| +
|
| + p->width_ = width;
|
| + p->height_ = height;
|
| + p->src_ = data;
|
| + p->dst_ = data;
|
| + p->radius_ = radius;
|
| + p->scale_ = (1 << (FIX + LFIX)) / (R * R); // normalization constant
|
| + p->row_ = -radius;
|
| +
|
| + // analyze the input distribution so we can best-fit the threshold
|
| + CountLevels(data, width * height, p);
|
| +
|
| + // correction table
|
| + p->correction_ = ((int16_t*)mem) + LUT_SIZE;
|
| + InitCorrectionLUT(p->correction_, p->min_level_dist_);
|
| +
|
| + return 1;
|
| +}
|
| +
|
| +static void CleanupParams(SmoothParams* const p) {
|
| + WebPSafeFree(p->mem_);
|
| +}
|
| +
|
| +int WebPDequantizeLevels(uint8_t* const data, int width, int height,
|
| + int strength) {
|
| + const int radius = 4 * strength / 100;
|
| + if (strength < 0 || strength > 100) return 0;
|
| + if (data == NULL || width <= 0 || height <= 0) return 0; // bad params
|
| + if (radius > 0) {
|
| + SmoothParams p;
|
| + memset(&p, 0, sizeof(p));
|
| + if (!InitParams(data, width, height, radius, &p)) return 0;
|
| + if (p.num_levels_ > 2) {
|
| + for (; p.row_ < p.height_; ++p.row_) {
|
| + VFilter(&p); // accumulate average of input
|
| + // Need to wait few rows in order to prime the filter,
|
| + // before emitting some output.
|
| + if (p.row_ >= p.radius_) {
|
| + HFilter(&p);
|
| + ApplyFilter(&p);
|
| + }
|
| + }
|
| + }
|
| + CleanupParams(&p);
|
| + }
|
| + return 1;
|
| +}
|
|
|