| Index: skia/corecg/SkMath.cpp
|
| ===================================================================
|
| --- skia/corecg/SkMath.cpp (revision 16859)
|
| +++ skia/corecg/SkMath.cpp (working copy)
|
| @@ -1,932 +0,0 @@
|
| -/*
|
| - * Copyright (C) 2006-2008 The Android Open Source Project
|
| - *
|
| - * Licensed under the Apache License, Version 2.0 (the "License");
|
| - * you may not use this file except in compliance with the License.
|
| - * You may obtain a copy of the License at
|
| - *
|
| - * http://www.apache.org/licenses/LICENSE-2.0
|
| - *
|
| - * Unless required by applicable law or agreed to in writing, software
|
| - * distributed under the License is distributed on an "AS IS" BASIS,
|
| - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| - * See the License for the specific language governing permissions and
|
| - * limitations under the License.
|
| - */
|
| -
|
| -#include "SkMath.h"
|
| -#include "SkCordic.h"
|
| -#include "SkFloatBits.h"
|
| -#include "SkFloatingPoint.h"
|
| -#include "Sk64.h"
|
| -#include "SkScalar.h"
|
| -
|
| -#ifdef SK_SCALAR_IS_FLOAT
|
| - const uint32_t gIEEENotANumber = 0x7FFFFFFF;
|
| - const uint32_t gIEEEInfinity = 0x7F800000;
|
| -#endif
|
| -
|
| -#define sub_shift(zeros, x, n) \
|
| - zeros -= n; \
|
| - x >>= n
|
| -
|
| -int SkCLZ_portable(uint32_t x) {
|
| - if (x == 0) {
|
| - return 32;
|
| - }
|
| -
|
| -#ifdef SK_CPU_HAS_CONDITIONAL_INSTR
|
| - int zeros = 31;
|
| - if (x & 0xFFFF0000) {
|
| - sub_shift(zeros, x, 16);
|
| - }
|
| - if (x & 0xFF00) {
|
| - sub_shift(zeros, x, 8);
|
| - }
|
| - if (x & 0xF0) {
|
| - sub_shift(zeros, x, 4);
|
| - }
|
| - if (x & 0xC) {
|
| - sub_shift(zeros, x, 2);
|
| - }
|
| - if (x & 0x2) {
|
| - sub_shift(zeros, x, 1);
|
| - }
|
| -#else
|
| - int zeros = ((x >> 16) - 1) >> 31 << 4;
|
| - x <<= zeros;
|
| -
|
| - int nonzero = ((x >> 24) - 1) >> 31 << 3;
|
| - zeros += nonzero;
|
| - x <<= nonzero;
|
| -
|
| - nonzero = ((x >> 28) - 1) >> 31 << 2;
|
| - zeros += nonzero;
|
| - x <<= nonzero;
|
| -
|
| - nonzero = ((x >> 30) - 1) >> 31 << 1;
|
| - zeros += nonzero;
|
| - x <<= nonzero;
|
| -
|
| - zeros += (~x) >> 31;
|
| -#endif
|
| -
|
| - return zeros;
|
| -}
|
| -
|
| -int32_t SkMulDiv(int32_t numer1, int32_t numer2, int32_t denom) {
|
| - SkASSERT(denom);
|
| -
|
| - Sk64 tmp;
|
| - tmp.setMul(numer1, numer2);
|
| - tmp.div(denom, Sk64::kTrunc_DivOption);
|
| - return tmp.get32();
|
| -}
|
| -
|
| -int32_t SkMulShift(int32_t a, int32_t b, unsigned shift) {
|
| - int sign = SkExtractSign(a ^ b);
|
| -
|
| - if (shift > 63) {
|
| - return sign;
|
| - }
|
| -
|
| - a = SkAbs32(a);
|
| - b = SkAbs32(b);
|
| -
|
| - uint32_t ah = a >> 16;
|
| - uint32_t al = a & 0xFFFF;
|
| - uint32_t bh = b >> 16;
|
