Index: skia/corecg/SkMath.cpp |
=================================================================== |
--- skia/corecg/SkMath.cpp (revision 16859) |
+++ skia/corecg/SkMath.cpp (working copy) |
@@ -1,932 +0,0 @@ |
-/* |
- * Copyright (C) 2006-2008 The Android Open Source Project |
- * |
- * Licensed under the Apache License, Version 2.0 (the "License"); |
- * you may not use this file except in compliance with the License. |
- * You may obtain a copy of the License at |
- * |
- * http://www.apache.org/licenses/LICENSE-2.0 |
- * |
- * Unless required by applicable law or agreed to in writing, software |
- * distributed under the License is distributed on an "AS IS" BASIS, |
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
- * See the License for the specific language governing permissions and |
- * limitations under the License. |
- */ |
- |
-#include "SkMath.h" |
-#include "SkCordic.h" |
-#include "SkFloatBits.h" |
-#include "SkFloatingPoint.h" |
-#include "Sk64.h" |
-#include "SkScalar.h" |
- |
-#ifdef SK_SCALAR_IS_FLOAT |
- const uint32_t gIEEENotANumber = 0x7FFFFFFF; |
- const uint32_t gIEEEInfinity = 0x7F800000; |
-#endif |
- |
-#define sub_shift(zeros, x, n) \ |
- zeros -= n; \ |
- x >>= n |
- |
-int SkCLZ_portable(uint32_t x) { |
- if (x == 0) { |
- return 32; |
- } |
- |
-#ifdef SK_CPU_HAS_CONDITIONAL_INSTR |
- int zeros = 31; |
- if (x & 0xFFFF0000) { |
- sub_shift(zeros, x, 16); |
- } |
- if (x & 0xFF00) { |
- sub_shift(zeros, x, 8); |
- } |
- if (x & 0xF0) { |
- sub_shift(zeros, x, 4); |
- } |
- if (x & 0xC) { |
- sub_shift(zeros, x, 2); |
- } |
- if (x & 0x2) { |
- sub_shift(zeros, x, 1); |
- } |
-#else |
- int zeros = ((x >> 16) - 1) >> 31 << 4; |
- x <<= zeros; |
- |
- int nonzero = ((x >> 24) - 1) >> 31 << 3; |
- zeros += nonzero; |
- x <<= nonzero; |
- |
- nonzero = ((x >> 28) - 1) >> 31 << 2; |
- zeros += nonzero; |
- x <<= nonzero; |
- |
- nonzero = ((x >> 30) - 1) >> 31 << 1; |
- zeros += nonzero; |
- x <<= nonzero; |
- |
- zeros += (~x) >> 31; |
-#endif |
- |
- return zeros; |
-} |
- |
-int32_t SkMulDiv(int32_t numer1, int32_t numer2, int32_t denom) { |
- SkASSERT(denom); |
- |
- Sk64 tmp; |
- tmp.setMul(numer1, numer2); |
- tmp.div(denom, Sk64::kTrunc_DivOption); |
- return tmp.get32(); |
-} |
- |
-int32_t SkMulShift(int32_t a, int32_t b, unsigned shift) { |
- int sign = SkExtractSign(a ^ b); |
- |
- if (shift > 63) { |
- return sign; |
- } |
- |
- a = SkAbs32(a); |
- b = SkAbs32(b); |
- |
- uint32_t ah = a >> 16; |
- uint32_t al = a & 0xFFFF; |
- uint32_t bh = b >> 16; |
- uint32_t bl = b & 0xFFFF; |
- |
- uint32_t A = ah * bh; |
- uint32_t B = ah * bl + al * bh; |
- uint32_t C = al * bl; |
- |
- /* [ A ] |
- [ B ] |
- [ C ] |
- */ |
- uint32_t lo = C + (B << 16); |
- int32_t hi = A + (B >> 16) + (lo < C); |
- |
- if (sign < 0) { |
- hi = -hi - Sk32ToBool(lo); |
- lo = 0 - lo; |
- } |
- |
- if (shift == 0) { |
-#ifdef SK_DEBUGx |
- SkASSERT(((int32_t)lo >> 31) == hi); |
-#endif |
- return lo; |
