Index: src/gpu/GrAAConvexTessellator.cpp |
diff --git a/src/gpu/GrAAConvexTessellator.cpp b/src/gpu/GrAAConvexTessellator.cpp |
index 5a1e4c2dfedcc56671ca4e80ddb01a34ba5b1919..56a408d644d468c56fffe98e1b65e05018354385 100644 |
--- a/src/gpu/GrAAConvexTessellator.cpp |
+++ b/src/gpu/GrAAConvexTessellator.cpp |
@@ -10,6 +10,7 @@ |
#include "SkPath.h" |
#include "SkPoint.h" |
#include "SkString.h" |
+#include "GrPathUtils.h" |
// Next steps: |
// use in AAConvexPathRenderer |
@@ -51,13 +52,15 @@ static SkScalar abs_dist_from_line(const SkPoint& p0, const SkVector& v, const S |
int GrAAConvexTessellator::addPt(const SkPoint& pt, |
SkScalar depth, |
- bool movable) { |
+ bool movable, |
+ bool isCurve) { |
this->validate(); |
int index = fPts.count(); |
*fPts.push() = pt; |
*fDepths.push() = depth; |
*fMovable.push() = movable; |
+ *fIsCurve.push() = isCurve; |
this->validate(); |
return index; |
@@ -236,7 +239,6 @@ bool GrAAConvexTessellator::computePtAlongBisector(int startIdx, |
} |
bool GrAAConvexTessellator::extractFromPath(const SkMatrix& m, const SkPath& path) { |
- SkASSERT(SkPath::kLine_SegmentMask == path.getSegmentMasks()); |
SkASSERT(SkPath::kConvex_Convexity == path.getConvexity()); |
// Outer ring: 3*numPts |
@@ -250,7 +252,8 @@ bool GrAAConvexTessellator::extractFromPath(const SkMatrix& m, const SkPath& pat |
fNorms.setReserve(path.countPoints()); |
- SkScalar minCross = SK_ScalarMax, maxCross = -SK_ScalarMax; |
+ SkDEBUGCODE(fMinCross = SK_ScalarMax;) |
+ SkDEBUGCODE(fMaxCross = -SK_ScalarMax;) |
// TODO: is there a faster way to extract the points from the path? Perhaps |
// get all the points via a new entry point, transform them all in bulk |
@@ -261,38 +264,16 @@ bool GrAAConvexTessellator::extractFromPath(const SkMatrix& m, const SkPath& pat |
while ((verb = iter.next(pts)) != SkPath::kDone_Verb) { |
switch (verb) { |
case SkPath::kLine_Verb: |
- m.mapPoints(&pts[1], 1); |
- if (this->numPts() > 0 && duplicate_pt(pts[1], this->lastPoint())) { |
- continue; |
- } |
- |
- SkASSERT(fPts.count() <= 1 || fPts.count() == fNorms.count()+1); |
- if (this->numPts() >= 2 && |
- abs_dist_from_line(fPts.top(), fNorms.top(), pts[1]) < kClose) { |
- // The old last point is on the line from the second to last to the new point |
- this->popLastPt(); |
- fNorms.pop(); |
- } |
- |
- this->addPt(pts[1], 0.0f, false); |
- if (this->numPts() > 1) { |
- *fNorms.push() = fPts.top() - fPts[fPts.count()-2]; |
- SkDEBUGCODE(SkScalar len =) SkPoint::Normalize(&fNorms.top()); |
- SkASSERT(len > 0.0f); |
- SkASSERT(SkScalarNearlyEqual(1.0f, fNorms.top().length())); |
- } |
- |
- if (this->numPts() >= 3) { |
- int cur = this->numPts()-1; |
- SkScalar cross = SkPoint::CrossProduct(fNorms[cur-1], fNorms[cur-2]); |
- maxCross = SkTMax(maxCross, cross); |
- minCross = SkTMin(minCross, cross); |
- } |
+ this->lineTo(m, pts[1], false); |
break; |
case SkPath::kQuad_Verb: |
- case SkPath::kConic_Verb: |
+ this->quadTo(m, pts); |
+ break; |
case SkPath::kCubic_Verb: |
- SkASSERT(false); |
+ this->cubicTo(m, pts); |
+ break; |
+ case SkPath::kConic_Verb: |
+ this->conicTo(m, pts, iter.conicWeight()); |
break; |
case SkPath::kMove_Verb: |
case SkPath::kClose_Verb: |
@@ -342,16 +323,14 @@ bool GrAAConvexTessellator::extractFromPath(const SkMatrix& m, const SkPath& pat |
return false; |
