OLD | NEW |
(Empty) | |
| 1 /* |
| 2 * Copyright (c) 2010 The WebM project authors. All Rights Reserved. |
| 3 * |
| 4 * Use of this source code is governed by a BSD-style license |
| 5 * that can be found in the LICENSE file in the root of the source |
| 6 * tree. An additional intellectual property rights grant can be found |
| 7 * in the file PATENTS. All contributing project authors may |
| 8 * be found in the AUTHORS file in the root of the source tree. |
| 9 */ |
| 10 |
| 11 |
| 12 #include <stdlib.h> |
| 13 #include <stdio.h> |
| 14 #include <string.h> |
| 15 #include <limits.h> |
| 16 #include <assert.h> |
| 17 |
| 18 #include "math.h" |
| 19 #include "vp9/common/vp9_alloccommon.h" |
| 20 #include "vp9/common/vp9_modecont.h" |
| 21 #include "vp9/common/vp9_common.h" |
| 22 #include "vp9/encoder/vp9_ratectrl.h" |
| 23 #include "vp9/common/vp9_entropymode.h" |
| 24 #include "vpx_mem/vpx_mem.h" |
| 25 #include "vp9/common/vp9_systemdependent.h" |
| 26 #include "vp9/encoder/vp9_encodemv.h" |
| 27 #include "vp9/common/vp9_quant_common.h" |
| 28 |
| 29 #define MIN_BPB_FACTOR 0.005 |
| 30 #define MAX_BPB_FACTOR 50 |
| 31 |
| 32 #ifdef MODE_STATS |
| 33 extern unsigned int y_modes[VP9_YMODES]; |
| 34 extern unsigned int uv_modes[VP9_UV_MODES]; |
| 35 extern unsigned int b_modes[B_MODE_COUNT]; |
| 36 |
| 37 extern unsigned int inter_y_modes[MB_MODE_COUNT]; |
| 38 extern unsigned int inter_uv_modes[VP9_UV_MODES]; |
| 39 extern unsigned int inter_b_modes[B_MODE_COUNT]; |
| 40 #endif |
| 41 |
| 42 // Bits Per MB at different Q (Multiplied by 512) |
| 43 #define BPER_MB_NORMBITS 9 |
| 44 |
| 45 // % adjustment to target kf size based on seperation from previous frame |
| 46 static const int kf_boost_seperation_adjustment[16] = { |
| 47 30, 40, 50, 55, 60, 65, 70, 75, |
| 48 80, 85, 90, 95, 100, 100, 100, 100, |
| 49 }; |
| 50 |
| 51 static const int gf_adjust_table[101] = { |
| 52 100, |
| 53 115, 130, 145, 160, 175, 190, 200, 210, 220, 230, |
| 54 240, 260, 270, 280, 290, 300, 310, 320, 330, 340, |
| 55 350, 360, 370, 380, 390, 400, 400, 400, 400, 400, |
| 56 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, |
| 57 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, |
| 58 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, |
| 59 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, |
| 60 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, |
| 61 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, |
| 62 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, |
| 63 }; |
| 64 |
| 65 static const int gf_intra_usage_adjustment[20] = { |
| 66 125, 120, 115, 110, 105, 100, 95, 85, 80, 75, |
| 67 70, 65, 60, 55, 50, 50, 50, 50, 50, 50, |
| 68 }; |
| 69 |
| 70 static const int gf_interval_table[101] = { |
| 71 7, |
| 72 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, |
| 73 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, |
| 74 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, |
| 75 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, |
| 76 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, |
| 77 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, |
| 78 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, |
| 79 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, |
| 80 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, |
| 81 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, |
| 82 }; |
| 83 |