- } else if (shift >= 32) { |
- return hi >> (shift - 32); |
- } else { |
-#ifdef SK_DEBUGx |
- int32_t tmp = hi >> shift; |
- SkASSERT(tmp == 0 || tmp == -1); |
-#endif |
- // we want (hi << (32 - shift)) | (lo >> shift) but rounded |
- int roundBit = (lo >> (shift - 1)) & 1; |
- return ((hi << (32 - shift)) | (lo >> shift)) + roundBit; |
- } |
-} |
- |
-SkFixed SkFixedMul_portable(SkFixed a, SkFixed b) { |
-#if 0 |
- Sk64 tmp; |
- |
- tmp.setMul(a, b); |
- tmp.shiftRight(16); |
- return tmp.fLo; |
-#elif defined(SkLONGLONG) |
- return (SkLONGLONG)a * b >> 16; |
-#else |
- int sa = SkExtractSign(a); |
- int sb = SkExtractSign(b); |
- // now make them positive |
- a = SkApplySign(a, sa); |
- b = SkApplySign(b, sb); |
- |
- uint32_t ah = a >> 16; |
- uint32_t al = a & 0xFFFF; |
- uint32_t bh = b >> 16; |
- uint32_t bl = b & 0xFFFF; |
- |
- uint32_t R = ah * b + al * bh + (al * bl >> 16); |
- |
- return SkApplySign(R, sa ^ sb); |
-#endif |
-} |
- |
-SkFract SkFractMul_portable(SkFract a, SkFract b) { |
-#if 0 |
- Sk64 tmp; |
- tmp.setMul(a, b); |
- return tmp.getFract(); |
-#elif defined(SkLONGLONG) |
- return (SkLONGLONG)a * b >> 30; |
-#else |
- int sa = SkExtractSign(a); |
- int sb = SkExtractSign(b); |
- // now make them positive |
- a = SkApplySign(a, sa); |
- b = SkApplySign(b, sb); |
- |
- uint32_t ah = a >> 16; |
- uint32_t al = a & 0xFFFF; |
- uint32_t bh = b >> 16; |
- uint32_t bl = b & 0xFFFF; |
- |
- uint32_t A = ah * bh; |
- uint32_t B = ah * bl + al * bh; |
- uint32_t C = al * bl; |
- |
- /* [ A ] |
- [ B ] |
- [ C ] |
- */ |
- uint32_t Lo = C + (B << 16); |
- uint32_t Hi = A + (B >>16) + (Lo < C); |
- |
- SkASSERT((Hi >> 29) == 0); // else overflow |
- |
- int32_t R = (Hi << 2) + (Lo >> 30); |
- |
- return SkApplySign(R, sa ^ sb); |
-#endif |
-} |
- |
-int SkFixedMulCommon(SkFixed a, int b, int bias) { |
- // this function only works if b is 16bits |
- SkASSERT(b == (int16_t)b); |
- SkASSERT(b >= 0); |
- |
- int sa = SkExtractSign(a); |
- a = SkApplySign(a, sa); |
- uint32_t ah = a >> 16; |
- uint32_t al = a & 0xFFFF; |
- uint32_t R = ah * b + ((al * b + bias) >> 16); |
- return SkApplySign(R, sa); |
-} |
- |
-#ifdef SK_DEBUGx |
- #define TEST_FASTINVERT |
-#endif |
- |
-SkFixed SkFixedFastInvert(SkFixed x) { |
-/* Adapted (stolen) from gglRecip() |
-*/ |
- |
- if (x == SK_Fixed1) { |
- return SK_Fixed1; |
- } |
- |
- int sign = SkExtractSign(x); |
- uint32_t a = SkApplySign(x, sign); |
- |
- if (a <= 2) { |
- return SkApplySign(SK_MaxS32, sign); |
- } |
- |
-#ifdef TEST_FASTINVERT |
- SkFixed orig = a; |
- uint32_t slow = SkFixedDiv(SK_Fixed1, a); |
-#endif |
- |
- // normalize a |
- int lz = SkCLZ(a); |
- a = a << lz >> 16; |
- |
- // compute 1/a approximation (0.5 <= a < 1.0) |
- uint32_t r = 0x17400 - a; // (2.90625 (~2.914) - 2*a) >> 1 |
- |
- // Newton-Raphson iteration: |
- // x = r*(2 - a*r) = ((r/2)*(1 - a*r/2))*4 |
- r = ( (0x10000 - ((a*r)>>16)) * r ) >> 15; |
- r = ( (0x10000 - ((a*r)>>16)) * r ) >> (30 - lz); |
