OLD | NEW |
| (Empty) |
1 /* | |
2 * Copyright (C) 2006-2008 The Android Open Source Project | |
3 * | |
4 * Licensed under the Apache License, Version 2.0 (the "License"); | |
5 * you may not use this file except in compliance with the License. | |
6 * You may obtain a copy of the License at | |
7 * | |
8 * http://www.apache.org/licenses/LICENSE-2.0 | |
9 * | |
10 * Unless required by applicable law or agreed to in writing, software | |
11 * distributed under the License is distributed on an "AS IS" BASIS, | |
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
13 * See the License for the specific language governing permissions and | |
14 * limitations under the License. | |
15 */ | |
16 | |
17 #include "SkMath.h" | |
18 #include "SkCordic.h" | |
19 #include "SkFloatBits.h" | |
20 #include "SkFloatingPoint.h" | |
21 #include "Sk64.h" | |
22 #include "SkScalar.h" | |
23 | |
24 #ifdef SK_SCALAR_IS_FLOAT | |
25 const uint32_t gIEEENotANumber = 0x7FFFFFFF; | |
26 const uint32_t gIEEEInfinity = 0x7F800000; | |
27 #endif | |
28 | |
29 #define sub_shift(zeros, x, n) \ | |
30 zeros -= n; \ | |
31 x >>= n | |
32 | |
33 int SkCLZ_portable(uint32_t x) { | |
34 if (x == 0) { | |
35 return 32; | |
36 } | |
37 | |
38 #ifdef SK_CPU_HAS_CONDITIONAL_INSTR | |
39 int zeros = 31; | |
40 if (x & 0xFFFF0000) { | |
41 sub_shift(zeros, x, 16); | |
42 } | |
43 if (x & 0xFF00) { | |
44 sub_shift(zeros, x, 8); | |
45 } | |
46 if (x & 0xF0) { | |
47 sub_shift(zeros, x, 4); | |
48 } | |
49 if (x & 0xC) { | |
50 sub_shift(zeros, x, 2); | |
51 } | |
52 if (x & 0x2) { | |
53 sub_shift(zeros, x, 1); | |
54 } | |
55 #else | |
56 int zeros = ((x >> 16) - 1) >> 31 << 4; | |
57 x <<= zeros; | |
58 | |
59 int nonzero = ((x >> 24) - 1) >> 31 << 3; | |
60 zeros += nonzero; | |
61 x <<= nonzero; | |
62 | |
63 nonzero = ((x >> 28) - 1) >> 31 << 2; | |
64 zeros += nonzero; | |
65 x <<= nonzero; | |
66 | |
67 nonzero = ((x >> 30) - 1) >> 31 << 1; | |
68 zeros += nonzero; | |
69 x <<= nonzero; | |
70 | |
71 zeros += (~x) >> 31; | |
72 #endif | |
73 | |
74 return zeros; | |
75 } | |
76 | |
77 int32_t SkMulDiv(int32_t numer1, int32_t numer2, int32_t denom) { | |
78 SkASSERT(denom); | |
79 | |
80 Sk64 tmp; | |
81 tmp.setMul(numer1, numer2); | |
82 tmp.div(denom, Sk64::kTrunc_DivOption); | |
83 return tmp.get32(); | |
84 } | |
85 | |
86 int32_t SkMulShift(int32_t a, int32_t b, unsigned shift) { | |
87 int sign = SkExtractSign(a ^ b); | |
88 | |
89 if (shift > 63) { | |
90 return sign; | |
91 } | |
92 | |
93 a = SkAbs32(a); | |
94 b = SkAbs32(b); | |
95 | |
96 uint32_t ah = a >> 16; | |
97 uint32_t al = a & 0xFFFF; | |
98 uint32_t bh = b >> 16; | |
99 uint32_t bl = b & 0xFFFF; | |
100 | |
101 uint32_t A = ah * bh; | |
102 uint32_t B = ah * bl + al * bh; | |
103 uint32_t C = al * bl; | |
104 | |
105 /* [ A ] | |
106 [ B ] | |
107 [ C ] | |
108 */ | |
109 uint32_t lo = C + (B << 16); | |
110 int32_t hi = A + (B >> 16) + (lo < C); | |
111 | |
112 if (sign < 0) { | |
113 hi = -hi - Sk32ToBool(lo); | |
114 lo = 0 - lo; | |
115 } | |
116 | |
117 if (shift == 0) { | |
118 #ifdef SK_DEBUGx | |
119 SkASSERT(((int32_t)lo >> 31) == hi); | |
120 #endif | |
121 return lo; | |
122 } else if (shift >= 32) { | |
123 return hi >> (shift - 32); | |
124 } else { | |
125 #ifdef SK_DEBUGx | |
126 int32_t tmp = hi >> shift; | |
127 SkASSERT(tmp == 0 || tmp == -1); | |
128 #endif | |
129 // we want (hi << (32 - shift)) | (lo >> shift) but rounded | |
