Index: source/libvpx/vp9/encoder/vp9_ratectrl.c |
=================================================================== |
--- source/libvpx/vp9/encoder/vp9_ratectrl.c (revision 0) |
+++ source/libvpx/vp9/encoder/vp9_ratectrl.c (revision 0) |
@@ -0,0 +1,699 @@ |
+/* |
+ * Copyright (c) 2010 The WebM project authors. All Rights Reserved. |
+ * |
+ * Use of this source code is governed by a BSD-style license |
+ * that can be found in the LICENSE file in the root of the source |
+ * tree. An additional intellectual property rights grant can be found |
+ * in the file PATENTS. All contributing project authors may |
+ * be found in the AUTHORS file in the root of the source tree. |
+ */ |
+ |
+ |
+#include <stdlib.h> |
+#include <stdio.h> |
+#include <string.h> |
+#include <limits.h> |
+#include <assert.h> |
+ |
+#include "math.h" |
+#include "vp9/common/vp9_alloccommon.h" |
+#include "vp9/common/vp9_modecont.h" |
+#include "vp9/common/vp9_common.h" |
+#include "vp9/encoder/vp9_ratectrl.h" |
+#include "vp9/common/vp9_entropymode.h" |
+#include "vpx_mem/vpx_mem.h" |
+#include "vp9/common/vp9_systemdependent.h" |
+#include "vp9/encoder/vp9_encodemv.h" |
+#include "vp9/common/vp9_quant_common.h" |
+ |
+#define MIN_BPB_FACTOR 0.005 |
+#define MAX_BPB_FACTOR 50 |
+ |
+#ifdef MODE_STATS |
+extern unsigned int y_modes[VP9_YMODES]; |
+extern unsigned int uv_modes[VP9_UV_MODES]; |
+extern unsigned int b_modes[B_MODE_COUNT]; |
+ |
+extern unsigned int inter_y_modes[MB_MODE_COUNT]; |
+extern unsigned int inter_uv_modes[VP9_UV_MODES]; |
+extern unsigned int inter_b_modes[B_MODE_COUNT]; |
+#endif |
+ |
+// Bits Per MB at different Q (Multiplied by 512) |
+#define BPER_MB_NORMBITS 9 |
+ |
+// % adjustment to target kf size based on seperation from previous frame |
+static const int kf_boost_seperation_adjustment[16] = { |
+ 30, 40, 50, 55, 60, 65, 70, 75, |
+ 80, 85, 90, 95, 100, 100, 100, 100, |
+}; |
+ |
+static const int gf_adjust_table[101] = { |
+ 100, |
+ 115, 130, 145, 160, 175, 190, 200, 210, 220, 230, |
+ 240, 260, 270, 280, 290, 300, 310, 320, 330, 340, |
+ 350, 360, 370, 380, 390, 400, 400, 400, 400, 400, |
+ 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, |
+ 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, |
+ 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, |
+ 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, |
+ 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, |
+ 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, |
+ 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, |
+}; |
+ |
+static const int gf_intra_usage_adjustment[20] = { |
+ 125, 120, 115, 110, 105, 100, 95, 85, 80, 75, |
+ 70, 65, 60, 55, 50, 50, 50, 50, 50, 50, |
+}; |
+ |
+static const int gf_interval_table[101] = { |
+ 7, |
+ 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, |
+ 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, |
+ 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, |
+ 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, |
+ 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, |
+ 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, |