- |
-#ifdef TEST_FASTINVERT |
- SkDebugf("SkFixedFastInvert(%x %g) = %x %g Slow[%x %g]\n", |
- orig, orig/65536., |
- r, r/65536., |
- slow, slow/65536.); |
-#endif |
- |
- return SkApplySign(r, sign); |
-} |
- |
-/////////////////////////////////////////////////////////////////////////////// |
- |
-#define DIVBITS_ITER(n) \ |
- case n: \ |
- if ((numer = (numer << 1) - denom) >= 0) \ |
- result |= 1 << (n - 1); else numer += denom |
- |
-int32_t SkDivBits(int32_t numer, int32_t denom, int shift_bias) { |
- SkASSERT(denom != 0); |
- if (numer == 0) { |
- return 0; |
- } |
- |
- // make numer and denom positive, and sign hold the resulting sign |
- int32_t sign = SkExtractSign(numer ^ denom); |
- numer = SkAbs32(numer); |
- denom = SkAbs32(denom); |
- |
- int nbits = SkCLZ(numer) - 1; |
- int dbits = SkCLZ(denom) - 1; |
- int bits = shift_bias - nbits + dbits; |
- |
- if (bits < 0) { // answer will underflow |
- return 0; |
- } |
- if (bits > 31) { // answer will overflow |
- return SkApplySign(SK_MaxS32, sign); |
- } |
- |
- denom <<= dbits; |
- numer <<= nbits; |
- |
- SkFixed result = 0; |
- |
- // do the first one |
- if ((numer -= denom) >= 0) { |
- result = 1; |
- } else { |
- numer += denom; |
- } |
- |
- // Now fall into our switch statement if there are more bits to compute |
- if (bits > 0) { |
- // make room for the rest of the answer bits |
- result <<= bits; |
- switch (bits) { |
- DIVBITS_ITER(31); DIVBITS_ITER(30); DIVBITS_ITER(29); |
- DIVBITS_ITER(28); DIVBITS_ITER(27); DIVBITS_ITER(26); |
- DIVBITS_ITER(25); DIVBITS_ITER(24); DIVBITS_ITER(23); |
- DIVBITS_ITER(22); DIVBITS_ITER(21); DIVBITS_ITER(20); |
- DIVBITS_ITER(19); DIVBITS_ITER(18); DIVBITS_ITER(17); |
- DIVBITS_ITER(16); DIVBITS_ITER(15); DIVBITS_ITER(14); |
- DIVBITS_ITER(13); DIVBITS_ITER(12); DIVBITS_ITER(11); |
- DIVBITS_ITER(10); DIVBITS_ITER( 9); DIVBITS_ITER( 8); |
- DIVBITS_ITER( 7); DIVBITS_ITER( 6); DIVBITS_ITER( 5); |
- DIVBITS_ITER( 4); DIVBITS_ITER( 3); DIVBITS_ITER( 2); |
- // we merge these last two together, makes GCC make better ARM |
- default: |
- DIVBITS_ITER( 1); |
- } |
- } |
- |
- if (result < 0) { |
- result = SK_MaxS32; |
- } |
- return SkApplySign(result, sign); |
-} |
- |
-/* mod(float numer, float denom) seems to always return the sign |
- of the numer, so that's what we do too |
-*/ |
-SkFixed SkFixedMod(SkFixed numer, SkFixed denom) { |
- int sn = SkExtractSign(numer); |
- int sd = SkExtractSign(denom); |
- |
- numer = SkApplySign(numer, sn); |
- denom = SkApplySign(denom, sd); |
- |
- if (numer < denom) { |
- return SkApplySign(numer, sn); |
- } else if (numer == denom) { |
- return 0; |
- } else { |
- SkFixed div = SkFixedDiv(numer, denom); |
- return SkApplySign(SkFixedMul(denom, div & 0xFFFF), sn); |
- } |
-} |
- |
-/* www.worldserver.com/turk/computergraphics/FixedSqrt.pdf |
-*/ |
-int32_t SkSqrtBits(int32_t x, int count) { |
- SkASSERT(x >= 0 && count > 0 && (unsigned)count <= 30); |
- |
- uint32_t root = 0; |
