| Index: source/libvpx/vp9/encoder/vp9_ratectrl.c
|
| ===================================================================
|
| --- source/libvpx/vp9/encoder/vp9_ratectrl.c (revision 0)
|
| +++ source/libvpx/vp9/encoder/vp9_ratectrl.c (revision 0)
|
| @@ -0,0 +1,699 @@
|
| +/*
|
| + * Copyright (c) 2010 The WebM project authors. All Rights Reserved.
|
| + *
|
| + * Use of this source code is governed by a BSD-style license
|
| + * that can be found in the LICENSE file in the root of the source
|
| + * tree. An additional intellectual property rights grant can be found
|
| + * in the file PATENTS. All contributing project authors may
|
| + * be found in the AUTHORS file in the root of the source tree.
|
| + */
|
| +
|
| +
|
| +#include <stdlib.h>
|
| +#include <stdio.h>
|
| +#include <string.h>
|
| +#include <limits.h>
|
| +#include <assert.h>
|
| +
|
| +#include "math.h"
|
| +#include "vp9/common/vp9_alloccommon.h"
|
| +#include "vp9/common/vp9_modecont.h"
|
| +#include "vp9/common/vp9_common.h"
|
| +#include "vp9/encoder/vp9_ratectrl.h"
|
| +#include "vp9/common/vp9_entropymode.h"
|
| +#include "vpx_mem/vpx_mem.h"
|
| +#include "vp9/common/vp9_systemdependent.h"
|
| +#include "vp9/encoder/vp9_encodemv.h"
|
| +#include "vp9/common/vp9_quant_common.h"
|
| +
|
| +#define MIN_BPB_FACTOR 0.005
|
| +#define MAX_BPB_FACTOR 50
|
| +
|
| +#ifdef MODE_STATS
|
| +extern unsigned int y_modes[VP9_YMODES];
|
| +extern unsigned int uv_modes[VP9_UV_MODES];
|
| +extern unsigned int b_modes[B_MODE_COUNT];
|
| +
|
| +extern unsigned int inter_y_modes[MB_MODE_COUNT];
|
| +extern unsigned int inter_uv_modes[VP9_UV_MODES];
|
| +extern unsigned int inter_b_modes[B_MODE_COUNT];
|
| +#endif
|
| +
|
| +// Bits Per MB at different Q (Multiplied by 512)
|
| +#define BPER_MB_NORMBITS 9
|
| +
|
| +// % adjustment to target kf size based on seperation from previous frame
|
| +static const int kf_boost_seperation_adjustment[16] = {
|
| + 30, 40, 50, 55, 60, 65, 70, 75,
|
| + 80, 85, 90, 95, 100, 100, 100, 100,
|
| +};
|
| +
|
| +static const int gf_adjust_table[101] = {
|
| + 100,
|
| + 115, 130, 145, 160, 175, 190, 200, 210, 220, 230,
|
| + 240, 260, 270, 280, 290, 300, 310, 320, 330, 340,
|
| + 350, 360, 370, 380, 390, 400, 400, 400, 400, 400,
|
| + 400, 400, 400, 400, 400, 400, 400, 400, 400, 400,
|
| + 400, 400, 400, 400, 400, 400, 400, 400, 400, 400,
|
| + 400, 400, 400, 400, 400, 400, 400, 400, 400, 400,
|
| + 400, 400, 400, 400, 400, 400, 400, 400, 400, 400,
|
| + 400, 400, 400, 400, 400, 400, 400, 400, 400, 400,
|
| + 400, 400, 400, 400, 400, 400, 400, 400, 400, 400,
|
| + 400, 400, 400, 400, 400, 400, 400, 400, 400, 400,
|
| +};
|
| +
|
| +static const int gf_intra_usage_adjustment[20] = {
|
| + 125, 120, 115, 110, 105, 100, 95, 85, 80, 75,
|
| + 70, 65, 60, 55, 50, 50, 50, 50, 50, 50,
|
| +};
|
| +
|
| +static const int gf_interval_table[101] = {
|
| + 7,
|
| + 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
|
| + 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
|
| + 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
|
| + 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
|
| + 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