| - uint32_t bl = b & 0xFFFF;
|
| -
|
| - uint32_t A = ah * bh;
|
| - uint32_t B = ah * bl + al * bh;
|
| - uint32_t C = al * bl;
|
| -
|
| - /* [ A ]
|
| - [ B ]
|
| - [ C ]
|
| - */
|
| - uint32_t lo = C + (B << 16);
|
| - int32_t hi = A + (B >> 16) + (lo < C);
|
| -
|
| - if (sign < 0) {
|
| - hi = -hi - Sk32ToBool(lo);
|
| - lo = 0 - lo;
|
| - }
|
| -
|
| - if (shift == 0) {
|
| -#ifdef SK_DEBUGx
|
| - SkASSERT(((int32_t)lo >> 31) == hi);
|
| -#endif
|
| - return lo;
|
| - } else if (shift >= 32) {
|
| - return hi >> (shift - 32);
|
| - } else {
|
| -#ifdef SK_DEBUGx
|
| - int32_t tmp = hi >> shift;
|
| - SkASSERT(tmp == 0 || tmp == -1);
|
| -#endif
|
| - // we want (hi << (32 - shift)) | (lo >> shift) but rounded
|
| - int roundBit = (lo >> (shift - 1)) & 1;
|
| - return ((hi << (32 - shift)) | (lo >> shift)) + roundBit;
|
| - }
|
| -}
|
| -
|
| -SkFixed SkFixedMul_portable(SkFixed a, SkFixed b) {
|
| -#if 0
|
| - Sk64 tmp;
|
| -
|
| - tmp.setMul(a, b);
|
| - tmp.shiftRight(16);
|
| - return tmp.fLo;
|
| -#elif defined(SkLONGLONG)
|
| - return (SkLONGLONG)a * b >> 16;
|
| -#else
|
| - int sa = SkExtractSign(a);
|
| - int sb = SkExtractSign(b);
|
| - // now make them positive
|
| - a = SkApplySign(a, sa);
|
| - b = SkApplySign(b, sb);
|
| -
|
| - uint32_t ah = a >> 16;
|
| - uint32_t al = a & 0xFFFF;
|
| - uint32_t bh = b >> 16;
|
| - uint32_t bl = b & 0xFFFF;
|
| -
|
| - uint32_t R = ah * b + al * bh + (al * bl >> 16);
|
| -
|
| - return SkApplySign(R, sa ^ sb);
|
| -#endif
|
| -}
|
| -
|
| -SkFract SkFractMul_portable(SkFract a, SkFract b) {
|
| -#if 0
|
| - Sk64 tmp;
|
| - tmp.setMul(a, b);
|
| - return tmp.getFract();
|
| -#elif defined(SkLONGLONG)
|
| - return (SkLONGLONG)a * b >> 30;
|
| -#else
|
| - int sa = SkExtractSign(a);
|
| - int sb = SkExtractSign(b);
|
| - // now make them positive
|
| - a = SkApplySign(a, sa);
|
| - b = SkApplySign(b, sb);
|
| -
|
| - uint32_t ah = a >> 16;
|
| - uint32_t al = a & 0xFFFF;
|
| - uint32_t bh = b >> 16;
|
| - uint32_t bl = b & 0xFFFF;
|
| -
|
| - uint32_t A = ah * bh;
|
| - uint32_t B = ah * bl + al * bh;
|
| - uint32_t C = al * bl;
|
| -
|
| - /* [ A ]
|
| - [ B ]
|
| - [ C ]
|
| - */
|
| - uint32_t Lo = C + (B << 16);
|
| - uint32_t Hi = A + (B >>16) + (Lo < C);
|
| -
|
| - SkASSERT((Hi >> 29) == 0); // else overflow
|
| -
|
| - int32_t R = (Hi << 2) + (Lo >> 30);
|
| -
|
| - return SkApplySign(R, sa ^ sb);
|
| -#endif
|
| -}
|
| -
|
| -int SkFixedMulCommon(SkFixed a, int b, int bias) {
|
| - // this function only works if b is 16bits
|
| - SkASSERT(b == (int16_t)b);
|
| - SkASSERT(b >= 0);
|
| -
|
| - int sa = SkExtractSign(a);
|
| - a = SkApplySign(a, sa);
|
| - uint32_t ah = a >> 16;
|
| - uint32_t al = a & 0xFFFF;
|
| - uint32_t R = ah * b + ((al * b + bias) >> 16);