+ 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, |
+ 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, |
+ 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, |
+ 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, |
+}; |
+ |
+static const unsigned int prior_key_frame_weight[KEY_FRAME_CONTEXT] = { 1, 2, 3, 4, 5 }; |
+ |
+// These functions use formulaic calculations to make playing with the |
+// quantizer tables easier. If necessary they can be replaced by lookup |
+// tables if and when things settle down in the experimental bitstream |
+double vp9_convert_qindex_to_q(int qindex) { |
+ // Convert the index to a real Q value (scaled down to match old Q values) |
+ return (double)vp9_ac_yquant(qindex) / 4.0; |
+} |
+ |
+int vp9_gfboost_qadjust(int qindex) { |
+ int retval; |
+ double q; |
+ |
+ q = vp9_convert_qindex_to_q(qindex); |
+ retval = (int)((0.00000828 * q * q * q) + |
+ (-0.0055 * q * q) + |
+ (1.32 * q) + 79.3); |
+ return retval; |
+} |
+ |
+static int kfboost_qadjust(int qindex) { |
+ int retval; |
+ double q; |
+ |
+ q = vp9_convert_qindex_to_q(qindex); |
+ retval = (int)((0.00000973 * q * q * q) + |
+ (-0.00613 * q * q) + |
+ (1.316 * q) + 121.2); |
+ return retval; |
+} |
+ |
+int vp9_bits_per_mb(FRAME_TYPE frame_type, int qindex) { |
+ if (frame_type == KEY_FRAME) |
+ return (int)(4500000 / vp9_convert_qindex_to_q(qindex)); |
+ else |
+ return (int)(2850000 / vp9_convert_qindex_to_q(qindex)); |
+} |
+ |
+ |
+void vp9_save_coding_context(VP9_COMP *cpi) { |
+ CODING_CONTEXT *const cc = &cpi->coding_context; |
+ VP9_COMMON *cm = &cpi->common; |
+ MACROBLOCKD *xd = &cpi->mb.e_mbd; |
+ |
+ // Stores a snapshot of key state variables which can subsequently be |
+ // restored with a call to vp9_restore_coding_context. These functions are |
+ // intended for use in a re-code loop in vp9_compress_frame where the |
+ // quantizer value is adjusted between loop iterations. |
+ |
+ cc->nmvc = cm->fc.nmvc; |
+ vp9_copy(cc->nmvjointcost, cpi->mb.nmvjointcost); |
+ vp9_copy(cc->nmvcosts, cpi->mb.nmvcosts); |
+ vp9_copy(cc->nmvcosts_hp, cpi->mb.nmvcosts_hp); |
+ |
+ vp9_copy(cc->vp9_mode_contexts, cm->fc.vp9_mode_contexts); |
+ |
+ vp9_copy(cc->ymode_prob, cm->fc.ymode_prob); |
+#if CONFIG_SUPERBLOCKS |
+ vp9_copy(cc->sb_ymode_prob, cm->fc.sb_ymode_prob); |
+#endif |
+ vp9_copy(cc->bmode_prob, cm->fc.bmode_prob); |
+ vp9_copy(cc->uv_mode_prob, cm->fc.uv_mode_prob); |
+ vp9_copy(cc->i8x8_mode_prob, cm->fc.i8x8_mode_prob); |
+ vp9_copy(cc->sub_mv_ref_prob, cm->fc.sub_mv_ref_prob); |
+ vp9_copy(cc->mbsplit_prob, cm->fc.mbsplit_prob); |
+ |
+ // Stats |
+#ifdef MODE_STATS |
+ vp9_copy(cc->y_modes, y_modes); |
+ vp9_copy(cc->uv_modes, uv_modes); |
+ vp9_copy(cc->b_modes, b_modes); |
+ vp9_copy(cc->inter_y_modes, inter_y_modes); |
+ vp9_copy(cc->inter_uv_modes, inter_uv_modes); |
+ vp9_copy(cc->inter_b_modes, inter_b_modes); |
+#endif |
+ |
+ vp9_copy(cc->segment_pred_probs, cm->segment_pred_probs); |
+ vp9_copy(cc->ref_pred_probs_update, cpi->ref_pred_probs_update); |
+ vp9_copy(cc->ref_pred_probs, cm->ref_pred_probs); |
