| Index: cc/math_util.cc
|
| diff --git a/cc/math_util.cc b/cc/math_util.cc
|
| index 8796504e2465387c2e0e8fa74d203ba5324fb6b9..481c4d69fd37db0cead1d156211ab80322e2a395 100644
|
| --- a/cc/math_util.cc
|
| +++ b/cc/math_util.cc
|
| @@ -357,27 +357,6 @@ gfx::PointF MathUtil::projectPoint(const gfx::Transform& transform, const gfx::P
|
| return h.cartesianPoint2d();
|
| }
|
|
|
| -void MathUtil::flattenTransformTo2d(gfx::Transform& transform)
|
| -{
|
| - // Set both the 3rd row and 3rd column to (0, 0, 1, 0).
|
| - //
|
| - // One useful interpretation of doing this operation:
|
| - // - For x and y values, the new transform behaves effectively like an orthographic
|
| - // projection was added to the matrix sequence.
|
| - // - For z values, the new transform overrides any effect that the transform had on
|
| - // z, and instead it preserves the z value for any points that are transformed.
|
| - // - Because of linearity of transforms, this flattened transform also preserves the
|
| - // effect that any subsequent (post-multiplied) transforms would have on z values.
|
| - //
|
| - transform.matrix().setDouble(2, 0, 0);
|
| - transform.matrix().setDouble(2, 1, 0);
|
| - transform.matrix().setDouble(0, 2, 0);
|
| - transform.matrix().setDouble(1, 2, 0);
|
| - transform.matrix().setDouble(2, 2, 1);
|
| - transform.matrix().setDouble(3, 2, 0);
|
| - transform.matrix().setDouble(2, 3, 0);
|
| -}
|
| -
|
| static inline float scaleOnAxis(double a, double b, double c)
|
| {
|
| return std::sqrt(a * a + b * b + c * c);
|
| @@ -406,86 +385,4 @@ gfx::Vector2dF MathUtil::projectVector(gfx::Vector2dF source, gfx::Vector2dF des
|
| return gfx::Vector2dF(projectedLength * destination.x(), projectedLength * destination.y());
|
| }
|
|
|
| -void MathUtil::rotateEulerAngles(gfx::Transform* transform, double eulerX, double eulerY, double eulerZ)
|
| -{
|
| - // TODO (shawnsingh): make this implementation faster and more accurate by
|
| - // hard-coding each matrix instead of calling RotateAbout().
|
| - gfx::Transform rotationAboutX;
|
| - gfx::Transform rotationAboutY;
|
| - gfx::Transform rotationAboutZ;
|
| -
|
| - rotationAboutX.RotateAboutXAxis(eulerX);
|
| - rotationAboutY.RotateAboutYAxis(eulerY);
|
| - rotationAboutZ.RotateAboutZAxis(eulerZ);
|
| -
|
| - gfx::Transform composite = rotationAboutZ * rotationAboutY * rotationAboutX;
|
| - transform->PreconcatTransform(composite);
|
| -}
|
| -
|
| -gfx::Transform MathUtil::to2dTransform(const gfx::Transform& transform)
|
| -{
|
| - gfx::Transform result = transform;
|
| - SkMatrix44& matrix = result.matrix();
|
| - matrix.setDouble(0, 2, 0);
|
| - matrix.setDouble(1, 2, 0);
|
| - matrix.setDouble(2, 2, 1);
|
| - matrix.setDouble(3, 2, 0);
|
| -
|
| - matrix.setDouble(2, 0, 0);
|
| - matrix.setDouble(2, 1, 0);
|
| - matrix.setDouble(2, 3, 0);
|
| -
|
| - return result;
|
| -}
|
| -
|
| -gfx::Transform MathUtil::createGfxTransform(double m11, double m12, double m13, double m14,
|
| - double m21, double m22, double m23, double m24,
|
| - double m31, double m32, double m33, double m34,
|
| - double m41, double m42, double m43, double m44)
|
| -{
|
| - gfx::Transform result;
|
| - SkMatrix44& matrix = result.matrix();
|
| -
|
| - // Initialize column 1
|
| - matrix.setDouble(0, 0, m11);
|
| - matrix.setDouble(1, 0, m12);
|
| - matrix.setDouble(2, 0, m13);
|
| - matrix.setDouble(3, 0, m14);
|
| -
|
| - // Initialize column 2
|
| - matrix.setDouble(0, 1, m21);
|
| - matrix.setDouble(1, 1, m22);
|
| - matrix.setDouble(2, 1, m23);
|
| - matrix.setDouble(3, 1, m24);
|
| -
|
| - // Initialize column 3
|
| - matrix.setDouble(0, 2, m31);
|
| - matrix.setDouble(1, 2, m32);
|
| - matrix.setDouble(2, 2, m33);
|
| - matrix.setDouble(3, 2, m34);
|
| -
|
| - // Initialize column 4
|
| - matrix.setDouble(0, 3, m41);
|
| - matrix.setDouble(1, 3, m42);
|
| - matrix.setDouble(2, 3, m43);
|
| - matrix.setDouble(3, 3, m44);
|
| -
|
| - return result;
|
| -}
|
| -
|
| -gfx::Transform MathUtil::createGfxTransform(double a, double b, double c,
|
| - double d, double e, double f)
|
| -{
|
| - gfx::Transform result;
|
| - SkMatrix44& matrix = result.matrix();
|
| - matrix.setDouble(0, 0, a);
|
| - matrix.setDouble(1, 0, b);
|
| - matrix.setDouble(0, 1, c);
|
| - matrix.setDouble(1, 1, d);
|
| - matrix.setDouble(0, 3, e);
|
| - matrix.setDouble(1, 3, f);
|
| -
|
| - return result;
|
| -}
|
| -
|
| } // namespace cc
|
|
|