Index: third_party/libwebp/dsp/yuv.h |
diff --git a/third_party/libwebp/dsp/yuv.h b/third_party/libwebp/dsp/yuv.h |
new file mode 100644 |
index 0000000000000000000000000000000000000000..8a47edd825a8f0b0dcd638252c8cc97aebf5aea6 |
--- /dev/null |
+++ b/third_party/libwebp/dsp/yuv.h |
@@ -0,0 +1,321 @@ |
+// Copyright 2010 Google Inc. All Rights Reserved. |
+// |
+// Use of this source code is governed by a BSD-style license |
+// that can be found in the COPYING file in the root of the source |
+// tree. An additional intellectual property rights grant can be found |
+// in the file PATENTS. All contributing project authors may |
+// be found in the AUTHORS file in the root of the source tree. |
+// ----------------------------------------------------------------------------- |
+// |
+// inline YUV<->RGB conversion function |
+// |
+// The exact naming is Y'CbCr, following the ITU-R BT.601 standard. |
+// More information at: http://en.wikipedia.org/wiki/YCbCr |
+// Y = 0.2569 * R + 0.5044 * G + 0.0979 * B + 16 |
+// U = -0.1483 * R - 0.2911 * G + 0.4394 * B + 128 |
+// V = 0.4394 * R - 0.3679 * G - 0.0715 * B + 128 |
+// We use 16bit fixed point operations for RGB->YUV conversion (YUV_FIX). |
+// |
+// For the Y'CbCr to RGB conversion, the BT.601 specification reads: |
+// R = 1.164 * (Y-16) + 1.596 * (V-128) |
+// G = 1.164 * (Y-16) - 0.813 * (V-128) - 0.391 * (U-128) |
+// B = 1.164 * (Y-16) + 2.018 * (U-128) |
+// where Y is in the [16,235] range, and U/V in the [16,240] range. |
+// In the table-lookup version (WEBP_YUV_USE_TABLE), the common factor |
+// "1.164 * (Y-16)" can be handled as an offset in the VP8kClip[] table. |
+// So in this case the formulae should read: |
+// R = 1.164 * [Y + 1.371 * (V-128) ] - 18.624 |
+// G = 1.164 * [Y - 0.698 * (V-128) - 0.336 * (U-128)] - 18.624 |
+// B = 1.164 * [Y + 1.733 * (U-128)] - 18.624 |
+// once factorized. |
+// For YUV->RGB conversion, only 14bit fixed precision is used (YUV_FIX2). |
+// That's the maximum possible for a convenient ARM implementation. |
+// |
+// Author: Skal (pascal.massimino@gmail.com) |
+ |
+#ifndef WEBP_DSP_YUV_H_ |
+#define WEBP_DSP_YUV_H_ |
+ |
+#include "./dsp.h" |
+#include "../dec/decode_vp8.h" |
+ |
+// Define the following to use the LUT-based code: |
+// #define WEBP_YUV_USE_TABLE |
+ |
+#if defined(WEBP_EXPERIMENTAL_FEATURES) |
+// Do NOT activate this feature for real compression. This is only experimental! |
+// This flag is for comparison purpose against JPEG's "YUVj" natural colorspace. |
+// This colorspace is close to Rec.601's Y'CbCr model with the notable |
+// difference of allowing larger range for luma/chroma. |
+// See http://en.wikipedia.org/wiki/YCbCr#JPEG_conversion paragraph, and its |
+// difference with http://en.wikipedia.org/wiki/YCbCr#ITU-R_BT.601_conversion |
+// #define USE_YUVj |
+#endif |
+ |
+//------------------------------------------------------------------------------ |