+ vp9_copy(cc->prob_comppred, cm->prob_comppred); |
+ |
+ vpx_memcpy(cpi->coding_context.last_frame_seg_map_copy, |
+ cm->last_frame_seg_map, (cm->mb_rows * cm->mb_cols)); |
+ |
+ vp9_copy(cc->last_ref_lf_deltas, xd->last_ref_lf_deltas); |
+ vp9_copy(cc->last_mode_lf_deltas, xd->last_mode_lf_deltas); |
+ |
+ vp9_copy(cc->coef_probs, cm->fc.coef_probs); |
+ vp9_copy(cc->hybrid_coef_probs, cm->fc.hybrid_coef_probs); |
+ vp9_copy(cc->coef_probs_8x8, cm->fc.coef_probs_8x8); |
+ vp9_copy(cc->hybrid_coef_probs_8x8, cm->fc.hybrid_coef_probs_8x8); |
+ vp9_copy(cc->coef_probs_16x16, cm->fc.coef_probs_16x16); |
+ vp9_copy(cc->hybrid_coef_probs_16x16, cm->fc.hybrid_coef_probs_16x16); |
+ vp9_copy(cc->switchable_interp_prob, cm->fc.switchable_interp_prob); |
+#if CONFIG_COMP_INTERINTRA_PRED |
+ cc->interintra_prob = cm->fc.interintra_prob; |
+#endif |
+} |
+ |
+void vp9_restore_coding_context(VP9_COMP *cpi) { |
+ CODING_CONTEXT *const cc = &cpi->coding_context; |
+ VP9_COMMON *cm = &cpi->common; |
+ MACROBLOCKD *xd = &cpi->mb.e_mbd; |
+ |
+ // Restore key state variables to the snapshot state stored in the |
+ // previous call to vp9_save_coding_context. |
+ |
+ cm->fc.nmvc = cc->nmvc; |
+ vp9_copy(cpi->mb.nmvjointcost, cc->nmvjointcost); |
+ vp9_copy(cpi->mb.nmvcosts, cc->nmvcosts); |
+ vp9_copy(cpi->mb.nmvcosts_hp, cc->nmvcosts_hp); |
+ |
+ vp9_copy(cm->fc.vp9_mode_contexts, cc->vp9_mode_contexts); |
+ |
+ vp9_copy(cm->fc.ymode_prob, cc->ymode_prob); |
+#if CONFIG_SUPERBLOCKS |
+ vp9_copy(cm->fc.sb_ymode_prob, cc->sb_ymode_prob); |
+#endif |
+ vp9_copy(cm->fc.bmode_prob, cc->bmode_prob); |
+ vp9_copy(cm->fc.i8x8_mode_prob, cc->i8x8_mode_prob); |
+ vp9_copy(cm->fc.uv_mode_prob, cc->uv_mode_prob); |
+ vp9_copy(cm->fc.sub_mv_ref_prob, cc->sub_mv_ref_prob); |
+ vp9_copy(cm->fc.mbsplit_prob, cc->mbsplit_prob); |
+ |
+ // Stats |
+#ifdef MODE_STATS |
+ vp9_copy(y_modes, cc->y_modes); |
+ vp9_copy(uv_modes, cc->uv_modes); |
+ vp9_copy(b_modes, cc->b_modes); |
+ vp9_copy(inter_y_modes, cc->inter_y_modes); |
+ vp9_copy(inter_uv_modes, cc->inter_uv_modes); |
+ vp9_copy(inter_b_modes, cc->inter_b_modes); |
+#endif |
+ |
+ vp9_copy(cm->segment_pred_probs, cc->segment_pred_probs); |
+ vp9_copy(cpi->ref_pred_probs_update, cc->ref_pred_probs_update); |
+ vp9_copy(cm->ref_pred_probs, cc->ref_pred_probs); |
+ vp9_copy(cm->prob_comppred, cc->prob_comppred); |
+ |
+ vpx_memcpy(cm->last_frame_seg_map, |
+ cpi->coding_context.last_frame_seg_map_copy, |
+ (cm->mb_rows * cm->mb_cols)); |
+ |
+ vp9_copy(xd->last_ref_lf_deltas, cc->last_ref_lf_deltas); |
+ vp9_copy(xd->last_mode_lf_deltas, cc->last_mode_lf_deltas); |
+ |
+ vp9_copy(cm->fc.coef_probs, cc->coef_probs); |
+ vp9_copy(cm->fc.hybrid_coef_probs, cc->hybrid_coef_probs); |
+ vp9_copy(cm->fc.coef_probs_8x8, cc->coef_probs_8x8); |
+ vp9_copy(cm->fc.hybrid_coef_probs_8x8, cc->hybrid_coef_probs_8x8); |
+ vp9_copy(cm->fc.coef_probs_16x16, cc->coef_probs_16x16); |
+ vp9_copy(cm->fc.hybrid_coef_probs_16x16, cc->hybrid_coef_probs_16x16); |
+ vp9_copy(cm->fc.switchable_interp_prob, cc->switchable_interp_prob); |
+#if CONFIG_COMP_INTERINTRA_PRED |
+ cm->fc.interintra_prob = cc->interintra_prob; |