130 int roundBit = (lo >> (shift - 1)) & 1; | |
131 return ((hi << (32 - shift)) | (lo >> shift)) + roundBit; | |
132 } | |
133 } | |
134 | |
135 SkFixed SkFixedMul_portable(SkFixed a, SkFixed b) { | |
136 #if 0 | |
137 Sk64 tmp; | |
138 | |
139 tmp.setMul(a, b); | |
140 tmp.shiftRight(16); | |
141 return tmp.fLo; | |
142 #elif defined(SkLONGLONG) | |
143 return (SkLONGLONG)a * b >> 16; | |
144 #else | |
145 int sa = SkExtractSign(a); | |
146 int sb = SkExtractSign(b); | |
147 // now make them positive | |
148 a = SkApplySign(a, sa); | |
149 b = SkApplySign(b, sb); | |
150 | |
151 uint32_t ah = a >> 16; | |
152 uint32_t al = a & 0xFFFF; | |
153 uint32_t bh = b >> 16; | |
154 uint32_t bl = b & 0xFFFF; | |
155 | |
156 uint32_t R = ah * b + al * bh + (al * bl >> 16); | |
157 | |
158 return SkApplySign(R, sa ^ sb); | |
159 #endif | |
160 } | |
161 | |
162 SkFract SkFractMul_portable(SkFract a, SkFract b) { | |
163 #if 0 | |
164 Sk64 tmp; | |
165 tmp.setMul(a, b); | |
166 return tmp.getFract(); | |
167 #elif defined(SkLONGLONG) | |
168 return (SkLONGLONG)a * b >> 30; | |
169 #else | |
170 int sa = SkExtractSign(a); | |
171 int sb = SkExtractSign(b); | |
172 // now make them positive | |
173 a = SkApplySign(a, sa); | |
174 b = SkApplySign(b, sb); | |
175 | |
176 uint32_t ah = a >> 16; | |
177 uint32_t al = a & 0xFFFF; | |
178 uint32_t bh = b >> 16; | |
179 uint32_t bl = b & 0xFFFF; | |
180 | |
181 uint32_t A = ah * bh; | |
182 uint32_t B = ah * bl + al * bh; | |
183 uint32_t C = al * bl; | |
184 | |
185 /* [ A ] | |
186 [ B ] | |
187 [ C ] | |
188 */ | |
189 uint32_t Lo = C + (B << 16); | |
190 uint32_t Hi = A + (B >>16) + (Lo < C); | |
191 | |
192 SkASSERT((Hi >> 29) == 0); // else overflow | |
193 | |
194 int32_t R = (Hi << 2) + (Lo >> 30); | |
195 | |
196 return SkApplySign(R, sa ^ sb); | |
197 #endif | |
198 } | |
199 | |
200 int SkFixedMulCommon(SkFixed a, int b, int bias) { | |
201 // this function only works if b is 16bits | |
202 SkASSERT(b == (int16_t)b); | |
203 SkASSERT(b >= 0); | |
204 | |
205 int sa = SkExtractSign(a); | |
206 a = SkApplySign(a, sa); | |
207 uint32_t ah = a >> 16; | |
208 uint32_t al = a & 0xFFFF; | |
209 uint32_t R = ah * b + ((al * b + bias) >> 16); | |
210 return SkApplySign(R, sa); | |
211 } | |
212 | |
213 #ifdef SK_DEBUGx | |
214 #define TEST_FASTINVERT | |
215 #endif | |
216 | |
217 SkFixed SkFixedFastInvert(SkFixed x) { | |
218 /* Adapted (stolen) from gglRecip() | |
219 */ | |
220 | |
221 if (x == SK_Fixed1) { | |
222 return SK_Fixed1; | |
223 } | |
224 | |
225 int sign = SkExtractSign(x); | |
226 uint32_t a = SkApplySign(x, sign); | |
227 | |
228 if (a <= 2) { | |
229 return SkApplySign(SK_MaxS32, sign); | |
230 } | |
231 | |
232 #ifdef TEST_FASTINVERT | |
233 SkFixed orig = a; | |
234 uint32_t slow = SkFixedDiv(SK_Fixed1, a); | |
235 #endif | |
236 | |
237 // normalize a | |
238 int lz = SkCLZ(a); | |
239 a = a << lz >> 16; | |
240 | |
241 // compute 1/a approximation (0.5 <= a < 1.0) | |
242 uint32_t r = 0x17400 - a; // (2.90625 (~2.914) - 2*a) >> 1 | |
243 | |
244 // Newton-Raphson iteration: | |
245 // x = r*(2 - a*r) = ((r/2)*(1 - a*r/2))*4 | |
246 r = ( (0x10000 - ((a*r)>>16)) * r ) >> 15; | |
247 r = ( (0x10000 - ((a*r)>>16)) * r ) >> (30 - lz); | |
248 | |
249 #ifdef TEST_FASTINVERT | |
250 SkDebugf("SkFixedFastInvert(%x %g) = %x %g Slow[%x %g]\n", | |
251 orig, orig/65536., | |
252 r, r/65536., | |
