OLD | NEW |
(Empty) | |
| 1 // Copyright 2013 Google Inc. All Rights Reserved. |
| 2 // |
| 3 // Use of this source code is governed by a BSD-style license |
| 4 // that can be found in the COPYING file in the root of the source |
| 5 // tree. An additional intellectual property rights grant can be found |
| 6 // in the file PATENTS. All contributing project authors may |
| 7 // be found in the AUTHORS file in the root of the source tree. |
| 8 // ----------------------------------------------------------------------------- |
| 9 // |
| 10 // Implement gradient smoothing: we replace a current alpha value by its |
| 11 // surrounding average if it's close enough (that is: the change will be less |
| 12 // than the minimum distance between two quantized level). |
| 13 // We use sliding window for computing the 2d moving average. |
| 14 // |
| 15 // Author: Skal (pascal.massimino@gmail.com) |
| 16 |
| 17 #include "./quant_levels_dec.h" |
| 18 |
| 19 #include <string.h> // for memset |
| 20 |
| 21 #include "./utils.h" |
| 22 |
| 23 // #define USE_DITHERING // uncomment to enable ordered dithering (not vital) |
| 24 |
| 25 #define FIX 16 // fix-point precision for averaging |
| 26 #define LFIX 2 // extra precision for look-up table |
| 27 #define LUT_SIZE ((1 << (8 + LFIX)) - 1) // look-up table size |
| 28 |
| 29 #if defined(USE_DITHERING) |
| 30 |
| 31 #define DFIX 4 // extra precision for ordered dithering |
| 32 #define DSIZE 4 // dithering size (must be a power of two) |
| 33 // cf. http://en.wikipedia.org/wiki/Ordered_dithering |
| 34 static const uint8_t kOrderedDither[DSIZE][DSIZE] = { |
| 35 { 0, 8, 2, 10 }, // coefficients are in DFIX fixed-point precision |
| 36 { 12, 4, 14, 6 }, |
| 37 { 3, 11, 1, 9 }, |
| 38 { 15, 7, 13, 5 } |
| 39 }; |
| 40 |
| 41 #else |
| 42 #define DFIX 0 |
| 43 #endif |
| 44 |
| 45 typedef struct { |
| 46 int width_, height_; // dimension |
| 47 int row_; // current input row being processed |
| 48 uint8_t* src_; // input pointer |
| 49 uint8_t* dst_; // output pointer |
| 50 |
| 51 int radius_; // filter radius (=delay) |
| 52 int scale_; // normalization factor, in FIX bits precision |
| 53 |
| 54 void* mem_; // all memory |
| 55 |
| 56 // various scratch buffers |
| 57 uint16_t* start_; |
| 58 uint16_t* cur_; |
| 59 uint16_t* end_; |
| 60 uint16_t* top_; |
| 61 uint16_t* average_; |
| 62 |
| 63 // input levels distribution |
| 64 int num_levels_; // number of quantized levels |
| 65 int min_, max_; // min and max level values |
| 66 int min_level_dist_; // smallest distance between two consecutive levels |
| 67 |
| 68 int16_t* correction_; // size = 1 + 2*LUT_SIZE -> ~4k memory |
| 69 } SmoothParams; |
| 70 |
| 71 //------------------------------------------------------------------------------ |
| 72 |
| 73 #define CLIP_MASK (int)(~0U << (8 + DFIX)) |
| 74 static WEBP_INLINE uint8_t clip_8b(int v) { |
| 75 return (!(v & CLIP_MASK)) ? (uint8_t)(v >> DFIX) : (v < 0) ? 0u : 255u; |
| 76 } |
| 77 |
| 78 // vertical accumulation |
| 79 static void VFilter(SmoothParams* const p) { |
| 80 const uint8_t* src = p->src_; |
| 81 const int w = p->width_; |
| 82 uint16_t* const cur = p->cur_; |
| 83 const uint16_t* const top = p->top_; |
| 84 uint16_t* const out = p->end_; |
| 85 uint16_t sum = 0; // all arithmetic is modulo 16bit |
| 86 int x; |
| 87 |
| 88 for (x = 0; x < w; ++x) { |