+#endif |
+} |
+ |
+ |
+void vp9_setup_key_frame(VP9_COMP *cpi) { |
+ VP9_COMMON *cm = &cpi->common; |
+ // Setup for Key frame: |
+ vp9_default_coef_probs(& cpi->common); |
+ vp9_kf_default_bmode_probs(cpi->common.kf_bmode_prob); |
+ vp9_init_mbmode_probs(& cpi->common); |
+ vp9_default_bmode_probs(cm->fc.bmode_prob); |
+ |
+ vp9_init_mv_probs(& cpi->common); |
+ |
+ // cpi->common.filter_level = 0; // Reset every key frame. |
+ cpi->common.filter_level = cpi->common.base_qindex * 3 / 8; |
+ |
+ // interval before next GF |
+ cpi->frames_till_gf_update_due = cpi->baseline_gf_interval; |
+ |
+ cpi->common.refresh_golden_frame = TRUE; |
+ cpi->common.refresh_alt_ref_frame = TRUE; |
+ |
+ vp9_init_mode_contexts(&cpi->common); |
+ vpx_memcpy(&cpi->common.lfc, &cpi->common.fc, sizeof(cpi->common.fc)); |
+ vpx_memcpy(&cpi->common.lfc_a, &cpi->common.fc, sizeof(cpi->common.fc)); |
+ |
+ vpx_memset(cm->prev_mip, 0, |
+ (cm->mb_cols + 1) * (cm->mb_rows + 1)* sizeof(MODE_INFO)); |
+ vpx_memset(cm->mip, 0, |
+ (cm->mb_cols + 1) * (cm->mb_rows + 1)* sizeof(MODE_INFO)); |
+ |
+ vp9_update_mode_info_border(cm, cm->mip); |
+ vp9_update_mode_info_in_image(cm, cm->mi); |
+} |
+ |
+void vp9_setup_inter_frame(VP9_COMP *cpi) { |
+ if (cpi->common.refresh_alt_ref_frame) { |
+ vpx_memcpy(&cpi->common.fc, |
+ &cpi->common.lfc_a, |
+ sizeof(cpi->common.fc)); |
+ } else { |
+ vpx_memcpy(&cpi->common.fc, |
+ &cpi->common.lfc, |
+ sizeof(cpi->common.fc)); |
+ } |
+} |
+ |
+ |
+static int estimate_bits_at_q(int frame_kind, int Q, int MBs, |
+ double correction_factor) { |
+ int Bpm = (int)(.5 + correction_factor * vp9_bits_per_mb(frame_kind, Q)); |
+ |
+ /* Attempt to retain reasonable accuracy without overflow. The cutoff is |
+ * chosen such that the maximum product of Bpm and MBs fits 31 bits. The |
+ * largest Bpm takes 20 bits. |
+ */ |
+ if (MBs > (1 << 11)) |
+ return (Bpm >> BPER_MB_NORMBITS) * MBs; |
+ else |
+ return (Bpm * MBs) >> BPER_MB_NORMBITS; |
+} |
+ |
+ |
+static void calc_iframe_target_size(VP9_COMP *cpi) { |
+ // boost defaults to half second |
+ int target; |
+ |
+ // Clear down mmx registers to allow floating point in what follows |
+ vp9_clear_system_state(); // __asm emms; |
+ |
+ // New Two pass RC |
+ target = cpi->per_frame_bandwidth; |
+ |
+ if (cpi->oxcf.rc_max_intra_bitrate_pct) { |
+ int max_rate = cpi->per_frame_bandwidth |
+ * cpi->oxcf.rc_max_intra_bitrate_pct / 100; |
+ |
+ if (target > max_rate) |
+ target = max_rate; |
+ } |
+ |
+ cpi->this_frame_target = target; |
+ |
+} |
+ |
+ |
+// Do the best we can to define the parameteres for the next GF based |
+// on what information we have available. |
+// |
+// In this experimental code only two pass is supported |
+// so we just use the interval determined in the two pass code. |
+static void calc_gf_params(VP9_COMP *cpi) { |
+ // Set the gf interval |
+ cpi->frames_till_gf_update_due = cpi->baseline_gf_interval; |
+} |
+ |
+ |
+static void calc_pframe_target_size(VP9_COMP *cpi) { |
+ int min_frame_target; |
+ |
+ min_frame_target = 0; |
+ |
+ min_frame_target = cpi->min_frame_bandwidth; |