- uint32_t remHi = 0; |
- uint32_t remLo = x; |
- |
- do { |
- root <<= 1; |
- |
- remHi = (remHi<<2) | (remLo>>30); |
- remLo <<= 2; |
- |
- uint32_t testDiv = (root << 1) + 1; |
- if (remHi >= testDiv) { |
- remHi -= testDiv; |
- root++; |
- } |
- } while (--count >= 0); |
- |
- return root; |
-} |
- |
-int32_t SkCubeRootBits(int32_t value, int bits) { |
- SkASSERT(bits > 0); |
- |
- int sign = SkExtractSign(value); |
- value = SkApplySign(value, sign); |
- |
- uint32_t root = 0; |
- uint32_t curr = (uint32_t)value >> 30; |
- value <<= 2; |
- |
- do { |
- root <<= 1; |
- uint32_t guess = root * root + root; |
- guess = (guess << 1) + guess; // guess *= 3 |
- if (guess < curr) { |
- curr -= guess + 1; |
- root |= 1; |
- } |
- curr = (curr << 3) | ((uint32_t)value >> 29); |
- value <<= 3; |
- } while (--bits); |
- |
- return SkApplySign(root, sign); |
-} |
- |
-SkFixed SkFixedMean(SkFixed a, SkFixed b) { |
- Sk64 tmp; |
- |
- tmp.setMul(a, b); |
- return tmp.getSqrt(); |
-} |
- |
-/////////////////////////////////////////////////////////////////////////////// |
- |
-#ifdef SK_SCALAR_IS_FLOAT |
-float SkScalarSinCos(float radians, float* cosValue) { |
- float sinValue = sk_float_sin(radians); |
- |
- if (cosValue) { |
- *cosValue = sk_float_cos(radians); |
- if (SkScalarNearlyZero(*cosValue)) { |
- *cosValue = 0; |
- } |
- } |
- |
- if (SkScalarNearlyZero(sinValue)) { |
- sinValue = 0; |
- } |
- return sinValue; |
-} |
-#endif |
- |
-#define INTERP_SINTABLE |
-#define BUILD_TABLE_AT_RUNTIMEx |
- |
-#define kTableSize 256 |
- |
-#ifdef BUILD_TABLE_AT_RUNTIME |
- static uint16_t gSkSinTable[kTableSize]; |
- |
- static void build_sintable(uint16_t table[]) { |
- for (int i = 0; i < kTableSize; i++) { |
- double rad = i * 3.141592653589793 / (2*kTableSize); |
- double val = sin(rad); |
- int ival = (int)(val * SK_Fixed1); |
- table[i] = SkToU16(ival); |
- } |
- } |
-#else |
- #include "SkSinTable.h" |
-#endif |
- |
-#define SK_Fract1024SizeOver2PI 0x28BE60 /* floatToFract(1024 / 2PI) */ |
- |
-#ifdef INTERP_SINTABLE |
-static SkFixed interp_table(const uint16_t table[], int index, int partial255) { |
- SkASSERT((unsigned)index < kTableSize); |
- SkASSERT((unsigned)partial255 <= 255); |
- |
- SkFixed lower = table[index]; |
- SkFixed upper = (index == kTableSize - 1) ? SK_Fixed1 : table[index + 1]; |
- |
- SkASSERT(lower < upper); |
- SkASSERT(lower >= 0); |
- SkASSERT(upper <= SK_Fixed1); |
- |
- partial255 += (partial255 >> 7); |
- return lower + ((upper - lower) * partial255 >> 8); |
-} |
-#endif |
- |
-SkFixed SkFixedSinCos(SkFixed radians, SkFixed* cosValuePtr) { |
- SkASSERT(SK_ARRAY_COUNT(gSkSinTable) == kTableSize); |
- |
-#ifdef BUILD_TABLE_AT_RUNTIME |
- static bool gFirstTime = true; |
- if (gFirstTime) { |
- build_sintable(gSinTable); |
- gFirstTime = false; |
- } |
-#endif |
- |
- // make radians positive |
- SkFixed sinValue, cosValue; |
- int32_t cosSign = 0; |
- int32_t sinSign = SkExtractSign(radians); |