| 84 static const unsigned int prior_key_frame_weight[KEY_FRAME_CONTEXT] = { 1, 2, 3,
4, 5 }; |
| 85 |
| 86 // These functions use formulaic calculations to make playing with the |
| 87 // quantizer tables easier. If necessary they can be replaced by lookup |
| 88 // tables if and when things settle down in the experimental bitstream |
| 89 double vp9_convert_qindex_to_q(int qindex) { |
| 90 // Convert the index to a real Q value (scaled down to match old Q values) |
| 91 return (double)vp9_ac_yquant(qindex) / 4.0; |
| 92 } |
| 93 |
| 94 int vp9_gfboost_qadjust(int qindex) { |
| 95 int retval; |
| 96 double q; |
| 97 |
| 98 q = vp9_convert_qindex_to_q(qindex); |
| 99 retval = (int)((0.00000828 * q * q * q) + |
| 100 (-0.0055 * q * q) + |
| 101 (1.32 * q) + 79.3); |
| 102 return retval; |
| 103 } |
| 104 |
| 105 static int kfboost_qadjust(int qindex) { |
| 106 int retval; |
| 107 double q; |
| 108 |
| 109 q = vp9_convert_qindex_to_q(qindex); |
| 110 retval = (int)((0.00000973 * q * q * q) + |
| 111 (-0.00613 * q * q) + |
| 112 (1.316 * q) + 121.2); |
| 113 return retval; |
| 114 } |
| 115 |
| 116 int vp9_bits_per_mb(FRAME_TYPE frame_type, int qindex) { |
| 117 if (frame_type == KEY_FRAME) |
| 118 return (int)(4500000 / vp9_convert_qindex_to_q(qindex)); |
| 119 else |
| 120 return (int)(2850000 / vp9_convert_qindex_to_q(qindex)); |
| 121 } |
| 122 |
| 123 |
| 124 void vp9_save_coding_context(VP9_COMP *cpi) { |
| 125 CODING_CONTEXT *const cc = &cpi->coding_context; |
| 126 VP9_COMMON *cm = &cpi->common; |
| 127 MACROBLOCKD *xd = &cpi->mb.e_mbd; |
| 128 |
| 129 // Stores a snapshot of key state variables which can subsequently be |
| 130 // restored with a call to vp9_restore_coding_context. These functions are |
| 131 // intended for use in a re-code loop in vp9_compress_frame where the |
| 132 // quantizer value is adjusted between loop iterations. |
| 133 |
| 134 cc->nmvc = cm->fc.nmvc; |
| 135 vp9_copy(cc->nmvjointcost, cpi->mb.nmvjointcost); |
| 136 vp9_copy(cc->nmvcosts, cpi->mb.nmvcosts); |
| 137 vp9_copy(cc->nmvcosts_hp, cpi->mb.nmvcosts_hp); |
| 138 |
| 139 vp9_copy(cc->vp9_mode_contexts, cm->fc.vp9_mode_contexts); |
| 140 |
| 141 vp9_copy(cc->ymode_prob, cm->fc.ymode_prob); |
| 142 #if CONFIG_SUPERBLOCKS |
| 143 vp9_copy(cc->sb_ymode_prob, cm->fc.sb_ymode_prob); |
| 144 #endif |
| 145 vp9_copy(cc->bmode_prob, cm->fc.bmode_prob); |
| 146 vp9_copy(cc->uv_mode_prob, cm->fc.uv_mode_prob); |
| 147 vp9_copy(cc->i8x8_mode_prob, cm->fc.i8x8_mode_prob); |
| 148 vp9_copy(cc->sub_mv_ref_prob, cm->fc.sub_mv_ref_prob); |
| 149 vp9_copy(cc->mbsplit_prob, cm->fc.mbsplit_prob); |
| 150 |
| 151 // Stats |
| 152 #ifdef MODE_STATS |
| 153 vp9_copy(cc->y_modes, y_modes); |
| 154 vp9_copy(cc->uv_modes, uv_modes); |
| 155 vp9_copy(cc->b_modes, b_modes); |
| 156 vp9_copy(cc->inter_y_modes, inter_y_modes); |
| 157 vp9_copy(cc->inter_uv_modes, inter_uv_modes); |
| 158 vp9_copy(cc->inter_b_modes, inter_b_modes); |
| 159 #endif |
| 160 |
| 161 vp9_copy(cc->segment_pred_probs, cm->segment_pred_probs); |
| 162 vp9_copy(cc->ref_pred_probs_update, cpi->ref_pred_probs_update); |
| 163 vp9_copy(cc->ref_pred_probs, cm->ref_pred_probs); |
| 164 vp9_copy(cc->prob_comppred, cm->prob_comppred); |
| 165 |
| 166 vpx_memcpy(cpi->coding_context.last_frame_seg_map_copy, |
| 167 cm->last_frame_seg_map, (cm->mb_rows * cm->mb_cols)); |
| 168 |
| 169 vp9_copy(cc->last_ref_lf_deltas, xd->last_ref_lf_deltas); |