|
| - return SkApplySign(R, sa);
|
| -}
|
| -
|
| -#ifdef SK_DEBUGx
|
| - #define TEST_FASTINVERT
|
| -#endif
|
| -
|
| -SkFixed SkFixedFastInvert(SkFixed x) {
|
| -/* Adapted (stolen) from gglRecip()
|
| -*/
|
| -
|
| - if (x == SK_Fixed1) {
|
| - return SK_Fixed1;
|
| - }
|
| -
|
| - int sign = SkExtractSign(x);
|
| - uint32_t a = SkApplySign(x, sign);
|
| -
|
| - if (a <= 2) {
|
| - return SkApplySign(SK_MaxS32, sign);
|
| - }
|
| -
|
| -#ifdef TEST_FASTINVERT
|
| - SkFixed orig = a;
|
| - uint32_t slow = SkFixedDiv(SK_Fixed1, a);
|
| -#endif
|
| -
|
| - // normalize a
|
| - int lz = SkCLZ(a);
|
| - a = a << lz >> 16;
|
| -
|
| - // compute 1/a approximation (0.5 <= a < 1.0)
|
| - uint32_t r = 0x17400 - a; // (2.90625 (~2.914) - 2*a) >> 1
|
| -
|
| - // Newton-Raphson iteration:
|
| - // x = r*(2 - a*r) = ((r/2)*(1 - a*r/2))*4
|
| - r = ( (0x10000 - ((a*r)>>16)) * r ) >> 15;
|
| - r = ( (0x10000 - ((a*r)>>16)) * r ) >> (30 - lz);
|
| -
|
| -#ifdef TEST_FASTINVERT
|
| - SkDebugf("SkFixedFastInvert(%x %g) = %x %g Slow[%x %g]\n",
|
| - orig, orig/65536.,
|
| - r, r/65536.,
|
| - slow, slow/65536.);
|
| -#endif
|
| -
|
| - return SkApplySign(r, sign);
|
| -}
|
| -
|
| -///////////////////////////////////////////////////////////////////////////////
|
| -
|
| -#define DIVBITS_ITER(n) \
|
| - case n: \
|
| - if ((numer = (numer << 1) - denom) >= 0) \
|
| - result |= 1 << (n - 1); else numer += denom
|
| -
|
| -int32_t SkDivBits(int32_t numer, int32_t denom, int shift_bias) {
|
| - SkASSERT(denom != 0);
|
| - if (numer == 0) {
|
| - return 0;
|
| - }
|
| -
|
| - // make numer and denom positive, and sign hold the resulting sign
|
| - int32_t sign = SkExtractSign(numer ^ denom);
|
| - numer = SkAbs32(numer);
|
| - denom = SkAbs32(denom);
|
| -
|
| - int nbits = SkCLZ(numer) - 1;
|
| - int dbits = SkCLZ(denom) - 1;
|
| - int bits = shift_bias - nbits + dbits;
|
| -
|
| - if (bits < 0) { // answer will underflow
|
| - return 0;
|
| - }
|
| - if (bits > 31) { // answer will overflow
|
| - return SkApplySign(SK_MaxS32, sign);
|
| - }
|
| -
|
| - denom <<= dbits;
|
| - numer <<= nbits;
|
| -
|
| - SkFixed result = 0;
|
| -
|
| - // do the first one
|
| - if ((numer -= denom) >= 0) {
|
| - result = 1;
|
| - } else {
|
| - numer += denom;
|
| - }
|
| -
|
| - // Now fall into our switch statement if there are more bits to compute
|
| - if (bits > 0) {
|
| - // make room for the rest of the answer bits
|
| - result <<= bits;
|
| - switch (bits) {
|
| - DIVBITS_ITER(31); DIVBITS_ITER(30); DIVBITS_ITER(29);
|
| - DIVBITS_ITER(28); DIVBITS_ITER(27); DIVBITS_ITER(26);
|
| - DIVBITS_ITER(25); DIVBITS_ITER(24); DIVBITS_ITER(23);
|
| - DIVBITS_ITER(22); DIVBITS_ITER(21); DIVBITS_ITER(20);
|