|
| + 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
|
| + 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
|
| + 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
|
| + 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
|
| + 11, 11, 11, 11, 11, 11, 11, 11, 11, 11,
|
| +};
|
| +
|
| +static const unsigned int prior_key_frame_weight[KEY_FRAME_CONTEXT] = { 1, 2, 3, 4, 5 };
|
| +
|
| +// These functions use formulaic calculations to make playing with the
|
| +// quantizer tables easier. If necessary they can be replaced by lookup
|
| +// tables if and when things settle down in the experimental bitstream
|
| +double vp9_convert_qindex_to_q(int qindex) {
|
| + // Convert the index to a real Q value (scaled down to match old Q values)
|
| + return (double)vp9_ac_yquant(qindex) / 4.0;
|
| +}
|
| +
|
| +int vp9_gfboost_qadjust(int qindex) {
|
| + int retval;
|
| + double q;
|
| +
|
| + q = vp9_convert_qindex_to_q(qindex);
|
| + retval = (int)((0.00000828 * q * q * q) +
|
| + (-0.0055 * q * q) +
|
| + (1.32 * q) + 79.3);
|
| + return retval;
|
| +}
|
| +
|
| +static int kfboost_qadjust(int qindex) {
|
| + int retval;
|
| + double q;
|
| +
|
| + q = vp9_convert_qindex_to_q(qindex);
|
| + retval = (int)((0.00000973 * q * q * q) +
|
| + (-0.00613 * q * q) +
|
| + (1.316 * q) + 121.2);
|
| + return retval;
|
| +}
|
| +
|
| +int vp9_bits_per_mb(FRAME_TYPE frame_type, int qindex) {
|
| + if (frame_type == KEY_FRAME)
|
| + return (int)(4500000 / vp9_convert_qindex_to_q(qindex));
|
| + else
|
| + return (int)(2850000 / vp9_convert_qindex_to_q(qindex));
|
| +}
|
| +
|
| +
|
| +void vp9_save_coding_context(VP9_COMP *cpi) {
|
| + CODING_CONTEXT *const cc = &cpi->coding_context;
|
| + VP9_COMMON *cm = &cpi->common;
|
| + MACROBLOCKD *xd = &cpi->mb.e_mbd;
|
| +
|
| + // Stores a snapshot of key state variables which can subsequently be
|
| + // restored with a call to vp9_restore_coding_context. These functions are
|
| + // intended for use in a re-code loop in vp9_compress_frame where the
|
| + // quantizer value is adjusted between loop iterations.
|
| +
|
| + cc->nmvc = cm->fc.nmvc;
|
| + vp9_copy(cc->nmvjointcost, cpi->mb.nmvjointcost);
|
| + vp9_copy(cc->nmvcosts, cpi->mb.nmvcosts);
|
| + vp9_copy(cc->nmvcosts_hp, cpi->mb.nmvcosts_hp);
|
| +
|
| + vp9_copy(cc->vp9_mode_contexts, cm->fc.vp9_mode_contexts);
|
| +
|
| + vp9_copy(cc->ymode_prob, cm->fc.ymode_prob);
|
| +#if CONFIG_SUPERBLOCKS
|
| + vp9_copy(cc->sb_ymode_prob, cm->fc.sb_ymode_prob);
|
| +#endif
|
| + vp9_copy(cc->bmode_prob, cm->fc.bmode_prob);
|
| + vp9_copy(cc->uv_mode_prob, cm->fc.uv_mode_prob);
|
| + vp9_copy(cc->i8x8_mode_prob, cm->fc.i8x8_mode_prob);
|
| + vp9_copy(cc->sub_mv_ref_prob, cm->fc.sub_mv_ref_prob);
|
| + vp9_copy(cc->mbsplit_prob, cm->fc.mbsplit_prob);
|
| +
|
| + // Stats
|
| +#ifdef MODE_STATS
|
| + vp9_copy(cc->y_modes, y_modes);
|
| + vp9_copy(cc->uv_modes, uv_modes);
|
| + vp9_copy(cc->b_modes, b_modes);
|
| + vp9_copy(cc->inter_y_modes, inter_y_modes);
|
| + vp9_copy(cc->inter_uv_modes, inter_uv_modes);
|
| + vp9_copy(cc->inter_b_modes, inter_b_modes);
|
| +#endif
|
| +
|