+// YUV -> RGB conversion |
+ |
+#ifdef __cplusplus |
+extern "C" { |
+#endif |
+ |
+enum { |
+ YUV_FIX = 16, // fixed-point precision for RGB->YUV |
+ YUV_HALF = 1 << (YUV_FIX - 1), |
+ YUV_MASK = (256 << YUV_FIX) - 1, |
+ YUV_RANGE_MIN = -227, // min value of r/g/b output |
+ YUV_RANGE_MAX = 256 + 226, // max value of r/g/b output |
+ |
+ YUV_FIX2 = 14, // fixed-point precision for YUV->RGB |
+ YUV_HALF2 = 1 << (YUV_FIX2 - 1), |
+ YUV_MASK2 = (256 << YUV_FIX2) - 1 |
+}; |
+ |
+// These constants are 14b fixed-point version of ITU-R BT.601 constants. |
+#define kYScale 19077 // 1.164 = 255 / 219 |
+#define kVToR 26149 // 1.596 = 255 / 112 * 0.701 |
+#define kUToG 6419 // 0.391 = 255 / 112 * 0.886 * 0.114 / 0.587 |
+#define kVToG 13320 // 0.813 = 255 / 112 * 0.701 * 0.299 / 0.587 |
+#define kUToB 33050 // 2.018 = 255 / 112 * 0.886 |
+#define kRCst (-kYScale * 16 - kVToR * 128 + YUV_HALF2) |
+#define kGCst (-kYScale * 16 + kUToG * 128 + kVToG * 128 + YUV_HALF2) |
+#define kBCst (-kYScale * 16 - kUToB * 128 + YUV_HALF2) |
+ |
+//------------------------------------------------------------------------------ |
+ |
+#if !defined(WEBP_YUV_USE_TABLE) |
+ |
+// slower on x86 by ~7-8%, but bit-exact with the SSE2 version |
+ |
+static WEBP_INLINE int VP8Clip8(int v) { |
+ return ((v & ~YUV_MASK2) == 0) ? (v >> YUV_FIX2) : (v < 0) ? 0 : 255; |
+} |
+ |
+static WEBP_INLINE int VP8YUVToR(int y, int v) { |
+ return VP8Clip8(kYScale * y + kVToR * v + kRCst); |
+} |
+ |
+static WEBP_INLINE int VP8YUVToG(int y, int u, int v) { |
+ return VP8Clip8(kYScale * y - kUToG * u - kVToG * v + kGCst); |
+} |
+ |
+static WEBP_INLINE int VP8YUVToB(int y, int u) { |
+ return VP8Clip8(kYScale * y + kUToB * u + kBCst); |
+} |
+ |
+static WEBP_INLINE void VP8YuvToRgb(int y, int u, int v, |
+ uint8_t* const rgb) { |
+ rgb[0] = VP8YUVToR(y, v); |
+ rgb[1] = VP8YUVToG(y, u, v); |
+ rgb[2] = VP8YUVToB(y, u); |
+} |
+ |
+static WEBP_INLINE void VP8YuvToBgr(int y, int u, int v, |
+ uint8_t* const bgr) { |
+ bgr[0] = VP8YUVToB(y, u); |
+ bgr[1] = VP8YUVToG(y, u, v); |
+ bgr[2] = VP8YUVToR(y, v); |
+} |
+ |
+static WEBP_INLINE void VP8YuvToRgb565(int y, int u, int v, |
+ uint8_t* const rgb) { |
+ const int r = VP8YUVToR(y, v); // 5 usable bits |
+ const int g = VP8YUVToG(y, u, v); // 6 usable bits |
+ const int b = VP8YUVToB(y, u); // 5 usable bits |
+ const int rg = (r & 0xf8) | (g >> 5); |
+ const int gb = ((g << 3) & 0xe0) | (b >> 3); |
+#ifdef WEBP_SWAP_16BIT_CSP |
+ rgb[0] = gb; |
+ rgb[1] = rg; |
+#else |
+ rgb[0] = rg; |
+ rgb[1] = gb; |
+#endif |
+} |
+ |
+static WEBP_INLINE void VP8YuvToRgba4444(int y, int u, int v, |
+ uint8_t* const argb) { |
+ const int r = VP8YUVToR(y, v); // 4 usable bits |
+ const int g = VP8YUVToG(y, u, v); // 4 usable bits |
+ const int b = VP8YUVToB(y, u); // 4 usable bits |
+ const int rg = (r & 0xf0) | (g >> 4); |
+ const int ba = (b & 0xf0) | 0x0f; // overwrite the lower 4 bits |
+#ifdef WEBP_SWAP_16BIT_CSP |