| 170 vp9_copy(cc->last_mode_lf_deltas, xd->last_mode_lf_deltas); |
| 171 |
| 172 vp9_copy(cc->coef_probs, cm->fc.coef_probs); |
| 173 vp9_copy(cc->hybrid_coef_probs, cm->fc.hybrid_coef_probs); |
| 174 vp9_copy(cc->coef_probs_8x8, cm->fc.coef_probs_8x8); |
| 175 vp9_copy(cc->hybrid_coef_probs_8x8, cm->fc.hybrid_coef_probs_8x8); |
| 176 vp9_copy(cc->coef_probs_16x16, cm->fc.coef_probs_16x16); |
| 177 vp9_copy(cc->hybrid_coef_probs_16x16, cm->fc.hybrid_coef_probs_16x16); |
| 178 vp9_copy(cc->switchable_interp_prob, cm->fc.switchable_interp_prob); |
| 179 #if CONFIG_COMP_INTERINTRA_PRED |
| 180 cc->interintra_prob = cm->fc.interintra_prob; |
| 181 #endif |
| 182 } |
| 183 |
| 184 void vp9_restore_coding_context(VP9_COMP *cpi) { |
| 185 CODING_CONTEXT *const cc = &cpi->coding_context; |
| 186 VP9_COMMON *cm = &cpi->common; |
| 187 MACROBLOCKD *xd = &cpi->mb.e_mbd; |
| 188 |
| 189 // Restore key state variables to the snapshot state stored in the |
| 190 // previous call to vp9_save_coding_context. |
| 191 |
| 192 cm->fc.nmvc = cc->nmvc; |
| 193 vp9_copy(cpi->mb.nmvjointcost, cc->nmvjointcost); |
| 194 vp9_copy(cpi->mb.nmvcosts, cc->nmvcosts); |
| 195 vp9_copy(cpi->mb.nmvcosts_hp, cc->nmvcosts_hp); |
| 196 |
| 197 vp9_copy(cm->fc.vp9_mode_contexts, cc->vp9_mode_contexts); |
| 198 |
| 199 vp9_copy(cm->fc.ymode_prob, cc->ymode_prob); |
| 200 #if CONFIG_SUPERBLOCKS |
| 201 vp9_copy(cm->fc.sb_ymode_prob, cc->sb_ymode_prob); |
| 202 #endif |
| 203 vp9_copy(cm->fc.bmode_prob, cc->bmode_prob); |
| 204 vp9_copy(cm->fc.i8x8_mode_prob, cc->i8x8_mode_prob); |
| 205 vp9_copy(cm->fc.uv_mode_prob, cc->uv_mode_prob); |
| 206 vp9_copy(cm->fc.sub_mv_ref_prob, cc->sub_mv_ref_prob); |
| 207 vp9_copy(cm->fc.mbsplit_prob, cc->mbsplit_prob); |
| 208 |
| 209 // Stats |
| 210 #ifdef MODE_STATS |
| 211 vp9_copy(y_modes, cc->y_modes); |
| 212 vp9_copy(uv_modes, cc->uv_modes); |
| 213 vp9_copy(b_modes, cc->b_modes); |
| 214 vp9_copy(inter_y_modes, cc->inter_y_modes); |
| 215 vp9_copy(inter_uv_modes, cc->inter_uv_modes); |
| 216 vp9_copy(inter_b_modes, cc->inter_b_modes); |
| 217 #endif |
| 218 |
| 219 vp9_copy(cm->segment_pred_probs, cc->segment_pred_probs); |
| 220 vp9_copy(cpi->ref_pred_probs_update, cc->ref_pred_probs_update); |
| 221 vp9_copy(cm->ref_pred_probs, cc->ref_pred_probs); |
| 222 vp9_copy(cm->prob_comppred, cc->prob_comppred); |
| 223 |
| 224 vpx_memcpy(cm->last_frame_seg_map, |
| 225 cpi->coding_context.last_frame_seg_map_copy, |
| 226 (cm->mb_rows * cm->mb_cols)); |
| 227 |
| 228 vp9_copy(xd->last_ref_lf_deltas, cc->last_ref_lf_deltas); |
| 229 vp9_copy(xd->last_mode_lf_deltas, cc->last_mode_lf_deltas); |
| 230 |
| 231 vp9_copy(cm->fc.coef_probs, cc->coef_probs); |
| 232 vp9_copy(cm->fc.hybrid_coef_probs, cc->hybrid_coef_probs); |
| 233 vp9_copy(cm->fc.coef_probs_8x8, cc->coef_probs_8x8); |
| 234 vp9_copy(cm->fc.hybrid_coef_probs_8x8, cc->hybrid_coef_probs_8x8); |
| 235 vp9_copy(cm->fc.coef_probs_16x16, cc->coef_probs_16x16); |
| 236 vp9_copy(cm->fc.hybrid_coef_probs_16x16, cc->hybrid_coef_probs_16x16); |
| 237 vp9_copy(cm->fc.switchable_interp_prob, cc->switchable_interp_prob); |
| 238 #if CONFIG_COMP_INTERINTRA_PRED |
| 239 cm->fc.interintra_prob = cc->interintra_prob; |
| 240 #endif |
| 241 } |
| 242 |
| 243 |
| 244 void vp9_setup_key_frame(VP9_COMP *cpi) { |
| 245 VP9_COMMON *cm = &cpi->common; |
| 246 // Setup for Key frame: |
| 247 vp9_default_coef_probs(& cpi->common); |