| - DIVBITS_ITER(19); DIVBITS_ITER(18); DIVBITS_ITER(17);
|
| - DIVBITS_ITER(16); DIVBITS_ITER(15); DIVBITS_ITER(14);
|
| - DIVBITS_ITER(13); DIVBITS_ITER(12); DIVBITS_ITER(11);
|
| - DIVBITS_ITER(10); DIVBITS_ITER( 9); DIVBITS_ITER( 8);
|
| - DIVBITS_ITER( 7); DIVBITS_ITER( 6); DIVBITS_ITER( 5);
|
| - DIVBITS_ITER( 4); DIVBITS_ITER( 3); DIVBITS_ITER( 2);
|
| - // we merge these last two together, makes GCC make better ARM
|
| - default:
|
| - DIVBITS_ITER( 1);
|
| - }
|
| - }
|
| -
|
| - if (result < 0) {
|
| - result = SK_MaxS32;
|
| - }
|
| - return SkApplySign(result, sign);
|
| -}
|
| -
|
| -/* mod(float numer, float denom) seems to always return the sign
|
| - of the numer, so that's what we do too
|
| -*/
|
| -SkFixed SkFixedMod(SkFixed numer, SkFixed denom) {
|
| - int sn = SkExtractSign(numer);
|
| - int sd = SkExtractSign(denom);
|
| -
|
| - numer = SkApplySign(numer, sn);
|
| - denom = SkApplySign(denom, sd);
|
| -
|
| - if (numer < denom) {
|
| - return SkApplySign(numer, sn);
|
| - } else if (numer == denom) {
|
| - return 0;
|
| - } else {
|
| - SkFixed div = SkFixedDiv(numer, denom);
|
| - return SkApplySign(SkFixedMul(denom, div & 0xFFFF), sn);
|
| - }
|
| -}
|
| -
|
| -/* www.worldserver.com/turk/computergraphics/FixedSqrt.pdf
|
| -*/
|
| -int32_t SkSqrtBits(int32_t x, int count) {
|
| - SkASSERT(x >= 0 && count > 0 && (unsigned)count <= 30);
|
| -
|
| - uint32_t root = 0;
|
| - uint32_t remHi = 0;
|
| - uint32_t remLo = x;
|
| -
|
| - do {
|
| - root <<= 1;
|
| -
|
| - remHi = (remHi<<2) | (remLo>>30);
|
| - remLo <<= 2;
|
| -
|
| - uint32_t testDiv = (root << 1) + 1;
|
| - if (remHi >= testDiv) {
|
| - remHi -= testDiv;
|
| - root++;
|
| - }
|
| - } while (--count >= 0);
|
| -
|
| - return root;
|
| -}
|
| -
|
| -int32_t SkCubeRootBits(int32_t value, int bits) {
|
| - SkASSERT(bits > 0);
|
| -
|
| - int sign = SkExtractSign(value);
|
| - value = SkApplySign(value, sign);
|
| -
|
| - uint32_t root = 0;
|
| - uint32_t curr = (uint32_t)value >> 30;
|
| - value <<= 2;
|
| -
|
| - do {
|
| - root <<= 1;
|
| - uint32_t guess = root * root + root;
|
| - guess = (guess << 1) + guess; // guess *= 3
|
| - if (guess < curr) {
|
| - curr -= guess + 1;
|
| - root |= 1;
|
| - }
|
| - curr = (curr << 3) | ((uint32_t)value >> 29);
|
| - value <<= 3;
|
| - } while (--bits);
|
| -
|
| - return SkApplySign(root, sign);
|
| -}
|
| -
|
| -SkFixed SkFixedMean(SkFixed a, SkFixed b) {
|
| - Sk64 tmp;
|
| -
|
| - tmp.setMul(a, b);
|
| - return tmp.getSqrt();
|
| -}
|
| -
|
| -///////////////////////////////////////////////////////////////////////////////
|
| -
|
| -#ifdef SK_SCALAR_IS_FLOAT
|
| -float SkScalarSinCos(float radians, float* cosValue) {
|
| - float sinValue = sk_float_sin(radians);
|
| -
|