253 slow, slow/65536.); | |
254 #endif | |
255 | |
256 return SkApplySign(r, sign); | |
257 } | |
258 | |
259 /////////////////////////////////////////////////////////////////////////////// | |
260 | |
261 #define DIVBITS_ITER(n) \ | |
262 case n: \ | |
263 if ((numer = (numer << 1) - denom) >= 0) \ | |
264 result |= 1 << (n - 1); else numer += denom | |
265 | |
266 int32_t SkDivBits(int32_t numer, int32_t denom, int shift_bias) { | |
267 SkASSERT(denom != 0); | |
268 if (numer == 0) { | |
269 return 0; | |
270 } | |
271 | |
272 // make numer and denom positive, and sign hold the resulting sign | |
273 int32_t sign = SkExtractSign(numer ^ denom); | |
274 numer = SkAbs32(numer); | |
275 denom = SkAbs32(denom); | |
276 | |
277 int nbits = SkCLZ(numer) - 1; | |
278 int dbits = SkCLZ(denom) - 1; | |
279 int bits = shift_bias - nbits + dbits; | |
280 | |
281 if (bits < 0) { // answer will underflow | |
282 return 0; | |
283 } | |
284 if (bits > 31) { // answer will overflow | |
285 return SkApplySign(SK_MaxS32, sign); | |
286 } | |
287 | |
288 denom <<= dbits; | |
289 numer <<= nbits; | |
290 | |
291 SkFixed result = 0; | |
292 | |
293 // do the first one | |
294 if ((numer -= denom) >= 0) { | |
295 result = 1; | |
296 } else { | |
297 numer += denom; | |
298 } | |
299 | |
300 // Now fall into our switch statement if there are more bits to compute | |
301 if (bits > 0) { | |
302 // make room for the rest of the answer bits | |
303 result <<= bits; | |
304 switch (bits) { | |
305 DIVBITS_ITER(31); DIVBITS_ITER(30); DIVBITS_ITER(29); | |
306 DIVBITS_ITER(28); DIVBITS_ITER(27); DIVBITS_ITER(26); | |
307 DIVBITS_ITER(25); DIVBITS_ITER(24); DIVBITS_ITER(23); | |
308 DIVBITS_ITER(22); DIVBITS_ITER(21); DIVBITS_ITER(20); | |
309 DIVBITS_ITER(19); DIVBITS_ITER(18); DIVBITS_ITER(17); | |
310 DIVBITS_ITER(16); DIVBITS_ITER(15); DIVBITS_ITER(14); | |
311 DIVBITS_ITER(13); DIVBITS_ITER(12); DIVBITS_ITER(11); | |
312 DIVBITS_ITER(10); DIVBITS_ITER( 9); DIVBITS_ITER( 8); | |
313 DIVBITS_ITER( 7); DIVBITS_ITER( 6); DIVBITS_ITER( 5); | |
314 DIVBITS_ITER( 4); DIVBITS_ITER( 3); DIVBITS_ITER( 2); | |
315 // we merge these last two together, makes GCC make better ARM | |
316 default: | |
317 DIVBITS_ITER( 1); | |
318 } | |
319 } | |
320 | |
321 if (result < 0) { | |
322 result = SK_MaxS32; | |
323 } | |
324 return SkApplySign(result, sign); | |
325 } | |
326 | |
327 /* mod(float numer, float denom) seems to always return the sign | |
328 of the numer, so that's what we do too | |
329 */ | |
330 SkFixed SkFixedMod(SkFixed numer, SkFixed denom) { | |
331 int sn = SkExtractSign(numer); | |
332 int sd = SkExtractSign(denom); | |
333 | |
334 numer = SkApplySign(numer, sn); | |
335 denom = SkApplySign(denom, sd); | |
336 | |
337 if (numer < denom) { | |
338 return SkApplySign(numer, sn); | |
339 } else if (numer == denom) { | |
340 return 0; | |
341 } else { | |
342 SkFixed div = SkFixedDiv(numer, denom); | |
343 return SkApplySign(SkFixedMul(denom, div & 0xFFFF), sn); | |
344 } | |
345 } | |
346 | |
347 /* www.worldserver.com/turk/computergraphics/FixedSqrt.pdf | |
348 */ | |
349 int32_t SkSqrtBits(int32_t x, int count) { | |
350 SkASSERT(x >= 0 && count > 0 && (unsigned)count <= 30); | |
351 | |
352 uint32_t root = 0; | |
353 uint32_t remHi = 0; | |
354 uint32_t remLo = x; | |
355 | |
356 do { | |
357 root <<= 1; | |
358 | |
359 remHi = (remHi<<2) | (remLo>>30); | |
360 remLo <<= 2; | |
361 | |