| 248 vp9_kf_default_bmode_probs(cpi->common.kf_bmode_prob); |
| 249 vp9_init_mbmode_probs(& cpi->common); |
| 250 vp9_default_bmode_probs(cm->fc.bmode_prob); |
| 251 |
| 252 vp9_init_mv_probs(& cpi->common); |
| 253 |
| 254 // cpi->common.filter_level = 0; // Reset every key frame. |
| 255 cpi->common.filter_level = cpi->common.base_qindex * 3 / 8; |
| 256 |
| 257 // interval before next GF |
| 258 cpi->frames_till_gf_update_due = cpi->baseline_gf_interval; |
| 259 |
| 260 cpi->common.refresh_golden_frame = TRUE; |
| 261 cpi->common.refresh_alt_ref_frame = TRUE; |
| 262 |
| 263 vp9_init_mode_contexts(&cpi->common); |
| 264 vpx_memcpy(&cpi->common.lfc, &cpi->common.fc, sizeof(cpi->common.fc)); |
| 265 vpx_memcpy(&cpi->common.lfc_a, &cpi->common.fc, sizeof(cpi->common.fc)); |
| 266 |
| 267 vpx_memset(cm->prev_mip, 0, |
| 268 (cm->mb_cols + 1) * (cm->mb_rows + 1)* sizeof(MODE_INFO)); |
| 269 vpx_memset(cm->mip, 0, |
| 270 (cm->mb_cols + 1) * (cm->mb_rows + 1)* sizeof(MODE_INFO)); |
| 271 |
| 272 vp9_update_mode_info_border(cm, cm->mip); |
| 273 vp9_update_mode_info_in_image(cm, cm->mi); |
| 274 } |
| 275 |
| 276 void vp9_setup_inter_frame(VP9_COMP *cpi) { |
| 277 if (cpi->common.refresh_alt_ref_frame) { |
| 278 vpx_memcpy(&cpi->common.fc, |
| 279 &cpi->common.lfc_a, |
| 280 sizeof(cpi->common.fc)); |
| 281 } else { |
| 282 vpx_memcpy(&cpi->common.fc, |
| 283 &cpi->common.lfc, |
| 284 sizeof(cpi->common.fc)); |
| 285 } |
| 286 } |
| 287 |
| 288 |
| 289 static int estimate_bits_at_q(int frame_kind, int Q, int MBs, |
| 290 double correction_factor) { |
| 291 int Bpm = (int)(.5 + correction_factor * vp9_bits_per_mb(frame_kind, Q)); |
| 292 |
| 293 /* Attempt to retain reasonable accuracy without overflow. The cutoff is |
| 294 * chosen such that the maximum product of Bpm and MBs fits 31 bits. The |
| 295 * largest Bpm takes 20 bits. |
| 296 */ |
| 297 if (MBs > (1 << 11)) |
| 298 return (Bpm >> BPER_MB_NORMBITS) * MBs; |
| 299 else |
| 300 return (Bpm * MBs) >> BPER_MB_NORMBITS; |
| 301 } |
| 302 |
| 303 |
| 304 static void calc_iframe_target_size(VP9_COMP *cpi) { |
| 305 // boost defaults to half second |
| 306 int target; |
| 307 |
| 308 // Clear down mmx registers to allow floating point in what follows |
| 309 vp9_clear_system_state(); // __asm emms; |
| 310 |
| 311 // New Two pass RC |
| 312 target = cpi->per_frame_bandwidth; |
| 313 |
| 314 if (cpi->oxcf.rc_max_intra_bitrate_pct) { |
| 315 int max_rate = cpi->per_frame_bandwidth |
| 316 * cpi->oxcf.rc_max_intra_bitrate_pct / 100; |
| 317 |
| 318 if (target > max_rate) |
| 319 target = max_rate; |
| 320 } |
| 321 |
| 322 cpi->this_frame_target = target; |
| 323 |
| 324 } |
| 325 |
| 326 |
| 327 // Do the best we can to define the parameteres for the next GF based |
| 328 // on what information we have available. |
| 329 // |
| 330 // In this experimental code only two pass is supported |
| 331 // so we just use the interval determined in the two pass code. |
| 332 static void calc_gf_params(VP9_COMP *cpi) { |
| 333 // Set the gf interval |
| 334 cpi->frames_till_gf_update_due = cpi->baseline_gf_interval; |
| 335 } |
| 336 |
| 337 |
| 338 static void calc_pframe_target_size(VP9_COMP *cpi) { |
| 339 int min_frame_target; |
| 340 |
| 341 min_frame_target = 0; |
| 342 |
| 343 min_frame_target = cpi->min_frame_bandwidth; |
| 344 |
| 345 if (min_frame_target < (cpi->av_per_frame_bandwidth >> 5)) |