| + vp9_copy(cc->segment_pred_probs, cm->segment_pred_probs);
|
| + vp9_copy(cc->ref_pred_probs_update, cpi->ref_pred_probs_update);
|
| + vp9_copy(cc->ref_pred_probs, cm->ref_pred_probs);
|
| + vp9_copy(cc->prob_comppred, cm->prob_comppred);
|
| +
|
| + vpx_memcpy(cpi->coding_context.last_frame_seg_map_copy,
|
| + cm->last_frame_seg_map, (cm->mb_rows * cm->mb_cols));
|
| +
|
| + vp9_copy(cc->last_ref_lf_deltas, xd->last_ref_lf_deltas);
|
| + vp9_copy(cc->last_mode_lf_deltas, xd->last_mode_lf_deltas);
|
| +
|
| + vp9_copy(cc->coef_probs, cm->fc.coef_probs);
|
| + vp9_copy(cc->hybrid_coef_probs, cm->fc.hybrid_coef_probs);
|
| + vp9_copy(cc->coef_probs_8x8, cm->fc.coef_probs_8x8);
|
| + vp9_copy(cc->hybrid_coef_probs_8x8, cm->fc.hybrid_coef_probs_8x8);
|
| + vp9_copy(cc->coef_probs_16x16, cm->fc.coef_probs_16x16);
|
| + vp9_copy(cc->hybrid_coef_probs_16x16, cm->fc.hybrid_coef_probs_16x16);
|
| + vp9_copy(cc->switchable_interp_prob, cm->fc.switchable_interp_prob);
|
| +#if CONFIG_COMP_INTERINTRA_PRED
|
| + cc->interintra_prob = cm->fc.interintra_prob;
|
| +#endif
|
| +}
|
| +
|
| +void vp9_restore_coding_context(VP9_COMP *cpi) {
|
| + CODING_CONTEXT *const cc = &cpi->coding_context;
|
| + VP9_COMMON *cm = &cpi->common;
|
| + MACROBLOCKD *xd = &cpi->mb.e_mbd;
|
| +
|
| + // Restore key state variables to the snapshot state stored in the
|
| + // previous call to vp9_save_coding_context.
|
| +
|
| + cm->fc.nmvc = cc->nmvc;
|
| + vp9_copy(cpi->mb.nmvjointcost, cc->nmvjointcost);
|
| + vp9_copy(cpi->mb.nmvcosts, cc->nmvcosts);
|
| + vp9_copy(cpi->mb.nmvcosts_hp, cc->nmvcosts_hp);
|
| +
|
| + vp9_copy(cm->fc.vp9_mode_contexts, cc->vp9_mode_contexts);
|
| +
|
| + vp9_copy(cm->fc.ymode_prob, cc->ymode_prob);
|
| +#if CONFIG_SUPERBLOCKS
|
| + vp9_copy(cm->fc.sb_ymode_prob, cc->sb_ymode_prob);
|
| +#endif
|
| + vp9_copy(cm->fc.bmode_prob, cc->bmode_prob);
|
| + vp9_copy(cm->fc.i8x8_mode_prob, cc->i8x8_mode_prob);
|
| + vp9_copy(cm->fc.uv_mode_prob, cc->uv_mode_prob);
|
| + vp9_copy(cm->fc.sub_mv_ref_prob, cc->sub_mv_ref_prob);
|
| + vp9_copy(cm->fc.mbsplit_prob, cc->mbsplit_prob);
|
| +
|
| + // Stats
|
| +#ifdef MODE_STATS
|
| + vp9_copy(y_modes, cc->y_modes);
|
| + vp9_copy(uv_modes, cc->uv_modes);
|
| + vp9_copy(b_modes, cc->b_modes);
|
| + vp9_copy(inter_y_modes, cc->inter_y_modes);
|
| + vp9_copy(inter_uv_modes, cc->inter_uv_modes);
|
| + vp9_copy(inter_b_modes, cc->inter_b_modes);
|
| +#endif
|
| +
|
| + vp9_copy(cm->segment_pred_probs, cc->segment_pred_probs);
|
| + vp9_copy(cpi->ref_pred_probs_update, cc->ref_pred_probs_update);
|
| + vp9_copy(cm->ref_pred_probs, cc->ref_pred_probs);
|
| + vp9_copy(cm->prob_comppred, cc->prob_comppred);
|
| +
|
| + vpx_memcpy(cm->last_frame_seg_map,
|
| + cpi->coding_context.last_frame_seg_map_copy,
|
| + (cm->mb_rows * cm->mb_cols));
|
| +
|
| + vp9_copy(xd->last_ref_lf_deltas, cc->last_ref_lf_deltas);
|
| + vp9_copy(xd->last_mode_lf_deltas, cc->last_mode_lf_deltas);
|
| +
|
| + vp9_copy(cm->fc.coef_probs, cc->coef_probs);
|
| + vp9_copy(cm->fc.hybrid_coef_probs, cc->hybrid_coef_probs);
|
| + vp9_copy(cm->fc.coef_probs_8x8, cc->coef_probs_8x8);
|
| + vp9_copy(cm->fc.hybrid_coef_probs_8x8, cc->hybrid_coef_probs_8x8);