| - if (cosValue) {
|
| - *cosValue = sk_float_cos(radians);
|
| - if (SkScalarNearlyZero(*cosValue)) {
|
| - *cosValue = 0;
|
| - }
|
| - }
|
| -
|
| - if (SkScalarNearlyZero(sinValue)) {
|
| - sinValue = 0;
|
| - }
|
| - return sinValue;
|
| -}
|
| -#endif
|
| -
|
| -#define INTERP_SINTABLE
|
| -#define BUILD_TABLE_AT_RUNTIMEx
|
| -
|
| -#define kTableSize 256
|
| -
|
| -#ifdef BUILD_TABLE_AT_RUNTIME
|
| - static uint16_t gSkSinTable[kTableSize];
|
| -
|
| - static void build_sintable(uint16_t table[]) {
|
| - for (int i = 0; i < kTableSize; i++) {
|
| - double rad = i * 3.141592653589793 / (2*kTableSize);
|
| - double val = sin(rad);
|
| - int ival = (int)(val * SK_Fixed1);
|
| - table[i] = SkToU16(ival);
|
| - }
|
| - }
|
| -#else
|
| - #include "SkSinTable.h"
|
| -#endif
|
| -
|
| -#define SK_Fract1024SizeOver2PI 0x28BE60 /* floatToFract(1024 / 2PI) */
|
| -
|
| -#ifdef INTERP_SINTABLE
|
| -static SkFixed interp_table(const uint16_t table[], int index, int partial255) {
|
| - SkASSERT((unsigned)index < kTableSize);
|
| - SkASSERT((unsigned)partial255 <= 255);
|
| -
|
| - SkFixed lower = table[index];
|
| - SkFixed upper = (index == kTableSize - 1) ? SK_Fixed1 : table[index + 1];
|
| -
|
| - SkASSERT(lower < upper);
|
| - SkASSERT(lower >= 0);
|
| - SkASSERT(upper <= SK_Fixed1);
|
| -
|
| - partial255 += (partial255 >> 7);
|
| - return lower + ((upper - lower) * partial255 >> 8);
|
| -}
|
| -#endif
|
| -
|
| -SkFixed SkFixedSinCos(SkFixed radians, SkFixed* cosValuePtr) {
|
| - SkASSERT(SK_ARRAY_COUNT(gSkSinTable) == kTableSize);
|
| -
|
| -#ifdef BUILD_TABLE_AT_RUNTIME
|
| - static bool gFirstTime = true;
|
| - if (gFirstTime) {
|
| - build_sintable(gSinTable);
|
| - gFirstTime = false;
|
| - }
|
| -#endif
|
| -
|
| - // make radians positive
|
| - SkFixed sinValue, cosValue;
|
| - int32_t cosSign = 0;
|
| - int32_t sinSign = SkExtractSign(radians);
|
| - radians = SkApplySign(radians, sinSign);
|
| - // scale it to 0...1023 ...
|
| -
|
| -#ifdef INTERP_SINTABLE
|
| - radians = SkMulDiv(radians, 2 * kTableSize * 256, SK_FixedPI);
|
| - int findex = radians & (kTableSize * 256 - 1);
|
| - int index = findex >> 8;
|
| - int partial = findex & 255;
|
| - sinValue = interp_table(gSkSinTable, index, partial);
|
| -
|
| - findex = kTableSize * 256 - findex - 1;
|
| - index = findex >> 8;
|
| - partial = findex & 255;
|
| - cosValue = interp_table(gSkSinTable, index, partial);
|
| -
|
| - int quad = ((unsigned)radians / (kTableSize * 256)) & 3;
|
| -#else
|
| - radians = SkMulDiv(radians, 2 * kTableSize, SK_FixedPI);
|
| - int index = radians & (kTableSize - 1);
|
| -
|
| - if (index == 0) {
|
| - sinValue = 0;
|
| - cosValue = SK_Fixed1;
|
| - } else {
|
| - sinValue = gSkSinTable[index];
|