+ argb[0] = ba; |
+ argb[1] = rg; |
+#else |
+ argb[0] = rg; |
+ argb[1] = ba; |
+#endif |
+} |
+ |
+#else |
+ |
+// Table-based version, not totally equivalent to the SSE2 version. |
+// Rounding diff is only +/-1 though. |
+ |
+extern int16_t VP8kVToR[256], VP8kUToB[256]; |
+extern int32_t VP8kVToG[256], VP8kUToG[256]; |
+extern uint8_t VP8kClip[YUV_RANGE_MAX - YUV_RANGE_MIN]; |
+extern uint8_t VP8kClip4Bits[YUV_RANGE_MAX - YUV_RANGE_MIN]; |
+ |
+static WEBP_INLINE void VP8YuvToRgb(int y, int u, int v, |
+ uint8_t* const rgb) { |
+ const int r_off = VP8kVToR[v]; |
+ const int g_off = (VP8kVToG[v] + VP8kUToG[u]) >> YUV_FIX; |
+ const int b_off = VP8kUToB[u]; |
+ rgb[0] = VP8kClip[y + r_off - YUV_RANGE_MIN]; |
+ rgb[1] = VP8kClip[y + g_off - YUV_RANGE_MIN]; |
+ rgb[2] = VP8kClip[y + b_off - YUV_RANGE_MIN]; |
+} |
+ |
+static WEBP_INLINE void VP8YuvToBgr(int y, int u, int v, |
+ uint8_t* const bgr) { |
+ const int r_off = VP8kVToR[v]; |
+ const int g_off = (VP8kVToG[v] + VP8kUToG[u]) >> YUV_FIX; |
+ const int b_off = VP8kUToB[u]; |
+ bgr[0] = VP8kClip[y + b_off - YUV_RANGE_MIN]; |
+ bgr[1] = VP8kClip[y + g_off - YUV_RANGE_MIN]; |
+ bgr[2] = VP8kClip[y + r_off - YUV_RANGE_MIN]; |
+} |
+ |
+static WEBP_INLINE void VP8YuvToRgb565(int y, int u, int v, |
+ uint8_t* const rgb) { |
+ const int r_off = VP8kVToR[v]; |
+ const int g_off = (VP8kVToG[v] + VP8kUToG[u]) >> YUV_FIX; |
+ const int b_off = VP8kUToB[u]; |
+ const int rg = ((VP8kClip[y + r_off - YUV_RANGE_MIN] & 0xf8) | |
+ (VP8kClip[y + g_off - YUV_RANGE_MIN] >> 5)); |
+ const int gb = (((VP8kClip[y + g_off - YUV_RANGE_MIN] << 3) & 0xe0) | |
+ (VP8kClip[y + b_off - YUV_RANGE_MIN] >> 3)); |
+#ifdef WEBP_SWAP_16BIT_CSP |
+ rgb[0] = gb; |
+ rgb[1] = rg; |
+#else |
+ rgb[0] = rg; |
+ rgb[1] = gb; |
+#endif |
+} |
+ |
+static WEBP_INLINE void VP8YuvToRgba4444(int y, int u, int v, |
+ uint8_t* const argb) { |
+ const int r_off = VP8kVToR[v]; |
+ const int g_off = (VP8kVToG[v] + VP8kUToG[u]) >> YUV_FIX; |
+ const int b_off = VP8kUToB[u]; |
+ const int rg = ((VP8kClip4Bits[y + r_off - YUV_RANGE_MIN] << 4) | |
+ VP8kClip4Bits[y + g_off - YUV_RANGE_MIN]); |
+ const int ba = (VP8kClip4Bits[y + b_off - YUV_RANGE_MIN] << 4) | 0x0f; |
+#ifdef WEBP_SWAP_16BIT_CSP |
+ argb[0] = ba; |
+ argb[1] = rg; |
+#else |
+ argb[0] = rg; |
+ argb[1] = ba; |
+#endif |
+} |
+ |
+#endif // WEBP_YUV_USE_TABLE |
+ |
+//----------------------------------------------------------------------------- |
+// Alpha handling variants |
+ |
+static WEBP_INLINE void VP8YuvToArgb(uint8_t y, uint8_t u, uint8_t v, |
+ uint8_t* const argb) { |
+ argb[0] = 0xff; |
+ VP8YuvToRgb(y, u, v, argb + 1); |
+} |
+ |
+static WEBP_INLINE void VP8YuvToBgra(uint8_t y, uint8_t u, uint8_t v, |
+ uint8_t* const bgra) { |
+ VP8YuvToBgr(y, u, v, bgra); |
+ bgra[3] = 0xff; |
+} |
+ |
+static WEBP_INLINE void VP8YuvToRgba(uint8_t y, uint8_t u, uint8_t v, |
+ uint8_t* const rgba) { |
+ VP8YuvToRgb(y, u, v, rgba); |