|
| + vp9_copy(cm->fc.coef_probs_16x16, cc->coef_probs_16x16);
|
| + vp9_copy(cm->fc.hybrid_coef_probs_16x16, cc->hybrid_coef_probs_16x16);
|
| + vp9_copy(cm->fc.switchable_interp_prob, cc->switchable_interp_prob);
|
| +#if CONFIG_COMP_INTERINTRA_PRED
|
| + cm->fc.interintra_prob = cc->interintra_prob;
|
| +#endif
|
| +}
|
| +
|
| +
|
| +void vp9_setup_key_frame(VP9_COMP *cpi) {
|
| + VP9_COMMON *cm = &cpi->common;
|
| + // Setup for Key frame:
|
| + vp9_default_coef_probs(& cpi->common);
|
| + vp9_kf_default_bmode_probs(cpi->common.kf_bmode_prob);
|
| + vp9_init_mbmode_probs(& cpi->common);
|
| + vp9_default_bmode_probs(cm->fc.bmode_prob);
|
| +
|
| + vp9_init_mv_probs(& cpi->common);
|
| +
|
| + // cpi->common.filter_level = 0; // Reset every key frame.
|
| + cpi->common.filter_level = cpi->common.base_qindex * 3 / 8;
|
| +
|
| + // interval before next GF
|
| + cpi->frames_till_gf_update_due = cpi->baseline_gf_interval;
|
| +
|
| + cpi->common.refresh_golden_frame = TRUE;
|
| + cpi->common.refresh_alt_ref_frame = TRUE;
|
| +
|
| + vp9_init_mode_contexts(&cpi->common);
|
| + vpx_memcpy(&cpi->common.lfc, &cpi->common.fc, sizeof(cpi->common.fc));
|
| + vpx_memcpy(&cpi->common.lfc_a, &cpi->common.fc, sizeof(cpi->common.fc));
|
| +
|
| + vpx_memset(cm->prev_mip, 0,
|
| + (cm->mb_cols + 1) * (cm->mb_rows + 1)* sizeof(MODE_INFO));
|
| + vpx_memset(cm->mip, 0,
|
| + (cm->mb_cols + 1) * (cm->mb_rows + 1)* sizeof(MODE_INFO));
|
| +
|
| + vp9_update_mode_info_border(cm, cm->mip);
|
| + vp9_update_mode_info_in_image(cm, cm->mi);
|
| +}
|
| +
|
| +void vp9_setup_inter_frame(VP9_COMP *cpi) {
|
| + if (cpi->common.refresh_alt_ref_frame) {
|
| + vpx_memcpy(&cpi->common.fc,
|
| + &cpi->common.lfc_a,
|
| + sizeof(cpi->common.fc));
|
| + } else {
|
| + vpx_memcpy(&cpi->common.fc,
|
| + &cpi->common.lfc,
|
| + sizeof(cpi->common.fc));
|
| + }
|
| +}
|
| +
|
| +
|
| +static int estimate_bits_at_q(int frame_kind, int Q, int MBs,
|
| + double correction_factor) {
|
| + int Bpm = (int)(.5 + correction_factor * vp9_bits_per_mb(frame_kind, Q));
|
| +
|
| + /* Attempt to retain reasonable accuracy without overflow. The cutoff is
|
| + * chosen such that the maximum product of Bpm and MBs fits 31 bits. The
|
| + * largest Bpm takes 20 bits.
|
| + */
|
| + if (MBs > (1 << 11))
|
| + return (Bpm >> BPER_MB_NORMBITS) * MBs;
|
| + else
|
| + return (Bpm * MBs) >> BPER_MB_NORMBITS;
|
| +}
|
| +
|
| +
|
| +static void calc_iframe_target_size(VP9_COMP *cpi) {
|
| + // boost defaults to half second
|
| + int target;
|
| +
|
| + // Clear down mmx registers to allow floating point in what follows
|
| + vp9_clear_system_state(); // __asm emms;
|
| +
|
| + // New Two pass RC
|
| + target = cpi->per_frame_bandwidth;
|
| +
|
| + if (cpi->oxcf.rc_max_intra_bitrate_pct) {
|
| + int max_rate = cpi->per_frame_bandwidth
|
| + * cpi->oxcf.rc_max_intra_bitrate_pct / 100;
|
| +
|
| + if (target > max_rate)
|
| + target = max_rate;
|
| + }
|
| +
|
| + cpi->this_frame_target = target;
|
| +
|
| +}
|
| +
|
| +
|
| +// Do the best we can to define the parameteres for the next GF based
|
| +// on what information we have available.