362 uint32_t testDiv = (root << 1) + 1; | |
363 if (remHi >= testDiv) { | |
364 remHi -= testDiv; | |
365 root++; | |
366 } | |
367 } while (--count >= 0); | |
368 | |
369 return root; | |
370 } | |
371 | |
372 int32_t SkCubeRootBits(int32_t value, int bits) { | |
373 SkASSERT(bits > 0); | |
374 | |
375 int sign = SkExtractSign(value); | |
376 value = SkApplySign(value, sign); | |
377 | |
378 uint32_t root = 0; | |
379 uint32_t curr = (uint32_t)value >> 30; | |
380 value <<= 2; | |
381 | |
382 do { | |
383 root <<= 1; | |
384 uint32_t guess = root * root + root; | |
385 guess = (guess << 1) + guess; // guess *= 3 | |
386 if (guess < curr) { | |
387 curr -= guess + 1; | |
388 root |= 1; | |
389 } | |
390 curr = (curr << 3) | ((uint32_t)value >> 29); | |
391 value <<= 3; | |
392 } while (--bits); | |
393 | |
394 return SkApplySign(root, sign); | |
395 } | |
396 | |
397 SkFixed SkFixedMean(SkFixed a, SkFixed b) { | |
398 Sk64 tmp; | |
399 | |
400 tmp.setMul(a, b); | |
401 return tmp.getSqrt(); | |
402 } | |
403 | |
404 /////////////////////////////////////////////////////////////////////////////// | |
405 | |
406 #ifdef SK_SCALAR_IS_FLOAT | |
407 float SkScalarSinCos(float radians, float* cosValue) { | |
408 float sinValue = sk_float_sin(radians); | |
409 | |
410 if (cosValue) { | |
411 *cosValue = sk_float_cos(radians); | |
412 if (SkScalarNearlyZero(*cosValue)) { | |
413 *cosValue = 0; | |
414 } | |
415 } | |
416 | |
417 if (SkScalarNearlyZero(sinValue)) { | |
418 sinValue = 0; | |
419 } | |
420 return sinValue; | |
421 } | |
422 #endif | |
423 | |
424 #define INTERP_SINTABLE | |
425 #define BUILD_TABLE_AT_RUNTIMEx | |
426 | |
427 #define kTableSize 256 | |
428 | |
429 #ifdef BUILD_TABLE_AT_RUNTIME | |
430 static uint16_t gSkSinTable[kTableSize]; | |
431 | |
432 static void build_sintable(uint16_t table[]) { | |
433 for (int i = 0; i < kTableSize; i++) { | |
434 double rad = i * 3.141592653589793 / (2*kTableSize); | |
435 double val = sin(rad); | |
436 int ival = (int)(val * SK_Fixed1); | |
437 table[i] = SkToU16(ival); | |
438 } | |
439 } | |
440 #else | |
441 #include "SkSinTable.h" | |
442 #endif | |
443 | |
444 #define SK_Fract1024SizeOver2PI 0x28BE60 /* floatToFract(1024 / 2PI) */ | |
445 | |
446 #ifdef INTERP_SINTABLE | |
447 static SkFixed interp_table(const uint16_t table[], int index, int partial255) { | |
448 SkASSERT((unsigned)index < kTableSize); | |
449 SkASSERT((unsigned)partial255 <= 255); | |
450 | |
451 SkFixed lower = table[index]; | |
452 SkFixed upper = (index == kTableSize - 1) ? SK_Fixed1 : table[index + 1]; | |
453 | |
454 SkASSERT(lower < upper); | |
455 SkASSERT(lower >= 0); | |
456 SkASSERT(upper <= SK_Fixed1); | |
457 | |
458 partial255 += (partial255 >> 7); | |
459 return lower + ((upper - lower) * partial255 >> 8); | |
460 } | |
461 #endif | |
462 | |
463 SkFixed SkFixedSinCos(SkFixed radians, SkFixed* cosValuePtr) { | |
464 SkASSERT(SK_ARRAY_COUNT(gSkSinTable) == kTableSize); | |
465 | |
466 #ifdef BUILD_TABLE_AT_RUNTIME | |
467 static bool gFirstTime = true; | |
468 if (gFirstTime) { | |
469 build_sintable(gSinTable); | |
470 gFirstTime = false; | |
471 } | |
472 #endif | |
473 | |
474 // make radians positive | |
475 SkFixed sinValue, cosValue; | |
476 int32_t cosSign = 0; | |
477 int32_t sinSign = SkExtractSign(radians); | |
478 radians = SkApplySign(radians, sinSign); | |
479 // scale it to 0...1023 ... | |
480 | |
481 #ifdef INTERP_SINTABLE | |