| 346 min_frame_target = cpi->av_per_frame_bandwidth >> 5; |
| 347 |
| 348 |
| 349 // Special alt reference frame case |
| 350 if (cpi->common.refresh_alt_ref_frame) { |
| 351 // Per frame bit target for the alt ref frame |
| 352 cpi->per_frame_bandwidth = cpi->twopass.gf_bits; |
| 353 cpi->this_frame_target = cpi->per_frame_bandwidth; |
| 354 } |
| 355 |
| 356 // Normal frames (gf,and inter) |
| 357 else { |
| 358 cpi->this_frame_target = cpi->per_frame_bandwidth; |
| 359 } |
| 360 |
| 361 // Sanity check that the total sum of adjustments is not above the maximum all
owed |
| 362 // That is that having allowed for KF and GF penalties we have not pushed the |
| 363 // current interframe target to low. If the adjustment we apply here is not ca
pable of recovering |
| 364 // all the extra bits we have spent in the KF or GF then the remainder will ha
ve to be recovered over |
| 365 // a longer time span via other buffer / rate control mechanisms. |
| 366 if (cpi->this_frame_target < min_frame_target) |
| 367 cpi->this_frame_target = min_frame_target; |
| 368 |
| 369 if (!cpi->common.refresh_alt_ref_frame) |
| 370 // Note the baseline target data rate for this inter frame. |
| 371 cpi->inter_frame_target = cpi->this_frame_target; |
| 372 |
| 373 // Adjust target frame size for Golden Frames: |
| 374 if (cpi->frames_till_gf_update_due == 0) { |
| 375 // int Boost = 0; |
| 376 int Q = (cpi->oxcf.fixed_q < 0) ? cpi->last_q[INTER_FRAME] : cpi->oxcf.fixed
_q; |
| 377 |
| 378 cpi->common.refresh_golden_frame = TRUE; |
| 379 |
| 380 calc_gf_params(cpi); |
| 381 |
| 382 // If we are using alternate ref instead of gf then do not apply the boost |
| 383 // It will instead be applied to the altref update |
| 384 // Jims modified boost |
| 385 if (!cpi->source_alt_ref_active) { |
| 386 if (cpi->oxcf.fixed_q < 0) { |
| 387 // The spend on the GF is defined in the two pass code |
| 388 // for two pass encodes |
| 389 cpi->this_frame_target = cpi->per_frame_bandwidth; |
| 390 } else |
| 391 cpi->this_frame_target = |
| 392 (estimate_bits_at_q(1, Q, cpi->common.MBs, 1.0) |
| 393 * cpi->last_boost) / 100; |
| 394 |
| 395 } |
| 396 // If there is an active ARF at this location use the minimum |
| 397 // bits on this frame even if it is a contructed arf. |
| 398 // The active maximum quantizer insures that an appropriate |
| 399 // number of bits will be spent if needed for contstructed ARFs. |
| 400 else { |
| 401 cpi->this_frame_target = 0; |
| 402 } |
| 403 |
| 404 cpi->current_gf_interval = cpi->frames_till_gf_update_due; |
| 405 } |
| 406 } |
| 407 |
| 408 |
| 409 void vp9_update_rate_correction_factors(VP9_COMP *cpi, int damp_var) { |
| 410 int Q = cpi->common.base_qindex; |
| 411 int correction_factor = 100; |
| 412 double rate_correction_factor; |
| 413 double adjustment_limit; |
| 414 |
| 415 int projected_size_based_on_q = 0; |
| 416 |
| 417 // Clear down mmx registers to allow floating point in what follows |
| 418 vp9_clear_system_state(); // __asm emms; |
| 419 |
| 420 if (cpi->common.frame_type == KEY_FRAME) { |
| 421 rate_correction_factor = cpi->key_frame_rate_correction_factor; |
| 422 } else { |
| 423 if (cpi->common.refresh_alt_ref_frame || cpi->common.refresh_golden_frame) |
| 424 rate_correction_factor = cpi->gf_rate_correction_factor; |
| 425 else |
| 426 rate_correction_factor = cpi->rate_correction_factor; |
| 427 } |
| 428 |
| 429 // Work out how big we would have expected the frame to be at this Q given the