- radians = SkApplySign(radians, sinSign); |
- // scale it to 0...1023 ... |
- |
-#ifdef INTERP_SINTABLE |
- radians = SkMulDiv(radians, 2 * kTableSize * 256, SK_FixedPI); |
- int findex = radians & (kTableSize * 256 - 1); |
- int index = findex >> 8; |
- int partial = findex & 255; |
- sinValue = interp_table(gSkSinTable, index, partial); |
- |
- findex = kTableSize * 256 - findex - 1; |
- index = findex >> 8; |
- partial = findex & 255; |
- cosValue = interp_table(gSkSinTable, index, partial); |
- |
- int quad = ((unsigned)radians / (kTableSize * 256)) & 3; |
-#else |
- radians = SkMulDiv(radians, 2 * kTableSize, SK_FixedPI); |
- int index = radians & (kTableSize - 1); |
- |
- if (index == 0) { |
- sinValue = 0; |
- cosValue = SK_Fixed1; |
- } else { |
- sinValue = gSkSinTable[index]; |
- cosValue = gSkSinTable[kTableSize - index]; |
- } |
- int quad = ((unsigned)radians / kTableSize) & 3; |
-#endif |
- |
- if (quad & 1) { |
- SkTSwap<SkFixed>(sinValue, cosValue); |
- } |
- if (quad & 2) { |
- sinSign = ~sinSign; |
- } |
- if (((quad - 1) & 2) == 0) { |
- cosSign = ~cosSign; |
- } |
- |
- // restore the sign for negative angles |
- sinValue = SkApplySign(sinValue, sinSign); |
- cosValue = SkApplySign(cosValue, cosSign); |
- |
-#ifdef SK_DEBUG |
- if (1) { |
- SkFixed sin2 = SkFixedMul(sinValue, sinValue); |
- SkFixed cos2 = SkFixedMul(cosValue, cosValue); |
- int diff = cos2 + sin2 - SK_Fixed1; |
- SkASSERT(SkAbs32(diff) <= 7); |
- } |
-#endif |
- |
- if (cosValuePtr) { |
- *cosValuePtr = cosValue; |
- } |
- return sinValue; |
-} |
- |
-/////////////////////////////////////////////////////////////////////////////// |
- |
-SkFixed SkFixedTan(SkFixed radians) { return SkCordicTan(radians); } |
-SkFixed SkFixedASin(SkFixed x) { return SkCordicASin(x); } |
-SkFixed SkFixedACos(SkFixed x) { return SkCordicACos(x); } |
-SkFixed SkFixedATan2(SkFixed y, SkFixed x) { return SkCordicATan2(y, x); } |
-SkFixed SkFixedExp(SkFixed x) { return SkCordicExp(x); } |
-SkFixed SkFixedLog(SkFixed x) { return SkCordicLog(x); } |
- |
-/////////////////////////////////////////////////////////////////////////////// |
-/////////////////////////////////////////////////////////////////////////////// |
- |
-#ifdef SK_DEBUG |
- |
-#include "SkRandom.h" |
- |
-#ifdef SkLONGLONG |
-static int symmetric_fixmul(int a, int b) { |
- int sa = SkExtractSign(a); |
- int sb = SkExtractSign(b); |
- |
- a = SkApplySign(a, sa); |
- b = SkApplySign(b, sb); |
- |
-#if 1 |
- int c = (int)(((SkLONGLONG)a * b) >> 16); |
- |
- return SkApplySign(c, sa ^ sb); |
-#else |
- SkLONGLONG ab = (SkLONGLONG)a * b; |
- if (sa ^ sb) { |
- ab = -ab; |
- } |
- return ab >> 16; |
-#endif |
-} |
-#endif |
- |
-#include "SkPoint.h" |
- |
-#ifdef SK_SUPPORT_UNITTEST |
-static void check_length(const SkPoint& p, SkScalar targetLen) { |
- float x = SkScalarToFloat(p.fX); |
- float y = SkScalarToFloat(p.fY); |
- float len = sk_float_sqrt(x*x + y*y); |
- |
- len /= SkScalarToFloat(targetLen); |