482 radians = SkMulDiv(radians, 2 * kTableSize * 256, SK_FixedPI); | |
483 int findex = radians & (kTableSize * 256 - 1); | |
484 int index = findex >> 8; | |
485 int partial = findex & 255; | |
486 sinValue = interp_table(gSkSinTable, index, partial); | |
487 | |
488 findex = kTableSize * 256 - findex - 1; | |
489 index = findex >> 8; | |
490 partial = findex & 255; | |
491 cosValue = interp_table(gSkSinTable, index, partial); | |
492 | |
493 int quad = ((unsigned)radians / (kTableSize * 256)) & 3; | |
494 #else | |
495 radians = SkMulDiv(radians, 2 * kTableSize, SK_FixedPI); | |
496 int index = radians & (kTableSize - 1); | |
497 | |
498 if (index == 0) { | |
499 sinValue = 0; | |
500 cosValue = SK_Fixed1; | |
501 } else { | |
502 sinValue = gSkSinTable[index]; | |
503 cosValue = gSkSinTable[kTableSize - index]; | |
504 } | |
505 int quad = ((unsigned)radians / kTableSize) & 3; | |
506 #endif | |
507 | |
508 if (quad & 1) { | |
509 SkTSwap<SkFixed>(sinValue, cosValue); | |
510 } | |
511 if (quad & 2) { | |
512 sinSign = ~sinSign; | |
513 } | |
514 if (((quad - 1) & 2) == 0) { | |
515 cosSign = ~cosSign; | |
516 } | |
517 | |
518 // restore the sign for negative angles | |
519 sinValue = SkApplySign(sinValue, sinSign); | |
520 cosValue = SkApplySign(cosValue, cosSign); | |
521 | |
522 #ifdef SK_DEBUG | |
523 if (1) { | |
524 SkFixed sin2 = SkFixedMul(sinValue, sinValue); | |
525 SkFixed cos2 = SkFixedMul(cosValue, cosValue); | |
526 int diff = cos2 + sin2 - SK_Fixed1; | |
527 SkASSERT(SkAbs32(diff) <= 7); | |
528 } | |
529 #endif | |
530 | |
531 if (cosValuePtr) { | |
532 *cosValuePtr = cosValue; | |
533 } | |
534 return sinValue; | |
535 } | |
536 | |
537 /////////////////////////////////////////////////////////////////////////////// | |
538 | |
539 SkFixed SkFixedTan(SkFixed radians) { return SkCordicTan(radians); } | |
540 SkFixed SkFixedASin(SkFixed x) { return SkCordicASin(x); } | |
541 SkFixed SkFixedACos(SkFixed x) { return SkCordicACos(x); } | |
542 SkFixed SkFixedATan2(SkFixed y, SkFixed x) { return SkCordicATan2(y, x); } | |
543 SkFixed SkFixedExp(SkFixed x) { return SkCordicExp(x); } | |
544 SkFixed SkFixedLog(SkFixed x) { return SkCordicLog(x); } | |
545 | |
546 /////////////////////////////////////////////////////////////////////////////// | |
547 /////////////////////////////////////////////////////////////////////////////// | |
548 | |
549 #ifdef SK_DEBUG | |
550 | |
551 #include "SkRandom.h" | |
552 | |
553 #ifdef SkLONGLONG | |
554 static int symmetric_fixmul(int a, int b) { | |
555 int sa = SkExtractSign(a); | |
556 int sb = SkExtractSign(b); | |
557 | |
558 a = SkApplySign(a, sa); | |
559 b = SkApplySign(b, sb); | |
560 | |
561 #if 1 | |
562 int c = (int)(((SkLONGLONG)a * b) >> 16); | |
563 | |
564 return SkApplySign(c, sa ^ sb); | |
565 #else | |
566 SkLONGLONG ab = (SkLONGLONG)a * b; | |
567 if (sa ^ sb) { | |
568 ab = -ab; | |
569 } | |
570 return ab >> 16; | |
571 #endif | |
572 } | |
573 #endif | |
574 | |
575 #include "SkPoint.h" | |
576 | |
577 #ifdef SK_SUPPORT_UNITTEST | |
578 static void check_length(const SkPoint& p, SkScalar targetLen) { | |
579 float x = SkScalarToFloat(p.fX); | |
580 float y = SkScalarToFloat(p.fY); | |
581 float len = sk_float_sqrt(x*x + y*y); | |
582 | |
583 len /= SkScalarToFloat(targetLen); | |
584 | |
585 SkASSERT(len > 0.999f && len < 1.001f); | |
586 } | |
587 #endif | |
588 | |
589 #ifdef SK_CAN_USE_FLOAT | |