current correction factor. |
| 430 // Stay in double to avoid int overflow when values are large |
| 431 projected_size_based_on_q = |
| 432 (int)(((.5 + rate_correction_factor * |
| 433 vp9_bits_per_mb(cpi->common.frame_type, Q)) * |
| 434 cpi->common.MBs) / (1 << BPER_MB_NORMBITS)); |
| 435 |
| 436 // Make some allowance for cpi->zbin_over_quant |
| 437 if (cpi->zbin_over_quant > 0) { |
| 438 int Z = cpi->zbin_over_quant; |
| 439 double Factor = 0.99; |
| 440 double factor_adjustment = 0.01 / 256.0; // (double)ZBIN_OQ_MAX; |
| 441 |
| 442 while (Z > 0) { |
| 443 Z--; |
| 444 projected_size_based_on_q = |
| 445 (int)(Factor * projected_size_based_on_q); |
| 446 Factor += factor_adjustment; |
| 447 |
| 448 if (Factor >= 0.999) |
| 449 Factor = 0.999; |
| 450 } |
| 451 } |
| 452 |
| 453 // Work out a size correction factor. |
| 454 // if ( cpi->this_frame_target > 0 ) |
| 455 // correction_factor = (100 * cpi->projected_frame_size) / cpi->this_frame_ta
rget; |
| 456 if (projected_size_based_on_q > 0) |
| 457 correction_factor = (100 * cpi->projected_frame_size) / projected_size_based
_on_q; |
| 458 |
| 459 // More heavily damped adjustment used if we have been oscillating either side
of target |
| 460 switch (damp_var) { |
| 461 case 0: |
| 462 adjustment_limit = 0.75; |
| 463 break; |
| 464 case 1: |
| 465 adjustment_limit = 0.375; |
| 466 break; |
| 467 case 2: |
| 468 default: |
| 469 adjustment_limit = 0.25; |
| 470 break; |
| 471 } |
| 472 |
| 473 // if ( (correction_factor > 102) && (Q < cpi->active_worst_quality) ) |
| 474 if (correction_factor > 102) { |
| 475 // We are not already at the worst allowable quality |
| 476 correction_factor = (int)(100.5 + ((correction_factor - 100) * adjustment_li
mit)); |
| 477 rate_correction_factor = ((rate_correction_factor * correction_factor) / 100
); |
| 478 |
| 479 // Keep rate_correction_factor within limits |
| 480 if (rate_correction_factor > MAX_BPB_FACTOR) |
| 481 rate_correction_factor = MAX_BPB_FACTOR; |
| 482 } |
| 483 // else if ( (correction_factor < 99) && (Q > cpi->active_best_quality) ) |
| 484 else if (correction_factor < 99) { |
| 485 // We are not already at the best allowable quality |
| 486 correction_factor = (int)(100.5 - ((100 - correction_factor) * adjustment_li
mit)); |
| 487 rate_correction_factor = ((rate_correction_factor * correction_factor) / 100
); |
| 488 |
| 489 // Keep rate_correction_factor within limits |
| 490 if (rate_correction_factor < MIN_BPB_FACTOR) |
| 491 rate_correction_factor = MIN_BPB_FACTOR; |
| 492 } |
| 493 |
| 494 if (cpi->common.frame_type == KEY_FRAME) |
| 495 cpi->key_frame_rate_correction_factor = rate_correction_factor; |
| 496 else { |
| 497 if (cpi->common.refresh_alt_ref_frame || cpi->common.refresh_golden_frame) |
| 498 cpi->gf_rate_correction_factor = rate_correction_factor; |
| 499 else |
| 500 cpi->rate_correction_factor = rate_correction_factor; |
| 501 } |
| 502 } |
| 503 |
| 504 |
| 505 int vp9_regulate_q(VP9_COMP *cpi, int target_bits_per_frame) { |
| 506 int Q = cpi->active_worst_quality; |
| 507 |
| 508 int i; |
| 509 int last_error = INT_MAX; |
| 510 int target_bits_per_mb; |
| 511 int bits_per_mb_at_this_q; |
| 512 double correction_factor; |
| 513 |
| 514 // Reset Zbin OQ value |
| 515 cpi->zbin_over_quant = 0; |
| 516 |
| 517 // Select the appropriate correction factor based upon type of frame. |