+ rgba[3] = 0xff; |
+} |
+ |
+// Must be called before everything, to initialize the tables. |
+void VP8YUVInit(void); |
+ |
+//----------------------------------------------------------------------------- |
+// SSE2 extra functions (mostly for upsampling_sse2.c) |
+ |
+#if defined(WEBP_USE_SSE2) |
+ |
+// When the following is defined, tables are initialized statically, adding ~12k |
+// to the binary size. Otherwise, they are initialized at run-time (small cost). |
+#define WEBP_YUV_USE_SSE2_TABLES |
+ |
+#if defined(FANCY_UPSAMPLING) |
+// Process 32 pixels and store the result (24b or 32b per pixel) in *dst. |
+void VP8YuvToRgba32(const uint8_t* y, const uint8_t* u, const uint8_t* v, |
+ uint8_t* dst); |
+void VP8YuvToRgb32(const uint8_t* y, const uint8_t* u, const uint8_t* v, |
+ uint8_t* dst); |
+void VP8YuvToBgra32(const uint8_t* y, const uint8_t* u, const uint8_t* v, |
+ uint8_t* dst); |
+void VP8YuvToBgr32(const uint8_t* y, const uint8_t* u, const uint8_t* v, |
+ uint8_t* dst); |
+#endif // FANCY_UPSAMPLING |
+ |
+// Must be called to initialize tables before using the functions. |
+void VP8YUVInitSSE2(void); |
+ |
+#endif // WEBP_USE_SSE2 |
+ |
+//------------------------------------------------------------------------------ |
+// RGB -> YUV conversion |
+ |
+// Stub functions that can be called with various rounding values: |
+static WEBP_INLINE int VP8ClipUV(int uv, int rounding) { |
+ uv = (uv + rounding + (128 << (YUV_FIX + 2))) >> (YUV_FIX + 2); |
+ return ((uv & ~0xff) == 0) ? uv : (uv < 0) ? 0 : 255; |
+} |
+ |
+#ifndef USE_YUVj |
+ |
+static WEBP_INLINE int VP8RGBToY(int r, int g, int b, int rounding) { |
+ const int luma = 16839 * r + 33059 * g + 6420 * b; |
+ return (luma + rounding + (16 << YUV_FIX)) >> YUV_FIX; // no need to clip |
+} |
+ |
+static WEBP_INLINE int VP8RGBToU(int r, int g, int b, int rounding) { |
+ const int u = -9719 * r - 19081 * g + 28800 * b; |
+ return VP8ClipUV(u, rounding); |
+} |
+ |
+static WEBP_INLINE int VP8RGBToV(int r, int g, int b, int rounding) { |
+ const int v = +28800 * r - 24116 * g - 4684 * b; |
+ return VP8ClipUV(v, rounding); |
+} |
+ |
+#else |
+ |
+// This JPEG-YUV colorspace, only for comparison! |
+// These are also 16bit precision coefficients from Rec.601, but with full |
+// [0..255] output range. |
+static WEBP_INLINE int VP8RGBToY(int r, int g, int b, int rounding) { |
+ const int luma = 19595 * r + 38470 * g + 7471 * b; |
+ return (luma + rounding) >> YUV_FIX; // no need to clip |
+} |
+ |
+static WEBP_INLINE int VP8RGBToU(int r, int g, int b, int rounding) { |
+ const int u = -11058 * r - 21710 * g + 32768 * b; |
+ return VP8ClipUV(u, rounding); |
+} |
+ |
+static WEBP_INLINE int VP8RGBToV(int r, int g, int b, int rounding) { |
+ const int v = 32768 * r - 27439 * g - 5329 * b; |
+ return VP8ClipUV(v, rounding); |
+} |
+ |
+#endif // USE_YUVj |
+ |
+#ifdef __cplusplus |
+} // extern "C" |
+#endif |
+ |
+#endif /* WEBP_DSP_YUV_H_ */ |