|
| +//
|
| +// In this experimental code only two pass is supported
|
| +// so we just use the interval determined in the two pass code.
|
| +static void calc_gf_params(VP9_COMP *cpi) {
|
| + // Set the gf interval
|
| + cpi->frames_till_gf_update_due = cpi->baseline_gf_interval;
|
| +}
|
| +
|
| +
|
| +static void calc_pframe_target_size(VP9_COMP *cpi) {
|
| + int min_frame_target;
|
| +
|
| + min_frame_target = 0;
|
| +
|
| + min_frame_target = cpi->min_frame_bandwidth;
|
| +
|
| + if (min_frame_target < (cpi->av_per_frame_bandwidth >> 5))
|
| + min_frame_target = cpi->av_per_frame_bandwidth >> 5;
|
| +
|
| +
|
| + // Special alt reference frame case
|
| + if (cpi->common.refresh_alt_ref_frame) {
|
| + // Per frame bit target for the alt ref frame
|
| + cpi->per_frame_bandwidth = cpi->twopass.gf_bits;
|
| + cpi->this_frame_target = cpi->per_frame_bandwidth;
|
| + }
|
| +
|
| + // Normal frames (gf,and inter)
|
| + else {
|
| + cpi->this_frame_target = cpi->per_frame_bandwidth;
|
| + }
|
| +
|
| + // Sanity check that the total sum of adjustments is not above the maximum allowed
|
| + // That is that having allowed for KF and GF penalties we have not pushed the
|
| + // current interframe target to low. If the adjustment we apply here is not capable of recovering
|
| + // all the extra bits we have spent in the KF or GF then the remainder will have to be recovered over
|
| + // a longer time span via other buffer / rate control mechanisms.
|
| + if (cpi->this_frame_target < min_frame_target)
|
| + cpi->this_frame_target = min_frame_target;
|
| +
|
| + if (!cpi->common.refresh_alt_ref_frame)
|
| + // Note the baseline target data rate for this inter frame.
|
| + cpi->inter_frame_target = cpi->this_frame_target;
|
| +
|
| + // Adjust target frame size for Golden Frames:
|
| + if (cpi->frames_till_gf_update_due == 0) {
|
| + // int Boost = 0;
|
| + int Q = (cpi->oxcf.fixed_q < 0) ? cpi->last_q[INTER_FRAME] : cpi->oxcf.fixed_q;
|
| +
|
| + cpi->common.refresh_golden_frame = TRUE;
|
| +
|
| + calc_gf_params(cpi);
|
| +
|
| + // If we are using alternate ref instead of gf then do not apply the boost
|
| + // It will instead be applied to the altref update
|
| + // Jims modified boost
|
| + if (!cpi->source_alt_ref_active) {
|
| + if (cpi->oxcf.fixed_q < 0) {
|
| + // The spend on the GF is defined in the two pass code
|
| + // for two pass encodes
|
| + cpi->this_frame_target = cpi->per_frame_bandwidth;
|
| + } else
|
| + cpi->this_frame_target =
|
| + (estimate_bits_at_q(1, Q, cpi->common.MBs, 1.0)
|
| + * cpi->last_boost) / 100;
|
| +
|
| + }
|
| + // If there is an active ARF at this location use the minimum
|
| + // bits on this frame even if it is a contructed arf.
|
| + // The active maximum quantizer insures that an appropriate
|
| + // number of bits will be spent if needed for contstructed ARFs.
|
| + else {
|
| + cpi->this_frame_target = 0;
|
| + }
|
| +
|
| + cpi->current_gf_interval = cpi->frames_till_gf_update_due;
|
| + }
|
| +}
|
| +
|
| +
|
| +void vp9_update_rate_correction_factors(VP9_COMP *cpi, int damp_var) {
|
| + int Q = cpi->common.base_qindex;
|
| + int correction_factor = 100;
|
| + double rate_correction_factor;
|
| + double adjustment_limit;
|
| +
|
| + int projected_size_based_on_q = 0;
|
| +
|
| + // Clear down mmx registers to allow floating point in what follows
|
| + vp9_clear_system_state(); // __asm emms;
|
| +
|
| + if (cpi->common.frame_type == KEY_FRAME) {
|
| + rate_correction_factor = cpi->key_frame_rate_correction_factor;
|
| + } else {
|
| + if (cpi->common.refresh_alt_ref_frame || cpi->common.refresh_golden_frame)
|
| + rate_correction_factor = cpi->gf_rate_correction_factor;
|
| + else
|
| + rate_correction_factor = cpi->rate_correction_factor;
|
| + }
|
| +
|
| + // Work out how big we would have expected the frame to be at this Q given the current correction factor.