| 518 if (cpi->common.frame_type == KEY_FRAME) |
| 519 correction_factor = cpi->key_frame_rate_correction_factor; |
| 520 else { |
| 521 if (cpi->common.refresh_alt_ref_frame || cpi->common.refresh_golden_frame) |
| 522 correction_factor = cpi->gf_rate_correction_factor; |
| 523 else |
| 524 correction_factor = cpi->rate_correction_factor; |
| 525 } |
| 526 |
| 527 // Calculate required scaling factor based on target frame size and size of fr
ame produced using previous Q |
| 528 if (target_bits_per_frame >= (INT_MAX >> BPER_MB_NORMBITS)) |
| 529 target_bits_per_mb = (target_bits_per_frame / cpi->common.MBs) << BPER_MB_NO
RMBITS; // Case where we would overflow int |
| 530 else |
| 531 target_bits_per_mb = (target_bits_per_frame << BPER_MB_NORMBITS) / cpi->comm
on.MBs; |
| 532 |
| 533 i = cpi->active_best_quality; |
| 534 |
| 535 do { |
| 536 bits_per_mb_at_this_q = |
| 537 (int)(.5 + correction_factor * |
| 538 vp9_bits_per_mb(cpi->common.frame_type, i)); |
| 539 |
| 540 if (bits_per_mb_at_this_q <= target_bits_per_mb) { |
| 541 if ((target_bits_per_mb - bits_per_mb_at_this_q) <= last_error) |
| 542 Q = i; |
| 543 else |
| 544 Q = i - 1; |
| 545 |
| 546 break; |
| 547 } else |
| 548 last_error = bits_per_mb_at_this_q - target_bits_per_mb; |
| 549 } while (++i <= cpi->active_worst_quality); |
| 550 |
| 551 |
| 552 // If we are at MAXQ then enable Q over-run which seeks to claw back additiona
l bits through things like |
| 553 // the RD multiplier and zero bin size. |
| 554 if (Q >= MAXQ) { |
| 555 int zbin_oqmax; |
| 556 |
| 557 double Factor = 0.99; |
| 558 double factor_adjustment = 0.01 / 256.0; // (double)ZBIN_OQ_MAX; |
| 559 |
| 560 if (cpi->common.frame_type == KEY_FRAME) |
| 561 zbin_oqmax = 0; // ZBIN_OQ_MAX/16 |
| 562 else if (cpi->common.refresh_alt_ref_frame || (cpi->common.refresh_golden_fr
ame && !cpi->source_alt_ref_active)) |
| 563 zbin_oqmax = 16; |
| 564 else |
| 565 zbin_oqmax = ZBIN_OQ_MAX; |
| 566 |
| 567 // Each incrment in the zbin is assumed to have a fixed effect on bitrate. T
his is not of course true. |
| 568 // The effect will be highly clip dependent and may well have sudden steps. |
| 569 // The idea here is to acheive higher effective quantizers than the normal m
aximum by expanding the zero |
| 570 // bin and hence decreasing the number of low magnitude non zero coefficient
s. |
| 571 while (cpi->zbin_over_quant < zbin_oqmax) { |
| 572 cpi->zbin_over_quant++; |
| 573 |
| 574 if (cpi->zbin_over_quant > zbin_oqmax) |
| 575 cpi->zbin_over_quant = zbin_oqmax; |
| 576 |
| 577 // Adjust bits_per_mb_at_this_q estimate |
| 578 bits_per_mb_at_this_q = (int)(Factor * bits_per_mb_at_this_q); |
| 579 Factor += factor_adjustment; |
| 580 |
| 581 if (Factor >= 0.999) |
| 582 Factor = 0.999; |
| 583 |
| 584 if (bits_per_mb_at_this_q <= target_bits_per_mb) // Break out if we get
down to the target rate |
| 585 break; |
| 586 } |
| 587 |
| 588 } |
| 589 |
| 590 return Q; |
| 591 } |
| 592 |
| 593 |
| 594 static int estimate_keyframe_frequency(VP9_COMP *cpi) { |
| 595 int i; |
| 596 |
| 597 // Average key frame frequency |
| 598 int av_key_frame_frequency = 0; |
| 599 |
| 600 /* First key frame at start of sequence is a special case. We have no |
| 601 * frequency data. |
| 602 */ |
| 603 if (cpi->key_frame_count == 1) { |
| 604 /* Assume a default of 1 kf every 2 seconds, or the max kf interval, |
| 605 * whichever is smaller. |
| 606 */ |
