OLD | NEW |
(Empty) | |
| 1 // Copyright 2010 Google Inc. All Rights Reserved. |
| 2 // |
| 3 // Use of this source code is governed by a BSD-style license |
| 4 // that can be found in the COPYING file in the root of the source |
| 5 // tree. An additional intellectual property rights grant can be found |
| 6 // in the file PATENTS. All contributing project authors may |
| 7 // be found in the AUTHORS file in the root of the source tree. |
| 8 // ----------------------------------------------------------------------------- |
| 9 // |
| 10 // inline YUV<->RGB conversion function |
| 11 // |
| 12 // The exact naming is Y'CbCr, following the ITU-R BT.601 standard. |
| 13 // More information at: http://en.wikipedia.org/wiki/YCbCr |
| 14 // Y = 0.2569 * R + 0.5044 * G + 0.0979 * B + 16 |
| 15 // U = -0.1483 * R - 0.2911 * G + 0.4394 * B + 128 |
| 16 // V = 0.4394 * R - 0.3679 * G - 0.0715 * B + 128 |
| 17 // We use 16bit fixed point operations for RGB->YUV conversion (YUV_FIX). |
| 18 // |
| 19 // For the Y'CbCr to RGB conversion, the BT.601 specification reads: |
| 20 // R = 1.164 * (Y-16) + 1.596 * (V-128) |
| 21 // G = 1.164 * (Y-16) - 0.813 * (V-128) - 0.391 * (U-128) |
| 22 // B = 1.164 * (Y-16) + 2.018 * (U-128) |
| 23 // where Y is in the [16,235] range, and U/V in the [16,240] range. |
| 24 // In the table-lookup version (WEBP_YUV_USE_TABLE), the common factor |
| 25 // "1.164 * (Y-16)" can be handled as an offset in the VP8kClip[] table. |
| 26 // So in this case the formulae should read: |
| 27 // R = 1.164 * [Y + 1.371 * (V-128) ] - 18.624 |
| 28 // G = 1.164 * [Y - 0.698 * (V-128) - 0.336 * (U-128)] - 18.624 |
| 29 // B = 1.164 * [Y + 1.733 * (U-128)] - 18.624 |
| 30 // once factorized. |
| 31 // For YUV->RGB conversion, only 14bit fixed precision is used (YUV_FIX2). |
| 32 // That's the maximum possible for a convenient ARM implementation. |
| 33 // |
| 34 // Author: Skal (pascal.massimino@gmail.com) |
| 35 |
| 36 #ifndef WEBP_DSP_YUV_H_ |
| 37 #define WEBP_DSP_YUV_H_ |
| 38 |
| 39 #include "./dsp.h" |
| 40 #include "../dec/decode_vp8.h" |
| 41 |
| 42 // Define the following to use the LUT-based code: |
| 43 // #define WEBP_YUV_USE_TABLE |
| 44 |
| 45 #if defined(WEBP_EXPERIMENTAL_FEATURES) |
| 46 // Do NOT activate this feature for real compression. This is only experimental! |
| 47 // This flag is for comparison purpose against JPEG's "YUVj" natural colorspace. |
| 48 // This colorspace is close to Rec.601's Y'CbCr model with the notable |
| 49 // difference of allowing larger range for luma/chroma. |
| 50 // See http://en.wikipedia.org/wiki/YCbCr#JPEG_conversion paragraph, and its |
| 51 // difference with http://en.wikipedia.org/wiki/YCbCr#ITU-R_BT.601_conversion |
| 52 // #define USE_YUVj |
| 53 #endif |
| 54 |
| 55 //------------------------------------------------------------------------------ |
| 56 // YUV -> RGB conversion |
| 57 |
| 58 #ifdef __cplusplus |
| 59 extern "C" { |
| 60 #endif |
| 61 |
| 62 enum { |
| 63 YUV_FIX = 16, // fixed-point precision for RGB->YUV |
| 64 YUV_HALF = 1 << (YUV_FIX - 1), |
| 65 YUV_MASK = (256 << YUV_FIX) - 1, |
| 66 YUV_RANGE_MIN = -227, // min value of r/g/b output |
| 67 YUV_RANGE_MAX = 256 + 226, // max value of r/g/b output |