| 89 uint16_t new_value; |
| 90 sum += src[x]; |
| 91 new_value = top[x] + sum; |
| 92 out[x] = new_value - cur[x]; // vertical sum of 'r' pixels. |
| 93 cur[x] = new_value; |
| 94 } |
| 95 // move input pointers one row down |
| 96 p->top_ = p->cur_; |
| 97 p->cur_ += w; |
| 98 if (p->cur_ == p->end_) p->cur_ = p->start_; // roll-over |
| 99 // We replicate edges, as it's somewhat easier as a boundary condition. |
| 100 // That's why we don't update the 'src' pointer on top/bottom area: |
| 101 if (p->row_ >= 0 && p->row_ < p->height_ - 1) { |
| 102 p->src_ += p->width_; |
| 103 } |
| 104 } |
| 105 |
| 106 // horizontal accumulation. We use mirror replication of missing pixels, as it's |
| 107 // a little easier to implement (surprisingly). |
| 108 static void HFilter(SmoothParams* const p) { |
| 109 const uint16_t* const in = p->end_; |
| 110 uint16_t* const out = p->average_; |
| 111 const uint32_t scale = p->scale_; |
| 112 const int w = p->width_; |
| 113 const int r = p->radius_; |
| 114 |
| 115 int x; |
| 116 for (x = 0; x <= r; ++x) { // left mirroring |
| 117 const uint16_t delta = in[x + r - 1] + in[r - x]; |
| 118 out[x] = (delta * scale) >> FIX; |
| 119 } |
| 120 for (; x < w - r; ++x) { // bulk middle run |
| 121 const uint16_t delta = in[x + r] - in[x - r - 1]; |
| 122 out[x] = (delta * scale) >> FIX; |
| 123 } |
| 124 for (; x < w; ++x) { // right mirroring |
| 125 const uint16_t delta = |
| 126 2 * in[w - 1] - in[2 * w - 2 - r - x] - in[x - r - 1]; |
| 127 out[x] = (delta * scale) >> FIX; |
| 128 } |
| 129 } |
| 130 |
| 131 // emit one filtered output row |
| 132 static void ApplyFilter(SmoothParams* const p) { |
| 133 const uint16_t* const average = p->average_; |
| 134 const int w = p->width_; |
| 135 const int16_t* const correction = p->correction_; |
| 136 #if defined(USE_DITHERING) |
| 137 const uint8_t* const dither = kOrderedDither[p->row_ % DSIZE]; |
| 138 #endif |
| 139 uint8_t* const dst = p->dst_; |
| 140 int x; |
| 141 for (x = 0; x < w; ++x) { |
| 142 const int v = dst[x]; |
| 143 if (v < p->max_ && v > p->min_) { |
| 144 const int c = (v << DFIX) + correction[average[x] - (v << LFIX)]; |
| 145 #if defined(USE_DITHERING) |
| 146 dst[x] = clip_8b(c + dither[x % DSIZE]); |
| 147 #else |
| 148 dst[x] = clip_8b(c); |
| 149 #endif |
| 150 } |
| 151 } |
| 152 p->dst_ += w; // advance output pointer |
| 153 } |
| 154 |
| 155 //------------------------------------------------------------------------------ |
| 156 // Initialize correction table |
| 157 |
| 158 static void InitCorrectionLUT(int16_t* const lut, int min_dist) { |
| 159 // The correction curve is: |
| 160 // f(x) = x for x <= threshold2 |
| 161 // f(x) = 0 for x >= threshold1 |
| 162 // and a linear interpolation for range x=[threshold2, threshold1] |
| 163 // (along with f(-x) = -f(x) symmetry). |
| 164 // Note that: threshold2 = 3/4 * threshold1 |
| 165 const int threshold1 = min_dist << LFIX; |
| 166 const int threshold2 = (3 * threshold1) >> 2; |
| 167 const int max_threshold = threshold2 << DFIX; |
| 168 const int delta = threshold1 - threshold2; |
| 169 int i; |
| 170 for (i = 1; i <= LUT_SIZE; ++i) { |
| 171 int c = (i <= threshold2) ? (i << DFIX) |
| 172 : (i < threshold1) ? max_threshold * (threshold1 - i) / delta |
| 173 : 0; |
| 174 c >>= LFIX; |
| 175 lut[+i] = +c; |
| 176 lut[-i] = -c; |
| 177 } |
| 178 lut[0] = 0; |
| 179 } |
