Index: cc/math_util.cc |
diff --git a/cc/math_util.cc b/cc/math_util.cc |
index 8796504e2465387c2e0e8fa74d203ba5324fb6b9..481c4d69fd37db0cead1d156211ab80322e2a395 100644 |
--- a/cc/math_util.cc |
+++ b/cc/math_util.cc |
@@ -357,27 +357,6 @@ gfx::PointF MathUtil::projectPoint(const gfx::Transform& transform, const gfx::P |
return h.cartesianPoint2d(); |
} |
-void MathUtil::flattenTransformTo2d(gfx::Transform& transform) |
-{ |
- // Set both the 3rd row and 3rd column to (0, 0, 1, 0). |
- // |
- // One useful interpretation of doing this operation: |
- // - For x and y values, the new transform behaves effectively like an orthographic |
- // projection was added to the matrix sequence. |
- // - For z values, the new transform overrides any effect that the transform had on |
- // z, and instead it preserves the z value for any points that are transformed. |
- // - Because of linearity of transforms, this flattened transform also preserves the |
- // effect that any subsequent (post-multiplied) transforms would have on z values. |
- // |
- transform.matrix().setDouble(2, 0, 0); |
- transform.matrix().setDouble(2, 1, 0); |
- transform.matrix().setDouble(0, 2, 0); |
- transform.matrix().setDouble(1, 2, 0); |
- transform.matrix().setDouble(2, 2, 1); |
- transform.matrix().setDouble(3, 2, 0); |
- transform.matrix().setDouble(2, 3, 0); |
-} |
- |
static inline float scaleOnAxis(double a, double b, double c) |
{ |
return std::sqrt(a * a + b * b + c * c); |
@@ -406,86 +385,4 @@ gfx::Vector2dF MathUtil::projectVector(gfx::Vector2dF source, gfx::Vector2dF des |
return gfx::Vector2dF(projectedLength * destination.x(), projectedLength * destination.y()); |
} |
-void MathUtil::rotateEulerAngles(gfx::Transform* transform, double eulerX, double eulerY, double eulerZ) |
-{ |
- // TODO (shawnsingh): make this implementation faster and more accurate by |
- // hard-coding each matrix instead of calling RotateAbout(). |
- gfx::Transform rotationAboutX; |
- gfx::Transform rotationAboutY; |
- gfx::Transform rotationAboutZ; |
- |
- rotationAboutX.RotateAboutXAxis(eulerX); |
- rotationAboutY.RotateAboutYAxis(eulerY); |
- rotationAboutZ.RotateAboutZAxis(eulerZ); |
- |
- gfx::Transform composite = rotationAboutZ * rotationAboutY * rotationAboutX; |
- transform->PreconcatTransform(composite); |
-} |
- |
-gfx::Transform MathUtil::to2dTransform(const gfx::Transform& transform) |
-{ |
- gfx::Transform result = transform; |
- SkMatrix44& matrix = result.matrix(); |
- matrix.setDouble(0, 2, 0); |
- matrix.setDouble(1, 2, 0); |
- matrix.setDouble(2, 2, 1); |
- matrix.setDouble(3, 2, 0); |
- |
- matrix.setDouble(2, 0, 0); |
- matrix.setDouble(2, 1, 0); |
- matrix.setDouble(2, 3, 0); |
- |
- return result; |
-} |
- |
-gfx::Transform MathUtil::createGfxTransform(double m11, double m12, double m13, double m14, |
- double m21, double m22, double m23, double m24, |
- double m31, double m32, double m33, double m34, |
- double m41, double m42, double m43, double m44) |
-{ |
- gfx::Transform result; |
- SkMatrix44& matrix = result.matrix(); |
- |
- // Initialize column 1 |
- matrix.setDouble(0, 0, m11); |
- matrix.setDouble(1, 0, m12); |
- matrix.setDouble(2, 0, m13); |
- matrix.setDouble(3, 0, m14); |
- |
- // Initialize column 2 |
- matrix.setDouble(0, 1, m21); |
- matrix.setDouble(1, 1, m22); |
- matrix.setDouble(2, 1, m23); |
- matrix.setDouble(3, 1, m24); |
- |
- // Initialize column 3 |
- matrix.setDouble(0, 2, m31); |
- matrix.setDouble(1, 2, m32); |
- matrix.setDouble(2, 2, m33); |
- matrix.setDouble(3, 2, m34); |
- |
- // Initialize column 4 |
- matrix.setDouble(0, 3, m41); |
- matrix.setDouble(1, 3, m42); |
- matrix.setDouble(2, 3, m43); |
- matrix.setDouble(3, 3, m44); |
- |
- return result; |
-} |
- |
-gfx::Transform MathUtil::createGfxTransform(double a, double b, double c, |
- double d, double e, double f) |
-{ |
- gfx::Transform result; |
- SkMatrix44& matrix = result.matrix(); |
- matrix.setDouble(0, 0, a); |
- matrix.setDouble(1, 0, b); |
- matrix.setDouble(0, 1, c); |
- matrix.setDouble(1, 1, d); |
- matrix.setDouble(0, 3, e); |
- matrix.setDouble(1, 3, f); |
- |
- return result; |
-} |
- |
} // namespace cc |