+ |
+ if (min_frame_target < (cpi->av_per_frame_bandwidth >> 5)) |
+ min_frame_target = cpi->av_per_frame_bandwidth >> 5; |
+ |
+ |
+ // Special alt reference frame case |
+ if (cpi->common.refresh_alt_ref_frame) { |
+ // Per frame bit target for the alt ref frame |
+ cpi->per_frame_bandwidth = cpi->twopass.gf_bits; |
+ cpi->this_frame_target = cpi->per_frame_bandwidth; |
+ } |
+ |
+ // Normal frames (gf,and inter) |
+ else { |
+ cpi->this_frame_target = cpi->per_frame_bandwidth; |
+ } |
+ |
+ // Sanity check that the total sum of adjustments is not above the maximum allowed |
+ // That is that having allowed for KF and GF penalties we have not pushed the |
+ // current interframe target to low. If the adjustment we apply here is not capable of recovering |
+ // all the extra bits we have spent in the KF or GF then the remainder will have to be recovered over |
+ // a longer time span via other buffer / rate control mechanisms. |
+ if (cpi->this_frame_target < min_frame_target) |
+ cpi->this_frame_target = min_frame_target; |
+ |
+ if (!cpi->common.refresh_alt_ref_frame) |
+ // Note the baseline target data rate for this inter frame. |
+ cpi->inter_frame_target = cpi->this_frame_target; |
+ |
+ // Adjust target frame size for Golden Frames: |
+ if (cpi->frames_till_gf_update_due == 0) { |
+ // int Boost = 0; |
+ int Q = (cpi->oxcf.fixed_q < 0) ? cpi->last_q[INTER_FRAME] : cpi->oxcf.fixed_q; |
+ |
+ cpi->common.refresh_golden_frame = TRUE; |
+ |
+ calc_gf_params(cpi); |
+ |
+ // If we are using alternate ref instead of gf then do not apply the boost |
+ // It will instead be applied to the altref update |
+ // Jims modified boost |
+ if (!cpi->source_alt_ref_active) { |
+ if (cpi->oxcf.fixed_q < 0) { |
+ // The spend on the GF is defined in the two pass code |
+ // for two pass encodes |
+ cpi->this_frame_target = cpi->per_frame_bandwidth; |
+ } else |
+ cpi->this_frame_target = |
+ (estimate_bits_at_q(1, Q, cpi->common.MBs, 1.0) |
+ * cpi->last_boost) / 100; |
+ |
+ } |
+ // If there is an active ARF at this location use the minimum |
+ // bits on this frame even if it is a contructed arf. |
+ // The active maximum quantizer insures that an appropriate |
+ // number of bits will be spent if needed for contstructed ARFs. |
+ else { |
+ cpi->this_frame_target = 0; |
+ } |
+ |
+ cpi->current_gf_interval = cpi->frames_till_gf_update_due; |
+ } |
+} |
+ |
+ |
+void vp9_update_rate_correction_factors(VP9_COMP *cpi, int damp_var) { |
+ int Q = cpi->common.base_qindex; |
+ int correction_factor = 100; |
+ double rate_correction_factor; |
+ double adjustment_limit; |
+ |
+ int projected_size_based_on_q = 0; |
+ |
+ // Clear down mmx registers to allow floating point in what follows |
+ vp9_clear_system_state(); // __asm emms; |
+ |
+ if (cpi->common.frame_type == KEY_FRAME) { |
+ rate_correction_factor = cpi->key_frame_rate_correction_factor; |
+ } else { |
+ if (cpi->common.refresh_alt_ref_frame || cpi->common.refresh_golden_frame) |
+ rate_correction_factor = cpi->gf_rate_correction_factor; |
+ else |
+ rate_correction_factor = cpi->rate_correction_factor; |
+ } |