|
| + // Stay in double to avoid int overflow when values are large
|
| + projected_size_based_on_q =
|
| + (int)(((.5 + rate_correction_factor *
|
| + vp9_bits_per_mb(cpi->common.frame_type, Q)) *
|
| + cpi->common.MBs) / (1 << BPER_MB_NORMBITS));
|
| +
|
| + // Make some allowance for cpi->zbin_over_quant
|
| + if (cpi->zbin_over_quant > 0) {
|
| + int Z = cpi->zbin_over_quant;
|
| + double Factor = 0.99;
|
| + double factor_adjustment = 0.01 / 256.0; // (double)ZBIN_OQ_MAX;
|
| +
|
| + while (Z > 0) {
|
| + Z--;
|
| + projected_size_based_on_q =
|
| + (int)(Factor * projected_size_based_on_q);
|
| + Factor += factor_adjustment;
|
| +
|
| + if (Factor >= 0.999)
|
| + Factor = 0.999;
|
| + }
|
| + }
|
| +
|
| + // Work out a size correction factor.
|
| + // if ( cpi->this_frame_target > 0 )
|
| + // correction_factor = (100 * cpi->projected_frame_size) / cpi->this_frame_target;
|
| + if (projected_size_based_on_q > 0)
|
| + correction_factor = (100 * cpi->projected_frame_size) / projected_size_based_on_q;
|
| +
|
| + // More heavily damped adjustment used if we have been oscillating either side of target
|
| + switch (damp_var) {
|
| + case 0:
|
| + adjustment_limit = 0.75;
|
| + break;
|
| + case 1:
|
| + adjustment_limit = 0.375;
|
| + break;
|
| + case 2:
|
| + default:
|
| + adjustment_limit = 0.25;
|
| + break;
|
| + }
|
| +
|
| + // if ( (correction_factor > 102) && (Q < cpi->active_worst_quality) )
|
| + if (correction_factor > 102) {
|
| + // We are not already at the worst allowable quality
|
| + correction_factor = (int)(100.5 + ((correction_factor - 100) * adjustment_limit));
|
| + rate_correction_factor = ((rate_correction_factor * correction_factor) / 100);
|
| +
|
| + // Keep rate_correction_factor within limits
|
| + if (rate_correction_factor > MAX_BPB_FACTOR)
|
| + rate_correction_factor = MAX_BPB_FACTOR;
|
| + }
|
| + // else if ( (correction_factor < 99) && (Q > cpi->active_best_quality) )
|
| + else if (correction_factor < 99) {
|
| + // We are not already at the best allowable quality
|
| + correction_factor = (int)(100.5 - ((100 - correction_factor) * adjustment_limit));
|
| + rate_correction_factor = ((rate_correction_factor * correction_factor) / 100);
|
| +
|
| + // Keep rate_correction_factor within limits
|
| + if (rate_correction_factor < MIN_BPB_FACTOR)
|
| + rate_correction_factor = MIN_BPB_FACTOR;
|
| + }
|
| +
|
| + if (cpi->common.frame_type == KEY_FRAME)
|
| + cpi->key_frame_rate_correction_factor = rate_correction_factor;
|
| + else {
|
| + if (cpi->common.refresh_alt_ref_frame || cpi->common.refresh_golden_frame)
|
| + cpi->gf_rate_correction_factor = rate_correction_factor;
|
| + else
|
| + cpi->rate_correction_factor = rate_correction_factor;
|
| + }
|
| +}
|
| +
|
| +
|
| +int vp9_regulate_q(VP9_COMP *cpi, int target_bits_per_frame) {
|
| + int Q = cpi->active_worst_quality;
|
| +
|
| + int i;
|
| + int last_error = INT_MAX;
|
| + int target_bits_per_mb;
|
| + int bits_per_mb_at_this_q;
|
| + double correction_factor;
|
| +
|
| + // Reset Zbin OQ value
|
| + cpi->zbin_over_quant = 0;
|
| +
|
| + // Select the appropriate correction factor based upon type of frame.