- |
- SkASSERT(len > 0.999f && len < 1.001f); |
-} |
-#endif |
- |
-#ifdef SK_CAN_USE_FLOAT |
- |
-static float nextFloat(SkRandom& rand) { |
- SkFloatIntUnion data; |
- data.fSignBitInt = rand.nextU(); |
- return data.fFloat; |
-} |
- |
-/* returns true if a == b as resulting from (int)x. Since it is undefined |
- what to do if the float exceeds 2^32-1, we check for that explicitly. |
-*/ |
-static bool equal_float_native_skia(float x, uint32_t ni, uint32_t si) { |
- if (!(x == x)) { // NAN |
- return si == SK_MaxS32 || si == SK_MinS32; |
- } |
- // for out of range, C is undefined, but skia always should return NaN32 |
- if (x > SK_MaxS32) { |
- return si == SK_MaxS32; |
- } |
- if (x < -SK_MaxS32) { |
- return si == SK_MinS32; |
- } |
- return si == ni; |
-} |
- |
-static void assert_float_equal(const char op[], float x, uint32_t ni, |
- uint32_t si) { |
- if (!equal_float_native_skia(x, ni, si)) { |
- SkDebugf("-- %s float %g bits %x native %x skia %x\n", op, x, ni, si); |
- SkASSERT(!"oops"); |
- } |
-} |
- |
-static void test_float_cast(float x) { |
- int ix = (int)x; |
- int iix = SkFloatToIntCast(x); |
- assert_float_equal("cast", x, ix, iix); |
-} |
- |
-static void test_float_floor(float x) { |
- int ix = (int)floor(x); |
- int iix = SkFloatToIntFloor(x); |
- assert_float_equal("floor", x, ix, iix); |
-} |
- |
-static void test_float_round(float x) { |
- double xx = x + 0.5; // need intermediate double to avoid temp loss |
- int ix = (int)floor(xx); |
- int iix = SkFloatToIntRound(x); |
- assert_float_equal("round", x, ix, iix); |
-} |
- |
-static void test_float_ceil(float x) { |
- int ix = (int)ceil(x); |
- int iix = SkFloatToIntCeil(x); |
- assert_float_equal("ceil", x, ix, iix); |
-} |
- |
-static void test_float_conversions(float x) { |
- test_float_cast(x); |
- test_float_floor(x); |
- test_float_round(x); |
- test_float_ceil(x); |
-} |
- |
-static void test_int2float(int ival) { |
- float x0 = (float)ival; |
- float x1 = SkIntToFloatCast(ival); |
- float x2 = SkIntToFloatCast_NoOverflowCheck(ival); |
- SkASSERT(x0 == x1); |
- SkASSERT(x0 == x2); |
-} |
- |
-static void unittest_fastfloat() { |
- SkRandom rand; |
- size_t i; |
- |
- static const float gFloats[] = { |
- 0.f, 1.f, 0.5f, 0.499999f, 0.5000001f, 1.f/3, |
- 0.000000001f, 1000000000.f, // doesn't overflow |
- 0.0000000001f, 10000000000.f // does overflow |
- }; |
- for (i = 0; i < SK_ARRAY_COUNT(gFloats); i++) { |
-// SkDebugf("---- test floats %g %d\n", gFloats[i], (int)gFloats[i]); |
- test_float_conversions(gFloats[i]); |
- test_float_conversions(-gFloats[i]); |
- } |
- |
- for (int outer = 0; outer < 100; outer++) { |
- rand.setSeed(outer); |
- for (i = 0; i < 100000; i++) { |
- float x = nextFloat(rand); |
- test_float_conversions(x); |
- } |
- |
- test_int2float(0); |
- test_int2float(1); |
- test_int2float(-1); |
- for (i = 0; i < 100000; i++) { |
- // for now only test ints that are 24bits or less, since we don't |