} |
- // Check the cross produce of the final trio |
+ // Check the cross product of the final trio |
SkScalar cross = SkPoint::CrossProduct(fNorms[0], fNorms.top()); |
- maxCross = SkTMax(maxCross, cross); |
- minCross = SkTMin(minCross, cross); |
- |
- if (maxCross > 0.0f) { |
- SkASSERT(minCross >= 0.0f); |
+ SkDEBUGCODE(fMaxCross = SkTMax(fMaxCross, cross)); |
+ SkDEBUGCODE(fMinCross = SkTMin(fMinCross, cross)); |
+ SkASSERT((fMaxCross >= 0.0f) == (fMinCross >= 0.0f)); |
+ if (cross > 0.0f) { |
fSide = SkPoint::kRight_Side; |
} else { |
- SkASSERT(minCross <= 0.0f); |
fSide = SkPoint::kLeft_Side; |
} |
@@ -404,69 +383,109 @@ void GrAAConvexTessellator::createOuterRing() { |
const int numPts = fPts.count(); |
- // For each vertex of the original polygon we add three points to the |
- // outset polygon - one extending perpendicular to each impinging edge |
- // and one along the bisector. Two triangles are added for each corner |
- // and two are added along each edge. |
int prev = numPts - 1; |
int lastPerpIdx = -1, firstPerpIdx = -1, newIdx0, newIdx1, newIdx2; |
for (int cur = 0; cur < numPts; ++cur) { |
- // The perpendicular point for the last edge |
- SkPoint temp = fNorms[prev]; |
- temp.scale(fTargetDepth); |
- temp += fPts[cur]; |
- |
- // We know it isn't a duplicate of the prior point (since it and this |
- // one are just perpendicular offsets from the non-merged polygon points) |
- newIdx0 = this->addPt(temp, -fTargetDepth, false); |
- |
- // The bisector outset point |
- temp = fBisectors[cur]; |
- temp.scale(-fTargetDepth); // the bisectors point in |
- temp += fPts[cur]; |
- |
- // For very shallow angles all the corner points could fuse |
- if (duplicate_pt(temp, this->point(newIdx0))) { |
- newIdx1 = newIdx0; |
- } else { |
- newIdx1 = this->addPt(temp, -fTargetDepth, false); |
- } |
- |
- // The perpendicular point for the next edge. |
- temp = fNorms[cur]; |
- temp.scale(fTargetDepth); |
- temp += fPts[cur]; |
- |
- // For very shallow angles all the corner points could fuse. |
- if (duplicate_pt(temp, this->point(newIdx1))) { |
- newIdx2 = newIdx1; |
- } else { |
- newIdx2 = this->addPt(temp, -fTargetDepth, false); |
+ if (fIsCurve[cur]) { |
+ // Inside a curve, we assume that the curvature is shallow enough (due to tesselation) |
+ // that we only need one corner point. Mathematically, the distance the corner point |
+ // gets shifted out should depend on the angle between the two line segments (as in |
+ // mitering), but again due to tesselation we assume that this angle is small and |
+ // therefore the correction factor is negligible and we do not bother with it. |
+ |
+ // The bisector outset point |
+ SkPoint temp = fBisectors[cur]; |
+ temp.scale(-fTargetDepth); // the bisectors point in |
+ temp += fPts[cur]; |
+ |
+ // double-check our "sufficiently flat" assumption; we want the bisector point to be |
+ // close to the normal point. |
+ #define kFlatnessTolerance 1.0f |
+ SkDEBUGCODE(SkPoint prevNormal = fNorms[prev];) |
+ SkDEBUGCODE(prevNormal.scale(fTargetDepth);) |
+ SkDEBUGCODE(prevNormal += fPts[cur];) |
+ SkASSERT((temp - prevNormal).length() < kFlatnessTolerance); |
+ |
+ newIdx1 = this->addPt(temp, -fTargetDepth, false, true); |
+ |
+ if (0 == cur) { |
+ // Store the index of the first perpendicular point to finish up |