|
| + if (cpi->common.frame_type == KEY_FRAME)
|
| + correction_factor = cpi->key_frame_rate_correction_factor;
|
| + else {
|
| + if (cpi->common.refresh_alt_ref_frame || cpi->common.refresh_golden_frame)
|
| + correction_factor = cpi->gf_rate_correction_factor;
|
| + else
|
| + correction_factor = cpi->rate_correction_factor;
|
| + }
|
| +
|
| + // Calculate required scaling factor based on target frame size and size of frame produced using previous Q
|
| + if (target_bits_per_frame >= (INT_MAX >> BPER_MB_NORMBITS))
|
| + target_bits_per_mb = (target_bits_per_frame / cpi->common.MBs) << BPER_MB_NORMBITS; // Case where we would overflow int
|
| + else
|
| + target_bits_per_mb = (target_bits_per_frame << BPER_MB_NORMBITS) / cpi->common.MBs;
|
| +
|
| + i = cpi->active_best_quality;
|
| +
|
| + do {
|
| + bits_per_mb_at_this_q =
|
| + (int)(.5 + correction_factor *
|
| + vp9_bits_per_mb(cpi->common.frame_type, i));
|
| +
|
| + if (bits_per_mb_at_this_q <= target_bits_per_mb) {
|
| + if ((target_bits_per_mb - bits_per_mb_at_this_q) <= last_error)
|
| + Q = i;
|
| + else
|
| + Q = i - 1;
|
| +
|
| + break;
|
| + } else
|
| + last_error = bits_per_mb_at_this_q - target_bits_per_mb;
|
| + } while (++i <= cpi->active_worst_quality);
|
| +
|
| +
|
| + // If we are at MAXQ then enable Q over-run which seeks to claw back additional bits through things like
|
| + // the RD multiplier and zero bin size.
|
| + if (Q >= MAXQ) {
|
| + int zbin_oqmax;
|
| +
|
| + double Factor = 0.99;
|
| + double factor_adjustment = 0.01 / 256.0; // (double)ZBIN_OQ_MAX;
|
| +
|
| + if (cpi->common.frame_type == KEY_FRAME)
|
| + zbin_oqmax = 0; // ZBIN_OQ_MAX/16
|
| + else if (cpi->common.refresh_alt_ref_frame || (cpi->common.refresh_golden_frame && !cpi->source_alt_ref_active))
|
| + zbin_oqmax = 16;
|
| + else
|
| + zbin_oqmax = ZBIN_OQ_MAX;
|
| +
|
| + // Each incrment in the zbin is assumed to have a fixed effect on bitrate. This is not of course true.
|
| + // The effect will be highly clip dependent and may well have sudden steps.
|
| + // The idea here is to acheive higher effective quantizers than the normal maximum by expanding the zero
|
| + // bin and hence decreasing the number of low magnitude non zero coefficients.
|
| + while (cpi->zbin_over_quant < zbin_oqmax) {
|
| + cpi->zbin_over_quant++;
|
| +
|
| + if (cpi->zbin_over_quant > zbin_oqmax)
|
| + cpi->zbin_over_quant = zbin_oqmax;
|
| +
|
| + // Adjust bits_per_mb_at_this_q estimate
|
| + bits_per_mb_at_this_q = (int)(Factor * bits_per_mb_at_this_q);
|
| + Factor += factor_adjustment;
|
| +
|
| + if (Factor >= 0.999)
|
| + Factor = 0.999;
|
| +
|
| + if (bits_per_mb_at_this_q <= target_bits_per_mb) // Break out if we get down to the target rate
|
| + break;
|
| + }
|
| +
|
| + }
|
| +
|
| + return Q;
|
| +}
|
| +
|
| +
|
| +static int estimate_keyframe_frequency(VP9_COMP *cpi) {
|
| + int i;
|
| +
|
| + // Average key frame frequency
|
| + int av_key_frame_frequency = 0;
|
| +
|
| + /* First key frame at start of sequence is a special case. We have no
|
| + * frequency data.
|
| + */
|
| + if (cpi->key_frame_count == 1) {
|
| + /* Assume a default of 1 kf every 2 seconds, or the max kf interval,
|
| + * whichever is smaller.