| 68 |
| 69 YUV_FIX2 = 14, // fixed-point precision for YUV->RGB |
| 70 YUV_HALF2 = 1 << (YUV_FIX2 - 1), |
| 71 YUV_MASK2 = (256 << YUV_FIX2) - 1 |
| 72 }; |
| 73 |
| 74 // These constants are 14b fixed-point version of ITU-R BT.601 constants. |
| 75 #define kYScale 19077 // 1.164 = 255 / 219 |
| 76 #define kVToR 26149 // 1.596 = 255 / 112 * 0.701 |
| 77 #define kUToG 6419 // 0.391 = 255 / 112 * 0.886 * 0.114 / 0.587 |
| 78 #define kVToG 13320 // 0.813 = 255 / 112 * 0.701 * 0.299 / 0.587 |
| 79 #define kUToB 33050 // 2.018 = 255 / 112 * 0.886 |
| 80 #define kRCst (-kYScale * 16 - kVToR * 128 + YUV_HALF2) |
| 81 #define kGCst (-kYScale * 16 + kUToG * 128 + kVToG * 128 + YUV_HALF2) |
| 82 #define kBCst (-kYScale * 16 - kUToB * 128 + YUV_HALF2) |
| 83 |
| 84 //------------------------------------------------------------------------------ |
| 85 |
| 86 #if !defined(WEBP_YUV_USE_TABLE) |
| 87 |
| 88 // slower on x86 by ~7-8%, but bit-exact with the SSE2 version |
| 89 |
| 90 static WEBP_INLINE int VP8Clip8(int v) { |
| 91 return ((v & ~YUV_MASK2) == 0) ? (v >> YUV_FIX2) : (v < 0) ? 0 : 255; |
| 92 } |
| 93 |
| 94 static WEBP_INLINE int VP8YUVToR(int y, int v) { |
| 95 return VP8Clip8(kYScale * y + kVToR * v + kRCst); |
| 96 } |
| 97 |
| 98 static WEBP_INLINE int VP8YUVToG(int y, int u, int v) { |
| 99 return VP8Clip8(kYScale * y - kUToG * u - kVToG * v + kGCst); |
| 100 } |
| 101 |
| 102 static WEBP_INLINE int VP8YUVToB(int y, int u) { |
| 103 return VP8Clip8(kYScale * y + kUToB * u + kBCst); |
| 104 } |
| 105 |
| 106 static WEBP_INLINE void VP8YuvToRgb(int y, int u, int v, |
| 107 uint8_t* const rgb) { |
| 108 rgb[0] = VP8YUVToR(y, v); |
| 109 rgb[1] = VP8YUVToG(y, u, v); |
| 110 rgb[2] = VP8YUVToB(y, u); |
| 111 } |
| 112 |
| 113 static WEBP_INLINE void VP8YuvToBgr(int y, int u, int v, |
| 114 uint8_t* const bgr) { |
| 115 bgr[0] = VP8YUVToB(y, u); |
| 116 bgr[1] = VP8YUVToG(y, u, v); |
| 117 bgr[2] = VP8YUVToR(y, v); |
| 118 } |
| 119 |
| 120 static WEBP_INLINE void VP8YuvToRgb565(int y, int u, int v, |
| 121 uint8_t* const rgb) { |
| 122 const int r = VP8YUVToR(y, v); // 5 usable bits |
| 123 const int g = VP8YUVToG(y, u, v); // 6 usable bits |
| 124 const int b = VP8YUVToB(y, u); // 5 usable bits |
| 125 const int rg = (r & 0xf8) | (g >> 5); |
| 126 const int gb = ((g << 3) & 0xe0) | (b >> 3); |
| 127 #ifdef WEBP_SWAP_16BIT_CSP |
| 128 rgb[0] = gb; |
| 129 rgb[1] = rg; |
| 130 #else |
| 131 rgb[0] = rg; |
| 132 rgb[1] = gb; |
| 133 #endif |
| 134 } |
| 135 |
| 136 static WEBP_INLINE void VP8YuvToRgba4444(int y, int u, int v, |
| 137 uint8_t* const argb) { |
| 138 const int r = VP8YUVToR(y, v); // 4 usable bits |
| 139 const int g = VP8YUVToG(y, u, v); // 4 usable bits |
| 140 const int b = VP8YUVToB(y, u); // 4 usable bits |
| 141 const int rg = (r & 0xf0) | (g >> 4); |
| 142 const int ba = (b & 0xf0) | 0x0f; // overwrite the lower 4 bits |
| 143 #ifdef WEBP_SWAP_16BIT_CSP |
| 144 argb[0] = ba; |
| 145 argb[1] = rg; |
| 146 #else |
| 147 argb[0] = rg; |
| 148 argb[1] = ba; |
| 149 #endif |
| 150 } |
| 151 |
| 152 #else |
| 153 |
| 154 // Table-based version, not totally equivalent to the SSE2 version. |
| 155 // Rounding diff is only +/-1 though. |