+ |
+ // Work out how big we would have expected the frame to be at this Q given the current correction factor. |
+ // Stay in double to avoid int overflow when values are large |
+ projected_size_based_on_q = |
+ (int)(((.5 + rate_correction_factor * |
+ vp9_bits_per_mb(cpi->common.frame_type, Q)) * |
+ cpi->common.MBs) / (1 << BPER_MB_NORMBITS)); |
+ |
+ // Make some allowance for cpi->zbin_over_quant |
+ if (cpi->zbin_over_quant > 0) { |
+ int Z = cpi->zbin_over_quant; |
+ double Factor = 0.99; |
+ double factor_adjustment = 0.01 / 256.0; // (double)ZBIN_OQ_MAX; |
+ |
+ while (Z > 0) { |
+ Z--; |
+ projected_size_based_on_q = |
+ (int)(Factor * projected_size_based_on_q); |
+ Factor += factor_adjustment; |
+ |
+ if (Factor >= 0.999) |
+ Factor = 0.999; |
+ } |
+ } |
+ |
+ // Work out a size correction factor. |
+ // if ( cpi->this_frame_target > 0 ) |
+ // correction_factor = (100 * cpi->projected_frame_size) / cpi->this_frame_target; |
+ if (projected_size_based_on_q > 0) |
+ correction_factor = (100 * cpi->projected_frame_size) / projected_size_based_on_q; |
+ |
+ // More heavily damped adjustment used if we have been oscillating either side of target |
+ switch (damp_var) { |
+ case 0: |
+ adjustment_limit = 0.75; |
+ break; |
+ case 1: |
+ adjustment_limit = 0.375; |
+ break; |
+ case 2: |
+ default: |
+ adjustment_limit = 0.25; |
+ break; |
+ } |
+ |
+ // if ( (correction_factor > 102) && (Q < cpi->active_worst_quality) ) |
+ if (correction_factor > 102) { |
+ // We are not already at the worst allowable quality |
+ correction_factor = (int)(100.5 + ((correction_factor - 100) * adjustment_limit)); |
+ rate_correction_factor = ((rate_correction_factor * correction_factor) / 100); |
+ |
+ // Keep rate_correction_factor within limits |
+ if (rate_correction_factor > MAX_BPB_FACTOR) |
+ rate_correction_factor = MAX_BPB_FACTOR; |
+ } |
+ // else if ( (correction_factor < 99) && (Q > cpi->active_best_quality) ) |
+ else if (correction_factor < 99) { |
+ // We are not already at the best allowable quality |
+ correction_factor = (int)(100.5 - ((100 - correction_factor) * adjustment_limit)); |
+ rate_correction_factor = ((rate_correction_factor * correction_factor) / 100); |
+ |
+ // Keep rate_correction_factor within limits |
+ if (rate_correction_factor < MIN_BPB_FACTOR) |
+ rate_correction_factor = MIN_BPB_FACTOR; |
+ } |
+ |
+ if (cpi->common.frame_type == KEY_FRAME) |
+ cpi->key_frame_rate_correction_factor = rate_correction_factor; |
+ else { |
+ if (cpi->common.refresh_alt_ref_frame || cpi->common.refresh_golden_frame) |
+ cpi->gf_rate_correction_factor = rate_correction_factor; |
+ else |
+ cpi->rate_correction_factor = rate_correction_factor; |
+ } |
+} |
+ |
+ |
+int vp9_regulate_q(VP9_COMP *cpi, int target_bits_per_frame) { |
+ int Q = cpi->active_worst_quality; |
+ |
+ int i; |
+ int last_error = INT_MAX; |
+ int target_bits_per_mb; |
+ int bits_per_mb_at_this_q; |
+ double correction_factor; |
+ |
+ // Reset Zbin OQ value |
+ cpi->zbin_over_quant = 0; |
+ |
+ // Select the appropriate correction factor based upon type of frame. |