590 | |
591 static float nextFloat(SkRandom& rand) { | |
592 SkFloatIntUnion data; | |
593 data.fSignBitInt = rand.nextU(); | |
594 return data.fFloat; | |
595 } | |
596 | |
597 /* returns true if a == b as resulting from (int)x. Since it is undefined | |
598 what to do if the float exceeds 2^32-1, we check for that explicitly. | |
599 */ | |
600 static bool equal_float_native_skia(float x, uint32_t ni, uint32_t si) { | |
601 if (!(x == x)) { // NAN | |
602 return si == SK_MaxS32 || si == SK_MinS32; | |
603 } | |
604 // for out of range, C is undefined, but skia always should return NaN32 | |
605 if (x > SK_MaxS32) { | |
606 return si == SK_MaxS32; | |
607 } | |
608 if (x < -SK_MaxS32) { | |
609 return si == SK_MinS32; | |
610 } | |
611 return si == ni; | |
612 } | |
613 | |
614 static void assert_float_equal(const char op[], float x, uint32_t ni, | |
615 uint32_t si) { | |
616 if (!equal_float_native_skia(x, ni, si)) { | |
617 SkDebugf("-- %s float %g bits %x native %x skia %x\n", op, x, ni, si); | |
618 SkASSERT(!"oops"); | |
619 } | |
620 } | |
621 | |
622 static void test_float_cast(float x) { | |
623 int ix = (int)x; | |
624 int iix = SkFloatToIntCast(x); | |
625 assert_float_equal("cast", x, ix, iix); | |
626 } | |
627 | |
628 static void test_float_floor(float x) { | |
629 int ix = (int)floor(x); | |
630 int iix = SkFloatToIntFloor(x); | |
631 assert_float_equal("floor", x, ix, iix); | |
632 } | |
633 | |
634 static void test_float_round(float x) { | |
635 double xx = x + 0.5; // need intermediate double to avoid temp loss | |
636 int ix = (int)floor(xx); | |
637 int iix = SkFloatToIntRound(x); | |
638 assert_float_equal("round", x, ix, iix); | |
639 } | |
640 | |
641 static void test_float_ceil(float x) { | |
642 int ix = (int)ceil(x); | |
643 int iix = SkFloatToIntCeil(x); | |
644 assert_float_equal("ceil", x, ix, iix); | |
645 } | |
646 | |
647 static void test_float_conversions(float x) { | |
648 test_float_cast(x); | |
649 test_float_floor(x); | |
650 test_float_round(x); | |
651 test_float_ceil(x); | |
652 } | |
653 | |
654 static void test_int2float(int ival) { | |
655 float x0 = (float)ival; | |
656 float x1 = SkIntToFloatCast(ival); | |
657 float x2 = SkIntToFloatCast_NoOverflowCheck(ival); | |
658 SkASSERT(x0 == x1); | |
659 SkASSERT(x0 == x2); | |
660 } | |
661 | |
662 static void unittest_fastfloat() { | |
663 SkRandom rand; | |
664 size_t i; | |
665 | |
666 static const float gFloats[] = { | |
667 0.f, 1.f, 0.5f, 0.499999f, 0.5000001f, 1.f/3, | |
668 0.000000001f, 1000000000.f, // doesn't overflow | |
669 0.0000000001f, 10000000000.f // does overflow | |
670 }; | |
671 for (i = 0; i < SK_ARRAY_COUNT(gFloats); i++) { | |
672 // SkDebugf("---- test floats %g %d\n", gFloats[i], (int)gFloats[i]); | |
673 test_float_conversions(gFloats[i]); | |
674 test_float_conversions(-gFloats[i]); | |
675 } | |
676 | |
677 for (int outer = 0; outer < 100; outer++) { | |
678 rand.setSeed(outer); | |
679 for (i = 0; i < 100000; i++) { | |
680 float x = nextFloat(rand); | |
681 test_float_conversions(x); | |
682 } | |
683 | |
684 test_int2float(0); | |
685 test_int2float(1); | |
686 test_int2float(-1); | |
687 for (i = 0; i < 100000; i++) { | |
688 // for now only test ints that are 24bits or less, since we don't | |
689 // round (down) large ints the same as IEEE... | |
690 int ival = rand.nextU() & 0xFFFFFF; | |
691 test_int2float(ival); | |