+ firstPerpIdx = newIdx1; |
+ SkASSERT(-1 == lastPerpIdx); |
+ } else { |
+ // The triangles for the previous edge |
+ this->addTri(prev, newIdx1, cur); |
+ this->addTri(prev, lastPerpIdx, newIdx1); |
+ } |
+ |
+ prev = cur; |
+ // Track the last perpendicular outset point so we can construct the |
+ // trailing edge triangles. |
+ lastPerpIdx = newIdx1; |
} |
- |
- if (0 == cur) { |
- // Store the index of the first perpendicular point to finish up |
- firstPerpIdx = newIdx0; |
- SkASSERT(-1 == lastPerpIdx); |
- } else { |
- // The triangles for the previous edge |
- this->addTri(prev, newIdx0, cur); |
- this->addTri(prev, lastPerpIdx, newIdx0); |
+ else { |
+ // For each vertex of the original polygon we add three points to the |
+ // outset polygon - one extending perpendicular to each impinging edge |
+ // and one along the bisector. Two triangles are added for each corner |
+ // and two are added along each edge. |
+ |
+ // The perpendicular point for the last edge |
+ SkPoint temp = fNorms[prev]; |
+ temp.scale(fTargetDepth); |
+ temp += fPts[cur]; |
+ |
+ // We know it isn't a duplicate of the prior point (since it and this |
+ // one are just perpendicular offsets from the non-merged polygon points) |
+ newIdx0 = this->addPt(temp, -fTargetDepth, false, false); |
+ |
+ // The bisector outset point |
+ temp = fBisectors[cur]; |
+ temp.scale(-fTargetDepth); // the bisectors point in |
+ temp += fPts[cur]; |
+ |
+ // For very shallow angles all the corner points could fuse |
+ if (duplicate_pt(temp, this->point(newIdx0))) { |
+ newIdx1 = newIdx0; |
+ } else { |
+ newIdx1 = this->addPt(temp, -fTargetDepth, false, false); |
+ } |
+ |
+ // The perpendicular point for the next edge. |
+ temp = fNorms[cur]; |
+ temp.scale(fTargetDepth); |
+ temp += fPts[cur]; |
+ |
+ // For very shallow angles all the corner points could fuse. |
+ if (duplicate_pt(temp, this->point(newIdx1))) { |
+ newIdx2 = newIdx1; |
+ } else { |
+ newIdx2 = this->addPt(temp, -fTargetDepth, false, false); |
+ } |
+ |
+ if (0 == cur) { |
+ // Store the index of the first perpendicular point to finish up |
+ firstPerpIdx = newIdx0; |
+ SkASSERT(-1 == lastPerpIdx); |
+ } else { |
+ // The triangles for the previous edge |
+ this->addTri(prev, newIdx0, cur); |
+ this->addTri(prev, lastPerpIdx, newIdx0); |
+ } |
+ |
+ // The two triangles for the corner |
+ this->addTri(cur, newIdx0, newIdx1); |
+ this->addTri(cur, newIdx1, newIdx2); |
+ |
+ prev = cur; |
+ // Track the last perpendicular outset point so we can construct the |
+ // trailing edge triangles. |
+ lastPerpIdx = newIdx2; |
} |
- |
- // The two triangles for the corner |
- this->addTri(cur, newIdx0, newIdx1); |
- this->addTri(cur, newIdx1, newIdx2); |
- |
- prev = cur; |
- // Track the last perpendicular outset point so we can construct the |
- // trailing edge triangles. |
- lastPerpIdx = newIdx2; |
} |
// pick up the final edge rect |
- this->addTri(numPts-1, firstPerpIdx, 0); |
- this->addTri(numPts-1, lastPerpIdx, firstPerpIdx); |
+ this->addTri(numPts - 1, firstPerpIdx, 0); |
+ this->addTri(numPts - 1, lastPerpIdx, firstPerpIdx); |
this->validate(); |
} |
@@ -592,7 +611,7 @@ bool GrAAConvexTessellator::createInsetRing(const Ring& lastRing, Ring* nextRing |
// if the originating index is still valid then this point wasn't |