| 156 |
| 157 extern int16_t VP8kVToR[256], VP8kUToB[256]; |
| 158 extern int32_t VP8kVToG[256], VP8kUToG[256]; |
| 159 extern uint8_t VP8kClip[YUV_RANGE_MAX - YUV_RANGE_MIN]; |
| 160 extern uint8_t VP8kClip4Bits[YUV_RANGE_MAX - YUV_RANGE_MIN]; |
| 161 |
| 162 static WEBP_INLINE void VP8YuvToRgb(int y, int u, int v, |
| 163 uint8_t* const rgb) { |
| 164 const int r_off = VP8kVToR[v]; |
| 165 const int g_off = (VP8kVToG[v] + VP8kUToG[u]) >> YUV_FIX; |
| 166 const int b_off = VP8kUToB[u]; |
| 167 rgb[0] = VP8kClip[y + r_off - YUV_RANGE_MIN]; |
| 168 rgb[1] = VP8kClip[y + g_off - YUV_RANGE_MIN]; |
| 169 rgb[2] = VP8kClip[y + b_off - YUV_RANGE_MIN]; |
| 170 } |
| 171 |
| 172 static WEBP_INLINE void VP8YuvToBgr(int y, int u, int v, |
| 173 uint8_t* const bgr) { |
| 174 const int r_off = VP8kVToR[v]; |
| 175 const int g_off = (VP8kVToG[v] + VP8kUToG[u]) >> YUV_FIX; |
| 176 const int b_off = VP8kUToB[u]; |
| 177 bgr[0] = VP8kClip[y + b_off - YUV_RANGE_MIN]; |
| 178 bgr[1] = VP8kClip[y + g_off - YUV_RANGE_MIN]; |
| 179 bgr[2] = VP8kClip[y + r_off - YUV_RANGE_MIN]; |
| 180 } |
| 181 |
| 182 static WEBP_INLINE void VP8YuvToRgb565(int y, int u, int v, |
| 183 uint8_t* const rgb) { |
| 184 const int r_off = VP8kVToR[v]; |
| 185 const int g_off = (VP8kVToG[v] + VP8kUToG[u]) >> YUV_FIX; |
| 186 const int b_off = VP8kUToB[u]; |
| 187 const int rg = ((VP8kClip[y + r_off - YUV_RANGE_MIN] & 0xf8) | |
| 188 (VP8kClip[y + g_off - YUV_RANGE_MIN] >> 5)); |
| 189 const int gb = (((VP8kClip[y + g_off - YUV_RANGE_MIN] << 3) & 0xe0) | |
| 190 (VP8kClip[y + b_off - YUV_RANGE_MIN] >> 3)); |
| 191 #ifdef WEBP_SWAP_16BIT_CSP |
| 192 rgb[0] = gb; |
| 193 rgb[1] = rg; |
| 194 #else |
| 195 rgb[0] = rg; |
| 196 rgb[1] = gb; |
| 197 #endif |
| 198 } |
| 199 |
| 200 static WEBP_INLINE void VP8YuvToRgba4444(int y, int u, int v, |
| 201 uint8_t* const argb) { |
| 202 const int r_off = VP8kVToR[v]; |
| 203 const int g_off = (VP8kVToG[v] + VP8kUToG[u]) >> YUV_FIX; |
| 204 const int b_off = VP8kUToB[u]; |
| 205 const int rg = ((VP8kClip4Bits[y + r_off - YUV_RANGE_MIN] << 4) | |
| 206 VP8kClip4Bits[y + g_off - YUV_RANGE_MIN]); |
| 207 const int ba = (VP8kClip4Bits[y + b_off - YUV_RANGE_MIN] << 4) | 0x0f; |
| 208 #ifdef WEBP_SWAP_16BIT_CSP |
| 209 argb[0] = ba; |
| 210 argb[1] = rg; |
| 211 #else |
| 212 argb[0] = rg; |
| 213 argb[1] = ba; |
| 214 #endif |
| 215 } |
| 216 |
| 217 #endif // WEBP_YUV_USE_TABLE |
| 218 |
| 219 //----------------------------------------------------------------------------- |
| 220 // Alpha handling variants |
| 221 |
| 222 static WEBP_INLINE void VP8YuvToArgb(uint8_t y, uint8_t u, uint8_t v, |
| 223 uint8_t* const argb) { |
| 224 argb[0] = 0xff; |
| 225 VP8YuvToRgb(y, u, v, argb + 1); |
| 226 } |
| 227 |
| 228 static WEBP_INLINE void VP8YuvToBgra(uint8_t y, uint8_t u, uint8_t v, |
| 229 uint8_t* const bgra) { |
| 230 VP8YuvToBgr(y, u, v, bgra); |
| 231 bgra[3] = 0xff; |
| 232 } |
| 233 |
| 234 static WEBP_INLINE void VP8YuvToRgba(uint8_t y, uint8_t u, uint8_t v, |
| 235 uint8_t* const rgba) { |
| 236 VP8YuvToRgb(y, u, v, rgba); |
| 237 rgba[3] = 0xff; |
| 238 } |
| 239 |
| 240 // Must be called before everything, to initialize the tables. |
| 241 void VP8YUVInit(void); |