692 test_int2float(-ival); | |
693 } | |
694 } | |
695 } | |
696 | |
697 #endif | |
698 | |
699 static void test_muldiv255() { | |
700 for (int a = 0; a <= 255; a++) { | |
701 for (int b = 0; b <= 255; b++) { | |
702 int ab = a * b; | |
703 float s = ab / 255.0f; | |
704 int round = (int)floorf(s + 0.5f); | |
705 int trunc = (int)floorf(s); | |
706 | |
707 int iround = SkMulDiv255Round(a, b); | |
708 int itrunc = SkMulDiv255Trunc(a, b); | |
709 | |
710 SkASSERT(iround == round); | |
711 SkASSERT(itrunc == trunc); | |
712 | |
713 SkASSERT(itrunc <= iround); | |
714 SkASSERT(iround <= a); | |
715 SkASSERT(iround <= b); | |
716 } | |
717 } | |
718 } | |
719 | |
720 void SkMath::UnitTest() { | |
721 #ifdef SK_SUPPORT_UNITTEST | |
722 int i; | |
723 int32_t x; | |
724 SkRandom rand; | |
725 | |
726 SkToS8(127); SkToS8(-128); SkToU8(255); | |
727 SkToS16(32767); SkToS16(-32768); SkToU16(65535); | |
728 SkToS32(2*1024*1024); SkToS32(-2*1024*1024); SkToU32(4*1024*1024); | |
729 | |
730 SkCordic_UnitTest(); | |
731 | |
732 // these should assert | |
733 #if 0 | |
734 SkToS8(128); | |
735 SkToS8(-129); | |
736 SkToU8(256); | |
737 SkToU8(-5); | |
738 | |
739 SkToS16(32768); | |
740 SkToS16(-32769); | |
741 SkToU16(65536); | |
742 SkToU16(-5); | |
743 | |
744 if (sizeof(size_t) > 4) { | |
745 SkToS32(4*1024*1024); | |
746 SkToS32(-4*1024*1024); | |
747 SkToU32(5*1024*1024); | |
748 SkToU32(-5); | |
749 } | |
750 #endif | |
751 | |
752 test_muldiv255(); | |
753 | |
754 #ifdef SK_DEBUG | |
755 { | |
756 SkScalar x = SK_ScalarNaN; | |
757 SkASSERT(SkScalarIsNaN(x)); | |
758 } | |
759 #endif | |
760 | |
761 for (i = 1; i <= 10; i++) { | |
762 x = SkCubeRootBits(i*i*i, 11); | |
763 SkASSERT(x == i); | |
764 } | |
765 | |
766 x = SkFixedSqrt(SK_Fixed1); | |
767 SkASSERT(x == SK_Fixed1); | |
768 x = SkFixedSqrt(SK_Fixed1/4); | |
769 SkASSERT(x == SK_Fixed1/2); | |
770 x = SkFixedSqrt(SK_Fixed1*4); | |
771 SkASSERT(x == SK_Fixed1*2); | |
772 | |
773 x = SkFractSqrt(SK_Fract1); | |
774 SkASSERT(x == SK_Fract1); | |
775 x = SkFractSqrt(SK_Fract1/4); | |
776 SkASSERT(x == SK_Fract1/2); | |
777 x = SkFractSqrt(SK_Fract1/16); | |
778 SkASSERT(x == SK_Fract1/4); | |
779 | |
780 for (i = 1; i < 100; i++) { | |
781 x = SkFixedSqrt(SK_Fixed1 * i * i); | |
782 SkASSERT(x == SK_Fixed1 * i); | |
783 } | |
784 | |
785 for (i = 0; i < 1000; i++) { | |
786 int value = rand.nextS16(); | |
787 int max = rand.nextU16(); | |
788 | |
789 int clamp = SkClampMax(value, max); | |
790 int clamp2 = value < 0 ? 0 : (value > max ? max : value); | |
791 SkASSERT(clamp == clamp2); | |
792 } | |
793 | |
794 for (i = 0; i < 100000; i++) { | |
795 SkPoint p; | |
796 | |
797 p.setLength(rand.nextS(), rand.nextS(), SK_Scalar1); | |
798 check_length(p, SK_Scalar1); | |
799 p.setLength(rand.nextS() >> 13, rand.nextS() >> 13, SK_Scalar1); | |
800 check_length(p, SK_Scalar1); | |
801 } | |
802 | |
803 { | |
804 SkFixed result = SkFixedDiv(100, 100); | |
805 SkASSERT(result == SK_Fixed1); | |
806 result = SkFixedDiv(1, SK_Fixed1); | |
807 SkASSERT(result == 1); | |
808 } | |
809 | |
810 #ifdef SK_CAN_USE_FLOAT | |
811 unittest_fastfloat(); | |
812 #endif | |
813 | |
814 #ifdef SkLONGLONG | |
815 for (i = 0; i < 100000; i++) { | |
816 SkFixed numer = rand.nextS(); | |
817 SkFixed denom = rand.nextS(); | |
818 SkFixed result = SkFixedDiv(numer, denom); | |
819 SkLONGLONG check = ((SkLONGLONG)numer << 16) / denom; | |
820 | |