| - cosValue = gSkSinTable[kTableSize - index];
|
| - }
|
| - int quad = ((unsigned)radians / kTableSize) & 3;
|
| -#endif
|
| -
|
| - if (quad & 1) {
|
| - SkTSwap<SkFixed>(sinValue, cosValue);
|
| - }
|
| - if (quad & 2) {
|
| - sinSign = ~sinSign;
|
| - }
|
| - if (((quad - 1) & 2) == 0) {
|
| - cosSign = ~cosSign;
|
| - }
|
| -
|
| - // restore the sign for negative angles
|
| - sinValue = SkApplySign(sinValue, sinSign);
|
| - cosValue = SkApplySign(cosValue, cosSign);
|
| -
|
| -#ifdef SK_DEBUG
|
| - if (1) {
|
| - SkFixed sin2 = SkFixedMul(sinValue, sinValue);
|
| - SkFixed cos2 = SkFixedMul(cosValue, cosValue);
|
| - int diff = cos2 + sin2 - SK_Fixed1;
|
| - SkASSERT(SkAbs32(diff) <= 7);
|
| - }
|
| -#endif
|
| -
|
| - if (cosValuePtr) {
|
| - *cosValuePtr = cosValue;
|
| - }
|
| - return sinValue;
|
| -}
|
| -
|
| -///////////////////////////////////////////////////////////////////////////////
|
| -
|
| -SkFixed SkFixedTan(SkFixed radians) { return SkCordicTan(radians); }
|
| -SkFixed SkFixedASin(SkFixed x) { return SkCordicASin(x); }
|
| -SkFixed SkFixedACos(SkFixed x) { return SkCordicACos(x); }
|
| -SkFixed SkFixedATan2(SkFixed y, SkFixed x) { return SkCordicATan2(y, x); }
|
| -SkFixed SkFixedExp(SkFixed x) { return SkCordicExp(x); }
|
| -SkFixed SkFixedLog(SkFixed x) { return SkCordicLog(x); }
|
| -
|
| -///////////////////////////////////////////////////////////////////////////////
|
| -///////////////////////////////////////////////////////////////////////////////
|
| -
|
| -#ifdef SK_DEBUG
|
| -
|
| -#include "SkRandom.h"
|
| -
|
| -#ifdef SkLONGLONG
|
| -static int symmetric_fixmul(int a, int b) {
|
| - int sa = SkExtractSign(a);
|
| - int sb = SkExtractSign(b);
|
| -
|
| - a = SkApplySign(a, sa);
|
| - b = SkApplySign(b, sb);
|
| -
|
| -#if 1
|
| - int c = (int)(((SkLONGLONG)a * b) >> 16);
|
| -
|
| - return SkApplySign(c, sa ^ sb);
|
| -#else
|
| - SkLONGLONG ab = (SkLONGLONG)a * b;
|
| - if (sa ^ sb) {
|
| - ab = -ab;
|
| - }
|
| - return ab >> 16;
|
| -#endif
|
| -}
|
| -#endif
|
| -
|
| -#include "SkPoint.h"
|
| -
|
| -#ifdef SK_SUPPORT_UNITTEST
|
| -static void check_length(const SkPoint& p, SkScalar targetLen) {
|
| - float x = SkScalarToFloat(p.fX);
|
| - float y = SkScalarToFloat(p.fY);
|
| - float len = sk_float_sqrt(x*x + y*y);
|
| -
|
| - len /= SkScalarToFloat(targetLen);
|
| -
|
| - SkASSERT(len > 0.999f && len < 1.001f);
|
| -}
|
| -#endif
|
| -
|
| -#ifdef SK_CAN_USE_FLOAT
|
| -
|
| -static float nextFloat(SkRandom& rand) {
|
| - SkFloatIntUnion data;
|
| - data.fSignBitInt = rand.nextU();
|
| - return data.fFloat;
|
| -}
|
| -
|
| -/* returns true if a == b as resulting from (int)x. Since it is undefined
|
| - what to do if the float exceeds 2^32-1, we check for that explicitly.