| 242 |
| 243 //----------------------------------------------------------------------------- |
| 244 // SSE2 extra functions (mostly for upsampling_sse2.c) |
| 245 |
| 246 #if defined(WEBP_USE_SSE2) |
| 247 |
| 248 // When the following is defined, tables are initialized statically, adding ~12k |
| 249 // to the binary size. Otherwise, they are initialized at run-time (small cost). |
| 250 #define WEBP_YUV_USE_SSE2_TABLES |
| 251 |
| 252 #if defined(FANCY_UPSAMPLING) |
| 253 // Process 32 pixels and store the result (24b or 32b per pixel) in *dst. |
| 254 void VP8YuvToRgba32(const uint8_t* y, const uint8_t* u, const uint8_t* v, |
| 255 uint8_t* dst); |
| 256 void VP8YuvToRgb32(const uint8_t* y, const uint8_t* u, const uint8_t* v, |
| 257 uint8_t* dst); |
| 258 void VP8YuvToBgra32(const uint8_t* y, const uint8_t* u, const uint8_t* v, |
| 259 uint8_t* dst); |
| 260 void VP8YuvToBgr32(const uint8_t* y, const uint8_t* u, const uint8_t* v, |
| 261 uint8_t* dst); |
| 262 #endif // FANCY_UPSAMPLING |
| 263 |
| 264 // Must be called to initialize tables before using the functions. |
| 265 void VP8YUVInitSSE2(void); |
| 266 |
| 267 #endif // WEBP_USE_SSE2 |
| 268 |
| 269 //------------------------------------------------------------------------------ |
| 270 // RGB -> YUV conversion |
| 271 |
| 272 // Stub functions that can be called with various rounding values: |
| 273 static WEBP_INLINE int VP8ClipUV(int uv, int rounding) { |
| 274 uv = (uv + rounding + (128 << (YUV_FIX + 2))) >> (YUV_FIX + 2); |
| 275 return ((uv & ~0xff) == 0) ? uv : (uv < 0) ? 0 : 255; |
| 276 } |
| 277 |
| 278 #ifndef USE_YUVj |
| 279 |
| 280 static WEBP_INLINE int VP8RGBToY(int r, int g, int b, int rounding) { |
| 281 const int luma = 16839 * r + 33059 * g + 6420 * b; |
| 282 return (luma + rounding + (16 << YUV_FIX)) >> YUV_FIX; // no need to clip |
| 283 } |
| 284 |
| 285 static WEBP_INLINE int VP8RGBToU(int r, int g, int b, int rounding) { |
| 286 const int u = -9719 * r - 19081 * g + 28800 * b; |
| 287 return VP8ClipUV(u, rounding); |
| 288 } |
| 289 |
| 290 static WEBP_INLINE int VP8RGBToV(int r, int g, int b, int rounding) { |
| 291 const int v = +28800 * r - 24116 * g - 4684 * b; |
| 292 return VP8ClipUV(v, rounding); |
| 293 } |
| 294 |
| 295 #else |
| 296 |
| 297 // This JPEG-YUV colorspace, only for comparison! |
| 298 // These are also 16bit precision coefficients from Rec.601, but with full |
| 299 // [0..255] output range. |
| 300 static WEBP_INLINE int VP8RGBToY(int r, int g, int b, int rounding) { |
| 301 const int luma = 19595 * r + 38470 * g + 7471 * b; |
| 302 return (luma + rounding) >> YUV_FIX; // no need to clip |
| 303 } |
| 304 |
| 305 static WEBP_INLINE int VP8RGBToU(int r, int g, int b, int rounding) { |
| 306 const int u = -11058 * r - 21710 * g + 32768 * b; |
| 307 return VP8ClipUV(u, rounding); |
| 308 } |
| 309 |
| 310 static WEBP_INLINE int VP8RGBToV(int r, int g, int b, int rounding) { |
| 311 const int v = 32768 * r - 27439 * g - 5329 * b; |
| 312 return VP8ClipUV(v, rounding); |
| 313 } |
| 314 |
| 315 #endif // USE_YUVj |
| 316 |
| 317 #ifdef __cplusplus |
| 318 } // extern "C" |
| 319 #endif |
| 320 |
| 321 #endif /* WEBP_DSP_YUV_H_ */ |
OLD | NEW |