// fused (and is thus movable) |
newIdx = this->addPt(fCandidateVerts.point(i), depth, |
- fCandidateVerts.originatingIdx(i) != -1); |
+ fCandidateVerts.originatingIdx(i) != -1, false); |
} else { |
SkASSERT(fCandidateVerts.originatingIdx(i) != -1); |
this->updatePt(fCandidateVerts.originatingIdx(i), fCandidateVerts.point(i), depth); |
@@ -768,6 +787,84 @@ void GrAAConvexTessellator::checkAllDepths() const { |
} |
#endif |
+#define kQuadTolerance 0.2f |
+#define kCubicTolerance 0.2f |
+#define kConicTolerance 0.5f |
+ |
+void GrAAConvexTessellator::lineTo(const SkMatrix& m, SkPoint p, bool isCurve) { |
+ m.mapPoints(&p, 1); |
+ if (this->numPts() > 0 && duplicate_pt(p, this->lastPoint())) { |
+ return; |
+ } |
+ |
+ SkASSERT(fPts.count() <= 1 || fPts.count() == fNorms.count()+1); |
+ if (this->numPts() >= 2 && |
+ abs_dist_from_line(fPts.top(), fNorms.top(), p) < kClose) { |
+ // The old last point is on the line from the second to last to the new point |
+ this->popLastPt(); |
+ fNorms.pop(); |
+ fIsCurve.pop(); |
+ } |
+ this->addPt(p, 0.0f, false, isCurve); |
+ if (this->numPts() > 1) { |
+ *fNorms.push() = fPts.top() - fPts[fPts.count()-2]; |
+ SkDEBUGCODE(SkScalar len =) SkPoint::Normalize(&fNorms.top()); |
+ SkASSERT(len > 0.0f); |
+ SkASSERT(SkScalarNearlyEqual(1.0f, fNorms.top().length())); |
+ } |
+ SkDEBUGCODE( |
+ if (this->numPts() >= 3) { |
+ int cur = this->numPts()-1; |
+ SkScalar cross = SkPoint::CrossProduct(fNorms[cur-1], fNorms[cur-2]); |
+ fMaxCross = SkTMax(fMaxCross, cross); |
+ fMinCross = SkTMin(fMinCross, cross); |
+ } |
+ ) |
+} |
+ |
+void GrAAConvexTessellator::quadTo(const SkMatrix& m, SkPoint pts[3]) { |
+ int maxCount = GrPathUtils::quadraticPointCount(pts, kQuadTolerance); |
+ fPointBuffer.setReserve(maxCount); |
+ SkPoint* target = fPointBuffer.begin(); |
+ int count = GrPathUtils::generateQuadraticPoints(pts[0], pts[1], pts[2], |
+ kQuadTolerance, &target, maxCount); |
+ fPointBuffer.setCount(count); |
+ for (int i = 0; i < count; i++) { |
+ lineTo(m, fPointBuffer[i], true); |
+ } |
+} |
+ |
+void GrAAConvexTessellator::cubicTo(const SkMatrix& m, SkPoint pts[4]) { |
+ int maxCount = GrPathUtils::cubicPointCount(pts, kCubicTolerance); |
+ fPointBuffer.setReserve(maxCount); |
+ SkPoint* target = fPointBuffer.begin(); |
+ int count = GrPathUtils::generateCubicPoints(pts[0], pts[1], pts[2], pts[3], |
+ kCubicTolerance, &target, maxCount); |
+ fPointBuffer.setCount(count); |
+ for (int i = 0; i < count; i++) { |
+ lineTo(m, fPointBuffer[i], true); |
+ } |
+} |
+ |
+// include down here to avoid compilation errors caused by "-" overload in SkGeometry.h |
+#include "SkGeometry.h" |
+ |
+void GrAAConvexTessellator::conicTo(const SkMatrix& m, SkPoint* pts, SkScalar w) { |
+ SkAutoConicToQuads quadder; |
+ const SkPoint* quads = quadder.computeQuads(pts, w, kConicTolerance); |
+ SkPoint lastPoint = *(quads++); |
+ int count = quadder.countQuads(); |
+ for (int i = 0; i < count; ++i) { |
+ SkPoint quadPts[3]; |
+ quadPts[0] = lastPoint; |
+ quadPts[1] = quads[0]; |
+ quadPts[2] = i == count - 1 ? pts[2] : quads[1]; |
+ quadTo(m, quadPts); |
+ lastPoint = quadPts[2]; |
+ quads += 2; |
+ } |
+} |
+ |
////////////////////////////////////////////////////////////////////////////// |
#if GR_AA_CONVEX_TESSELLATOR_VIZ |
static const SkScalar kPointRadius = 0.02f; |