| 180 |
| 181 static void CountLevels(const uint8_t* const data, int size, |
| 182 SmoothParams* const p) { |
| 183 int i, last_level; |
| 184 uint8_t used_levels[256] = { 0 }; |
| 185 p->min_ = 255; |
| 186 p->max_ = 0; |
| 187 for (i = 0; i < size; ++i) { |
| 188 const int v = data[i]; |
| 189 if (v < p->min_) p->min_ = v; |
| 190 if (v > p->max_) p->max_ = v; |
| 191 used_levels[v] = 1; |
| 192 } |
| 193 // Compute the mininum distance between two non-zero levels. |
| 194 p->min_level_dist_ = p->max_ - p->min_; |
| 195 last_level = -1; |
| 196 for (i = 0; i < 256; ++i) { |
| 197 if (used_levels[i]) { |
| 198 ++p->num_levels_; |
| 199 if (last_level >= 0) { |
| 200 const int level_dist = i - last_level; |
| 201 if (level_dist < p->min_level_dist_) { |
| 202 p->min_level_dist_ = level_dist; |
| 203 } |
| 204 } |
| 205 last_level = i; |
| 206 } |
| 207 } |
| 208 } |
| 209 |
| 210 // Initialize all params. |
| 211 static int InitParams(uint8_t* const data, int width, int height, |
| 212 int radius, SmoothParams* const p) { |
| 213 const int R = 2 * radius + 1; // total size of the kernel |
| 214 |
| 215 const size_t size_scratch_m = (R + 1) * width * sizeof(*p->start_); |
| 216 const size_t size_m = width * sizeof(*p->average_); |
| 217 const size_t size_lut = (1 + 2 * LUT_SIZE) * sizeof(*p->correction_); |
| 218 const size_t total_size = size_scratch_m + size_m + size_lut; |
| 219 uint8_t* mem = (uint8_t*)WebPSafeMalloc(1U, total_size); |
| 220 |
| 221 if (mem == NULL) return 0; |
| 222 p->mem_ = (void*)mem; |
| 223 |
| 224 p->start_ = (uint16_t*)mem; |
| 225 p->cur_ = p->start_; |
| 226 p->end_ = p->start_ + R * width; |
| 227 p->top_ = p->end_ - width; |
| 228 memset(p->top_, 0, width * sizeof(*p->top_)); |
| 229 mem += size_scratch_m; |
| 230 |
| 231 p->average_ = (uint16_t*)mem; |
| 232 mem += size_m; |
| 233 |
| 234 p->width_ = width; |
| 235 p->height_ = height; |
| 236 p->src_ = data; |
| 237 p->dst_ = data; |
| 238 p->radius_ = radius; |
| 239 p->scale_ = (1 << (FIX + LFIX)) / (R * R); // normalization constant |
| 240 p->row_ = -radius; |
| 241 |
| 242 // analyze the input distribution so we can best-fit the threshold |
| 243 CountLevels(data, width * height, p); |
| 244 |
| 245 // correction table |
| 246 p->correction_ = ((int16_t*)mem) + LUT_SIZE; |
| 247 InitCorrectionLUT(p->correction_, p->min_level_dist_); |
| 248 |
| 249 return 1; |
| 250 } |
| 251 |
| 252 static void CleanupParams(SmoothParams* const p) { |
| 253 WebPSafeFree(p->mem_); |
| 254 } |
| 255 |
| 256 int WebPDequantizeLevels(uint8_t* const data, int width, int height, |
| 257 int strength) { |
| 258 const int radius = 4 * strength / 100; |
| 259 if (strength < 0 || strength > 100) return 0; |
| 260 if (data == NULL || width <= 0 || height <= 0) return 0; // bad params |
| 261 if (radius > 0) { |
| 262 SmoothParams p; |
| 263 memset(&p, 0, sizeof(p)); |
| 264 if (!InitParams(data, width, height, radius, &p)) return 0; |
| 265 if (p.num_levels_ > 2) { |
| 266 for (; p.row_ < p.height_; ++p.row_) { |
| 267 VFilter(&p); // accumulate average of input |
| 268 // Need to wait few rows in order to prime the filter, |
| 269 // before emitting some output. |
| 270 if (p.row_ >= p.radius_) { |
| 271 HFilter(&p); |
| 272 ApplyFilter(&p); |
| 273 } |
| 274 } |
| 275 } |
| 276 CleanupParams(&p); |
| 277 } |
| 278 return 1; |
| 279 } |
OLD | NEW |