+ if (cpi->common.frame_type == KEY_FRAME) |
+ correction_factor = cpi->key_frame_rate_correction_factor; |
+ else { |
+ if (cpi->common.refresh_alt_ref_frame || cpi->common.refresh_golden_frame) |
+ correction_factor = cpi->gf_rate_correction_factor; |
+ else |
+ correction_factor = cpi->rate_correction_factor; |
+ } |
+ |
+ // Calculate required scaling factor based on target frame size and size of frame produced using previous Q |
+ if (target_bits_per_frame >= (INT_MAX >> BPER_MB_NORMBITS)) |
+ target_bits_per_mb = (target_bits_per_frame / cpi->common.MBs) << BPER_MB_NORMBITS; // Case where we would overflow int |
+ else |
+ target_bits_per_mb = (target_bits_per_frame << BPER_MB_NORMBITS) / cpi->common.MBs; |
+ |
+ i = cpi->active_best_quality; |
+ |
+ do { |
+ bits_per_mb_at_this_q = |
+ (int)(.5 + correction_factor * |
+ vp9_bits_per_mb(cpi->common.frame_type, i)); |
+ |
+ if (bits_per_mb_at_this_q <= target_bits_per_mb) { |
+ if ((target_bits_per_mb - bits_per_mb_at_this_q) <= last_error) |
+ Q = i; |
+ else |
+ Q = i - 1; |
+ |
+ break; |
+ } else |
+ last_error = bits_per_mb_at_this_q - target_bits_per_mb; |
+ } while (++i <= cpi->active_worst_quality); |
+ |
+ |
+ // If we are at MAXQ then enable Q over-run which seeks to claw back additional bits through things like |
+ // the RD multiplier and zero bin size. |
+ if (Q >= MAXQ) { |
+ int zbin_oqmax; |
+ |
+ double Factor = 0.99; |
+ double factor_adjustment = 0.01 / 256.0; // (double)ZBIN_OQ_MAX; |
+ |
+ if (cpi->common.frame_type == KEY_FRAME) |
+ zbin_oqmax = 0; // ZBIN_OQ_MAX/16 |
+ else if (cpi->common.refresh_alt_ref_frame || (cpi->common.refresh_golden_frame && !cpi->source_alt_ref_active)) |
+ zbin_oqmax = 16; |
+ else |
+ zbin_oqmax = ZBIN_OQ_MAX; |
+ |
+ // Each incrment in the zbin is assumed to have a fixed effect on bitrate. This is not of course true. |
+ // The effect will be highly clip dependent and may well have sudden steps. |
+ // The idea here is to acheive higher effective quantizers than the normal maximum by expanding the zero |
+ // bin and hence decreasing the number of low magnitude non zero coefficients. |
+ while (cpi->zbin_over_quant < zbin_oqmax) { |
+ cpi->zbin_over_quant++; |
+ |
+ if (cpi->zbin_over_quant > zbin_oqmax) |
+ cpi->zbin_over_quant = zbin_oqmax; |
+ |
+ // Adjust bits_per_mb_at_this_q estimate |
+ bits_per_mb_at_this_q = (int)(Factor * bits_per_mb_at_this_q); |
+ Factor += factor_adjustment; |
+ |
+ if (Factor >= 0.999) |
+ Factor = 0.999; |
+ |
+ if (bits_per_mb_at_this_q <= target_bits_per_mb) // Break out if we get down to the target rate |
+ break; |
+ } |
+ |
+ } |
+ |
+ return Q; |
+} |
+ |
+ |
+static int estimate_keyframe_frequency(VP9_COMP *cpi) { |
+ int i; |
+ |
+ // Average key frame frequency |
+ int av_key_frame_frequency = 0; |
+ |
+ /* First key frame at start of sequence is a special case. We have no |
+ * frequency data. |
+ */ |
+ if (cpi->key_frame_count == 1) { |
+ /* Assume a default of 1 kf every 2 seconds, or the max kf interval, |
+ * whichever is smaller. |
+ */ |
+ int key_freq = cpi->oxcf.key_freq > 0 ? cpi->oxcf.key_freq : 1; |