| 607 int key_freq = cpi->oxcf.key_freq > 0 ? cpi->oxcf.key_freq : 1; |
| 608 av_key_frame_frequency = (int)cpi->output_frame_rate * 2; |
| 609 |
| 610 if (cpi->oxcf.auto_key && av_key_frame_frequency > key_freq) |
| 611 av_key_frame_frequency = cpi->oxcf.key_freq; |
| 612 |
| 613 cpi->prior_key_frame_distance[KEY_FRAME_CONTEXT - 1] |
| 614 = av_key_frame_frequency; |
| 615 } else { |
| 616 unsigned int total_weight = 0; |
| 617 int last_kf_interval = |
| 618 (cpi->frames_since_key > 0) ? cpi->frames_since_key : 1; |
| 619 |
| 620 /* reset keyframe context and calculate weighted average of last |
| 621 * KEY_FRAME_CONTEXT keyframes |
| 622 */ |
| 623 for (i = 0; i < KEY_FRAME_CONTEXT; i++) { |
| 624 if (i < KEY_FRAME_CONTEXT - 1) |
| 625 cpi->prior_key_frame_distance[i] |
| 626 = cpi->prior_key_frame_distance[i + 1]; |
| 627 else |
| 628 cpi->prior_key_frame_distance[i] = last_kf_interval; |
| 629 |
| 630 av_key_frame_frequency += prior_key_frame_weight[i] |
| 631 * cpi->prior_key_frame_distance[i]; |
| 632 total_weight += prior_key_frame_weight[i]; |
| 633 } |
| 634 |
| 635 av_key_frame_frequency /= total_weight; |
| 636 |
| 637 } |
| 638 return av_key_frame_frequency; |
| 639 } |
| 640 |
| 641 |
| 642 void vp9_adjust_key_frame_context(VP9_COMP *cpi) { |
| 643 // Clear down mmx registers to allow floating point in what follows |
| 644 vp9_clear_system_state(); |
| 645 |
| 646 cpi->frames_since_key = 0; |
| 647 cpi->key_frame_count++; |
| 648 } |
| 649 |
| 650 |
| 651 void vp9_compute_frame_size_bounds(VP9_COMP *cpi, int *frame_under_shoot_limit, |
| 652 int *frame_over_shoot_limit) { |
| 653 // Set-up bounds on acceptable frame size: |
| 654 if (cpi->oxcf.fixed_q >= 0) { |
| 655 // Fixed Q scenario: frame size never outranges target (there is no target!) |
| 656 *frame_under_shoot_limit = 0; |
| 657 *frame_over_shoot_limit = INT_MAX; |
| 658 } else { |
| 659 if (cpi->common.frame_type == KEY_FRAME) { |
| 660 *frame_over_shoot_limit = cpi->this_frame_target * 9 / 8; |
| 661 *frame_under_shoot_limit = cpi->this_frame_target * 7 / 8; |
| 662 } else { |
| 663 if (cpi->common.refresh_alt_ref_frame || cpi->common.refresh_golden_frame)
{ |
| 664 *frame_over_shoot_limit = cpi->this_frame_target * 9 / 8; |
| 665 *frame_under_shoot_limit = cpi->this_frame_target * 7 / 8; |
| 666 } else { |
| 667 // Stron overshoot limit for constrained quality |
| 668 if (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) { |
| 669 *frame_over_shoot_limit = cpi->this_frame_target * 11 / 8; |
| 670 *frame_under_shoot_limit = cpi->this_frame_target * 2 / 8; |
| 671 } else { |
| 672 *frame_over_shoot_limit = cpi->this_frame_target * 11 / 8; |
| 673 *frame_under_shoot_limit = cpi->this_frame_target * 5 / 8; |
| 674 } |
| 675 } |
| 676 } |
| 677 |
| 678 // For very small rate targets where the fractional adjustment |
| 679 // (eg * 7/8) may be tiny make sure there is at least a minimum |
| 680 // range. |
| 681 *frame_over_shoot_limit += 200; |
| 682 *frame_under_shoot_limit -= 200; |
| 683 if (*frame_under_shoot_limit < 0) |
| 684 *frame_under_shoot_limit = 0; |
| 685 } |
| 686 } |
| 687 |
| 688 |
| 689 // return of 0 means drop frame |
| 690 int vp9_pick_frame_size(VP9_COMP *cpi) { |
| 691 VP9_COMMON *cm = &cpi->common; |
| 692 |
| 693 if (cm->frame_type == KEY_FRAME) |
| 694 calc_iframe_target_size(cpi); |
| 695 else |
| 696 calc_pframe_target_size(cpi); |
| 697 |
| 698 return 1; |
| 699 } |
OLD | NEW |