- // round (down) large ints the same as IEEE... |
- int ival = rand.nextU() & 0xFFFFFF; |
- test_int2float(ival); |
- test_int2float(-ival); |
- } |
- } |
-} |
- |
-#endif |
- |
-static void test_muldiv255() { |
- for (int a = 0; a <= 255; a++) { |
- for (int b = 0; b <= 255; b++) { |
- int ab = a * b; |
- float s = ab / 255.0f; |
- int round = (int)floorf(s + 0.5f); |
- int trunc = (int)floorf(s); |
- |
- int iround = SkMulDiv255Round(a, b); |
- int itrunc = SkMulDiv255Trunc(a, b); |
- |
- SkASSERT(iround == round); |
- SkASSERT(itrunc == trunc); |
- |
- SkASSERT(itrunc <= iround); |
- SkASSERT(iround <= a); |
- SkASSERT(iround <= b); |
- } |
- } |
-} |
- |
-void SkMath::UnitTest() { |
-#ifdef SK_SUPPORT_UNITTEST |
- int i; |
- int32_t x; |
- SkRandom rand; |
- |
- SkToS8(127); SkToS8(-128); SkToU8(255); |
- SkToS16(32767); SkToS16(-32768); SkToU16(65535); |
- SkToS32(2*1024*1024); SkToS32(-2*1024*1024); SkToU32(4*1024*1024); |
- |
- SkCordic_UnitTest(); |
- |
- // these should assert |
-#if 0 |
- SkToS8(128); |
- SkToS8(-129); |
- SkToU8(256); |
- SkToU8(-5); |
- |
- SkToS16(32768); |
- SkToS16(-32769); |
- SkToU16(65536); |
- SkToU16(-5); |
- |
- if (sizeof(size_t) > 4) { |
- SkToS32(4*1024*1024); |
- SkToS32(-4*1024*1024); |
- SkToU32(5*1024*1024); |
- SkToU32(-5); |
- } |
-#endif |
- |
- test_muldiv255(); |
- |
-#ifdef SK_DEBUG |
- { |
- SkScalar x = SK_ScalarNaN; |
- SkASSERT(SkScalarIsNaN(x)); |
- } |
-#endif |
- |
- for (i = 1; i <= 10; i++) { |
- x = SkCubeRootBits(i*i*i, 11); |
- SkASSERT(x == i); |
- } |
- |
- x = SkFixedSqrt(SK_Fixed1); |
- SkASSERT(x == SK_Fixed1); |
- x = SkFixedSqrt(SK_Fixed1/4); |
- SkASSERT(x == SK_Fixed1/2); |
- x = SkFixedSqrt(SK_Fixed1*4); |
- SkASSERT(x == SK_Fixed1*2); |
- |
- x = SkFractSqrt(SK_Fract1); |
- SkASSERT(x == SK_Fract1); |
- x = SkFractSqrt(SK_Fract1/4); |
- SkASSERT(x == SK_Fract1/2); |
- x = SkFractSqrt(SK_Fract1/16); |
- SkASSERT(x == SK_Fract1/4); |
- |
- for (i = 1; i < 100; i++) { |
- x = SkFixedSqrt(SK_Fixed1 * i * i); |
- SkASSERT(x == SK_Fixed1 * i); |
- } |
- |
- for (i = 0; i < 1000; i++) { |
- int value = rand.nextS16(); |
- int max = rand.nextU16(); |
- |
- int clamp = SkClampMax(value, max); |
- int clamp2 = value < 0 ? 0 : (value > max ? max : value); |
- SkASSERT(clamp == clamp2); |
- } |
- |
- for (i = 0; i < 100000; i++) { |
- SkPoint p; |
- |
- p.setLength(rand.nextS(), rand.nextS(), SK_Scalar1); |
- check_length(p, SK_Scalar1); |
- p.setLength(rand.nextS() >> 13, rand.nextS() >> 13, SK_Scalar1); |
- check_length(p, SK_Scalar1); |
- } |
- |
- { |
- SkFixed result = SkFixedDiv(100, 100); |
- SkASSERT(result == SK_Fixed1); |
- result = SkFixedDiv(1, SK_Fixed1); |
- SkASSERT(result == 1); |
- } |
- |
-#ifdef SK_CAN_USE_FLOAT |
- unittest_fastfloat(); |
-#endif |
- |
-#ifdef SkLONGLONG |
- for (i = 0; i < 100000; i++) { |
- SkFixed numer = rand.nextS(); |
- SkFixed denom = rand.nextS(); |
- SkFixed result = SkFixedDiv(numer, denom); |
- SkLONGLONG check = ((SkLONGLONG)numer << 16) / denom; |