|
| + */
|
| + int key_freq = cpi->oxcf.key_freq > 0 ? cpi->oxcf.key_freq : 1;
|
| + av_key_frame_frequency = (int)cpi->output_frame_rate * 2;
|
| +
|
| + if (cpi->oxcf.auto_key && av_key_frame_frequency > key_freq)
|
| + av_key_frame_frequency = cpi->oxcf.key_freq;
|
| +
|
| + cpi->prior_key_frame_distance[KEY_FRAME_CONTEXT - 1]
|
| + = av_key_frame_frequency;
|
| + } else {
|
| + unsigned int total_weight = 0;
|
| + int last_kf_interval =
|
| + (cpi->frames_since_key > 0) ? cpi->frames_since_key : 1;
|
| +
|
| + /* reset keyframe context and calculate weighted average of last
|
| + * KEY_FRAME_CONTEXT keyframes
|
| + */
|
| + for (i = 0; i < KEY_FRAME_CONTEXT; i++) {
|
| + if (i < KEY_FRAME_CONTEXT - 1)
|
| + cpi->prior_key_frame_distance[i]
|
| + = cpi->prior_key_frame_distance[i + 1];
|
| + else
|
| + cpi->prior_key_frame_distance[i] = last_kf_interval;
|
| +
|
| + av_key_frame_frequency += prior_key_frame_weight[i]
|
| + * cpi->prior_key_frame_distance[i];
|
| + total_weight += prior_key_frame_weight[i];
|
| + }
|
| +
|
| + av_key_frame_frequency /= total_weight;
|
| +
|
| + }
|
| + return av_key_frame_frequency;
|
| +}
|
| +
|
| +
|
| +void vp9_adjust_key_frame_context(VP9_COMP *cpi) {
|
| + // Clear down mmx registers to allow floating point in what follows
|
| + vp9_clear_system_state();
|
| +
|
| + cpi->frames_since_key = 0;
|
| + cpi->key_frame_count++;
|
| +}
|
| +
|
| +
|
| +void vp9_compute_frame_size_bounds(VP9_COMP *cpi, int *frame_under_shoot_limit,
|
| + int *frame_over_shoot_limit) {
|
| + // Set-up bounds on acceptable frame size:
|
| + if (cpi->oxcf.fixed_q >= 0) {
|
| + // Fixed Q scenario: frame size never outranges target (there is no target!)
|
| + *frame_under_shoot_limit = 0;
|
| + *frame_over_shoot_limit = INT_MAX;
|
| + } else {
|
| + if (cpi->common.frame_type == KEY_FRAME) {
|
| + *frame_over_shoot_limit = cpi->this_frame_target * 9 / 8;
|
| + *frame_under_shoot_limit = cpi->this_frame_target * 7 / 8;
|
| + } else {
|
| + if (cpi->common.refresh_alt_ref_frame || cpi->common.refresh_golden_frame) {
|
| + *frame_over_shoot_limit = cpi->this_frame_target * 9 / 8;
|
| + *frame_under_shoot_limit = cpi->this_frame_target * 7 / 8;
|
| + } else {
|
| + // Stron overshoot limit for constrained quality
|
| + if (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) {
|
| + *frame_over_shoot_limit = cpi->this_frame_target * 11 / 8;
|
| + *frame_under_shoot_limit = cpi->this_frame_target * 2 / 8;
|
| + } else {
|
| + *frame_over_shoot_limit = cpi->this_frame_target * 11 / 8;
|
| + *frame_under_shoot_limit = cpi->this_frame_target * 5 / 8;
|
| + }
|
| + }
|
| + }
|
| +
|
| + // For very small rate targets where the fractional adjustment
|
| + // (eg * 7/8) may be tiny make sure there is at least a minimum
|
| + // range.
|
| + *frame_over_shoot_limit += 200;
|
| + *frame_under_shoot_limit -= 200;
|
| + if (*frame_under_shoot_limit < 0)
|
| + *frame_under_shoot_limit = 0;
|
| + }
|
| +}
|
| +
|
| +
|
| +// return of 0 means drop frame
|
| +int vp9_pick_frame_size(VP9_COMP *cpi) {
|
| + VP9_COMMON *cm = &cpi->common;
|
| +
|
| + if (cm->frame_type == KEY_FRAME)
|
| + calc_iframe_target_size(cpi);
|
| + else
|
| + calc_pframe_target_size(cpi);
|
| +
|
| + return 1;
|
| +}
|
|
|
| Property changes on: source/libvpx/vp9/encoder/vp9_ratectrl.c
|
| ___________________________________________________________________
|
| Added: svn:eol-style
|
| + LF
|
|
|
|
|