821 (void)SkCLZ(numer); | |
822 (void)SkCLZ(denom); | |
823 | |
824 SkASSERT(result != (SkFixed)SK_NaN32); | |
825 if (check > SK_MaxS32) { | |
826 check = SK_MaxS32; | |
827 } else if (check < -SK_MaxS32) { | |
828 check = SK_MinS32; | |
829 } | |
830 SkASSERT(result == (int32_t)check); | |
831 | |
832 result = SkFractDiv(numer, denom); | |
833 check = ((SkLONGLONG)numer << 30) / denom; | |
834 | |
835 SkASSERT(result != (SkFixed)SK_NaN32); | |
836 if (check > SK_MaxS32) { | |
837 check = SK_MaxS32; | |
838 } else if (check < -SK_MaxS32) { | |
839 check = SK_MinS32; | |
840 } | |
841 SkASSERT(result == (int32_t)check); | |
842 | |
843 // make them <= 2^24, so we don't overflow in fixmul | |
844 numer = numer << 8 >> 8; | |
845 denom = denom << 8 >> 8; | |
846 | |
847 result = SkFixedMul(numer, denom); | |
848 SkFixed r2 = symmetric_fixmul(numer, denom); | |
849 // SkASSERT(result == r2); | |
850 | |
851 result = SkFixedMul(numer, numer); | |
852 r2 = SkFixedSquare(numer); | |
853 SkASSERT(result == r2); | |
854 | |
855 #ifdef SK_CAN_USE_FLOAT | |
856 if (numer >= 0 && denom >= 0) { | |
857 SkFixed mean = SkFixedMean(numer, denom); | |
858 float fm = sk_float_sqrt(sk_float_abs(SkFixedToFloat(numer) * SkFixe
dToFloat(denom))); | |
859 SkFixed mean2 = SkFloatToFixed(fm); | |
860 int diff = SkAbs32(mean - mean2); | |
861 SkASSERT(diff <= 1); | |
862 } | |
863 | |
864 { | |
865 SkFixed mod = SkFixedMod(numer, denom); | |
866 float n = SkFixedToFloat(numer); | |
867 float d = SkFixedToFloat(denom); | |
868 float m = sk_float_mod(n, d); | |
869 #if 0 | |
870 SkDebugf("%g mod %g = %g [%g]\n", | |
871 SkFixedToFloat(numer), SkFixedToFloat(denom), | |
872 SkFixedToFloat(mod), m); | |
873 #endif | |
874 SkASSERT(mod == 0 || (mod < 0) == (m < 0)); // ensure the same sign | |
875 int diff = SkAbs32(mod - SkFloatToFixed(m)); | |
876 SkASSERT((diff >> 7) == 0); | |
877 } | |
878 #endif | |
879 } | |
880 #endif | |
881 | |
882 #ifdef SK_CAN_USE_FLOAT | |
883 for (i = 0; i < 100000; i++) { | |
884 SkFract x = rand.nextU() >> 1; | |
885 double xx = (double)x / SK_Fract1; | |
886 SkFract xr = SkFractSqrt(x); | |
887 SkFract check = SkFloatToFract(sqrt(xx)); | |
888 SkASSERT(xr == check || xr == check-1 || xr == check+1); | |
889 | |
890 xr = SkFixedSqrt(x); | |
891 xx = (double)x / SK_Fixed1; | |
892 check = SkFloatToFixed(sqrt(xx)); | |
893 SkASSERT(xr == check || xr == check-1); | |
894 | |
895 xr = SkSqrt32(x); | |
896 xx = (double)x; | |
897 check = (int32_t)sqrt(xx); | |
898 SkASSERT(xr == check || xr == check-1); | |
899 } | |
900 #endif | |
901 | |
902 #if !defined(SK_SCALAR_IS_FLOAT) && defined(SK_CAN_USE_FLOAT) | |
903 { | |
904 SkFixed s, c; | |
905 s = SkFixedSinCos(0, &c); | |
906 SkASSERT(s == 0); | |
907 SkASSERT(c == SK_Fixed1); | |
908 } | |
909 | |
910 int maxDiff = 0; | |
911 for (i = 0; i < 10000; i++) { | |
912 SkFixed rads = rand.nextS() >> 10; | |
913 double frads = SkFixedToFloat(rads); | |
914 | |
915 SkFixed s, c; | |
916 s = SkScalarSinCos(rads, &c); | |
917 | |
918 double fs = sin(frads); | |
919 double fc = cos(frads); | |
920 | |
921 SkFixed is = SkFloatToFixed(fs); | |
922 SkFixed ic = SkFloatToFixed(fc); | |
923 | |
924 maxDiff = SkMax32(maxDiff, SkAbs32(is - s)); | |
925 maxDiff = SkMax32(maxDiff, SkAbs32(ic - c)); | |
926 } | |
927 SkDebugf("SinCos: maximum error = %d\n", maxDiff); | |
928 #endif | |
929 #endif | |
930 } | |
931 | |
932 #endif | |
OLD | NEW |