- |
- (void)SkCLZ(numer); |
- (void)SkCLZ(denom); |
- |
- SkASSERT(result != (SkFixed)SK_NaN32); |
- if (check > SK_MaxS32) { |
- check = SK_MaxS32; |
- } else if (check < -SK_MaxS32) { |
- check = SK_MinS32; |
- } |
- SkASSERT(result == (int32_t)check); |
- |
- result = SkFractDiv(numer, denom); |
- check = ((SkLONGLONG)numer << 30) / denom; |
- |
- SkASSERT(result != (SkFixed)SK_NaN32); |
- if (check > SK_MaxS32) { |
- check = SK_MaxS32; |
- } else if (check < -SK_MaxS32) { |
- check = SK_MinS32; |
- } |
- SkASSERT(result == (int32_t)check); |
- |
- // make them <= 2^24, so we don't overflow in fixmul |
- numer = numer << 8 >> 8; |
- denom = denom << 8 >> 8; |
- |
- result = SkFixedMul(numer, denom); |
- SkFixed r2 = symmetric_fixmul(numer, denom); |
-// SkASSERT(result == r2); |
- |
- result = SkFixedMul(numer, numer); |
- r2 = SkFixedSquare(numer); |
- SkASSERT(result == r2); |
- |
-#ifdef SK_CAN_USE_FLOAT |
- if (numer >= 0 && denom >= 0) { |
- SkFixed mean = SkFixedMean(numer, denom); |
- float fm = sk_float_sqrt(sk_float_abs(SkFixedToFloat(numer) * SkFixedToFloat(denom))); |
- SkFixed mean2 = SkFloatToFixed(fm); |
- int diff = SkAbs32(mean - mean2); |
- SkASSERT(diff <= 1); |
- } |
- |
- { |
- SkFixed mod = SkFixedMod(numer, denom); |
- float n = SkFixedToFloat(numer); |
- float d = SkFixedToFloat(denom); |
- float m = sk_float_mod(n, d); |
-#if 0 |
- SkDebugf("%g mod %g = %g [%g]\n", |
- SkFixedToFloat(numer), SkFixedToFloat(denom), |
- SkFixedToFloat(mod), m); |
-#endif |
- SkASSERT(mod == 0 || (mod < 0) == (m < 0)); // ensure the same sign |
- int diff = SkAbs32(mod - SkFloatToFixed(m)); |
- SkASSERT((diff >> 7) == 0); |
- } |
-#endif |
- } |
-#endif |
- |
-#ifdef SK_CAN_USE_FLOAT |
- for (i = 0; i < 100000; i++) { |
- SkFract x = rand.nextU() >> 1; |
- double xx = (double)x / SK_Fract1; |
- SkFract xr = SkFractSqrt(x); |
- SkFract check = SkFloatToFract(sqrt(xx)); |
- SkASSERT(xr == check || xr == check-1 || xr == check+1); |
- |
- xr = SkFixedSqrt(x); |
- xx = (double)x / SK_Fixed1; |
- check = SkFloatToFixed(sqrt(xx)); |
- SkASSERT(xr == check || xr == check-1); |
- |
- xr = SkSqrt32(x); |
- xx = (double)x; |
- check = (int32_t)sqrt(xx); |
- SkASSERT(xr == check || xr == check-1); |
- } |
-#endif |
- |
-#if !defined(SK_SCALAR_IS_FLOAT) && defined(SK_CAN_USE_FLOAT) |
- { |
- SkFixed s, c; |
- s = SkFixedSinCos(0, &c); |
- SkASSERT(s == 0); |
- SkASSERT(c == SK_Fixed1); |
- } |
- |
- int maxDiff = 0; |
- for (i = 0; i < 10000; i++) { |
- SkFixed rads = rand.nextS() >> 10; |
- double frads = SkFixedToFloat(rads); |
- |
- SkFixed s, c; |
- s = SkScalarSinCos(rads, &c); |
- |
- double fs = sin(frads); |
- double fc = cos(frads); |
- |
- SkFixed is = SkFloatToFixed(fs); |
- SkFixed ic = SkFloatToFixed(fc); |
- |
- maxDiff = SkMax32(maxDiff, SkAbs32(is - s)); |
- maxDiff = SkMax32(maxDiff, SkAbs32(ic - c)); |
- } |
- SkDebugf("SinCos: maximum error = %d\n", maxDiff); |
-#endif |
-#endif |
-} |
- |
-#endif |