+ av_key_frame_frequency = (int)cpi->output_frame_rate * 2; |
+ |
+ if (cpi->oxcf.auto_key && av_key_frame_frequency > key_freq) |
+ av_key_frame_frequency = cpi->oxcf.key_freq; |
+ |
+ cpi->prior_key_frame_distance[KEY_FRAME_CONTEXT - 1] |
+ = av_key_frame_frequency; |
+ } else { |
+ unsigned int total_weight = 0; |
+ int last_kf_interval = |
+ (cpi->frames_since_key > 0) ? cpi->frames_since_key : 1; |
+ |
+ /* reset keyframe context and calculate weighted average of last |
+ * KEY_FRAME_CONTEXT keyframes |
+ */ |
+ for (i = 0; i < KEY_FRAME_CONTEXT; i++) { |
+ if (i < KEY_FRAME_CONTEXT - 1) |
+ cpi->prior_key_frame_distance[i] |
+ = cpi->prior_key_frame_distance[i + 1]; |
+ else |
+ cpi->prior_key_frame_distance[i] = last_kf_interval; |
+ |
+ av_key_frame_frequency += prior_key_frame_weight[i] |
+ * cpi->prior_key_frame_distance[i]; |
+ total_weight += prior_key_frame_weight[i]; |
+ } |
+ |
+ av_key_frame_frequency /= total_weight; |
+ |
+ } |
+ return av_key_frame_frequency; |
+} |
+ |
+ |
+void vp9_adjust_key_frame_context(VP9_COMP *cpi) { |
+ // Clear down mmx registers to allow floating point in what follows |
+ vp9_clear_system_state(); |
+ |
+ cpi->frames_since_key = 0; |
+ cpi->key_frame_count++; |
+} |
+ |
+ |
+void vp9_compute_frame_size_bounds(VP9_COMP *cpi, int *frame_under_shoot_limit, |
+ int *frame_over_shoot_limit) { |
+ // Set-up bounds on acceptable frame size: |
+ if (cpi->oxcf.fixed_q >= 0) { |
+ // Fixed Q scenario: frame size never outranges target (there is no target!) |
+ *frame_under_shoot_limit = 0; |
+ *frame_over_shoot_limit = INT_MAX; |
+ } else { |
+ if (cpi->common.frame_type == KEY_FRAME) { |
+ *frame_over_shoot_limit = cpi->this_frame_target * 9 / 8; |
+ *frame_under_shoot_limit = cpi->this_frame_target * 7 / 8; |
+ } else { |
+ if (cpi->common.refresh_alt_ref_frame || cpi->common.refresh_golden_frame) { |
+ *frame_over_shoot_limit = cpi->this_frame_target * 9 / 8; |
+ *frame_under_shoot_limit = cpi->this_frame_target * 7 / 8; |
+ } else { |
+ // Stron overshoot limit for constrained quality |
+ if (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) { |
+ *frame_over_shoot_limit = cpi->this_frame_target * 11 / 8; |
+ *frame_under_shoot_limit = cpi->this_frame_target * 2 / 8; |
+ } else { |
+ *frame_over_shoot_limit = cpi->this_frame_target * 11 / 8; |
+ *frame_under_shoot_limit = cpi->this_frame_target * 5 / 8; |
+ } |
+ } |
+ } |
+ |
+ // For very small rate targets where the fractional adjustment |
+ // (eg * 7/8) may be tiny make sure there is at least a minimum |
+ // range. |
+ *frame_over_shoot_limit += 200; |
+ *frame_under_shoot_limit -= 200; |
+ if (*frame_under_shoot_limit < 0) |
+ *frame_under_shoot_limit = 0; |
+ } |
+} |
+ |
+ |
+// return of 0 means drop frame |
+int vp9_pick_frame_size(VP9_COMP *cpi) { |
+ VP9_COMMON *cm = &cpi->common; |
+ |
+ if (cm->frame_type == KEY_FRAME) |
+ calc_iframe_target_size(cpi); |
+ else |
+ calc_pframe_target_size(cpi); |
+ |
+ return 1; |
+} |
Property changes on: source/libvpx/vp9/encoder/vp9_ratectrl.c |
___________________________________________________________________ |
Added: svn:eol-style |
+ LF |