|
| -*/
|
| -static bool equal_float_native_skia(float x, uint32_t ni, uint32_t si) {
|
| - if (!(x == x)) { // NAN
|
| - return si == SK_MaxS32 || si == SK_MinS32;
|
| - }
|
| - // for out of range, C is undefined, but skia always should return NaN32
|
| - if (x > SK_MaxS32) {
|
| - return si == SK_MaxS32;
|
| - }
|
| - if (x < -SK_MaxS32) {
|
| - return si == SK_MinS32;
|
| - }
|
| - return si == ni;
|
| -}
|
| -
|
| -static void assert_float_equal(const char op[], float x, uint32_t ni,
|
| - uint32_t si) {
|
| - if (!equal_float_native_skia(x, ni, si)) {
|
| - SkDebugf("-- %s float %g bits %x native %x skia %x\n", op, x, ni, si);
|
| - SkASSERT(!"oops");
|
| - }
|
| -}
|
| -
|
| -static void test_float_cast(float x) {
|
| - int ix = (int)x;
|
| - int iix = SkFloatToIntCast(x);
|
| - assert_float_equal("cast", x, ix, iix);
|
| -}
|
| -
|
| -static void test_float_floor(float x) {
|
| - int ix = (int)floor(x);
|
| - int iix = SkFloatToIntFloor(x);
|
| - assert_float_equal("floor", x, ix, iix);
|
| -}
|
| -
|
| -static void test_float_round(float x) {
|
| - double xx = x + 0.5; // need intermediate double to avoid temp loss
|
| - int ix = (int)floor(xx);
|
| - int iix = SkFloatToIntRound(x);
|
| - assert_float_equal("round", x, ix, iix);
|
| -}
|
| -
|
| -static void test_float_ceil(float x) {
|
| - int ix = (int)ceil(x);
|
| - int iix = SkFloatToIntCeil(x);
|
| - assert_float_equal("ceil", x, ix, iix);
|
| -}
|
| -
|
| -static void test_float_conversions(float x) {
|
| - test_float_cast(x);
|
| - test_float_floor(x);
|
| - test_float_round(x);
|
| - test_float_ceil(x);
|
| -}
|
| -
|
| -static void test_int2float(int ival) {
|
| - float x0 = (float)ival;
|
| - float x1 = SkIntToFloatCast(ival);
|
| - float x2 = SkIntToFloatCast_NoOverflowCheck(ival);
|
| - SkASSERT(x0 == x1);
|
| - SkASSERT(x0 == x2);
|
| -}
|
| -
|
| -static void unittest_fastfloat() {
|
| - SkRandom rand;
|
| - size_t i;
|
| -
|
| - static const float gFloats[] = {
|
| - 0.f, 1.f, 0.5f, 0.499999f, 0.5000001f, 1.f/3,
|
| - 0.000000001f, 1000000000.f, // doesn't overflow
|
| - 0.0000000001f, 10000000000.f // does overflow
|
| - };
|
| - for (i = 0; i < SK_ARRAY_COUNT(gFloats); i++) {
|
| -// SkDebugf("---- test floats %g %d\n", gFloats[i], (int)gFloats[i]);
|
| - test_float_conversions(gFloats[i]);
|
| - test_float_conversions(-gFloats[i]);
|
| - }
|
| -
|
| - for (int outer = 0; outer < 100; outer++) {
|
| - rand.setSeed(outer);
|
| - for (i = 0; i < 100000; i++) {
|
| - float x = nextFloat(rand);
|
| - test_float_conversions(x);
|
| - }
|
| -
|
| - test_int2float(0);
|
| - test_int2float(1);
|
| - test_int2float(-1);
|
| - for (i = 0; i < 100000; i++) {
|
| - // for now only test ints that are 24bits or less, since we don't
|
| - // round (down) large ints the same as IEEE...
|
| - int ival = rand.nextU() & 0xFFFFFF;
|
| - test_int2float(ival);
|
| - test_int2float(-ival);
|
| - }
|
| - }
|
| -}
|
| -
|
| -#endif
|
| -
|
| -static void test_muldiv255() {
|
| - for (int a = 0; a <= 255; a++) {
|
| - for (int b = 0; b <= 255; b++) {
|
| - int ab = a * b;
|
| - float s = ab / 255.0f;
|
| - int round = (int)floorf(s + 0.5f);
|
| - int trunc = (int)floorf(s);
|
| -
|
| - int iround = SkMulDiv255Round(a, b);
|
| - int itrunc = SkMulDiv255Trunc(a, b);
|
| -
|
| - SkASSERT(iround == round);
|
| - SkASSERT(itrunc == trunc);
|
| -
|
| - SkASSERT(itrunc <= iround);
|
| - SkASSERT(iround <= a);
|
| - SkASSERT(iround <= b);
|
| - }
|
| - }
|
| -}
|
| -
|
| -void SkMath::UnitTest() {
|
| -#ifdef SK_SUPPORT_UNITTEST
|
| - int i;
|
| - int32_t x;
|
| - SkRandom rand;
|
| -
|
| - SkToS8(127); SkToS8(-128); SkToU8(255);
|
| - SkToS16(32767); SkToS16(-32768); SkToU16(65535);
|
| - SkToS32(2*1024*1024); SkToS32(-2*1024*1024); SkToU32(4*1024*1024);
|
| -
|
| - SkCordic_UnitTest();
|
| -
|
| - // these should assert
|
| -#if 0
|
| - SkToS8(128);
|
| - SkToS8(-129);
|
| - SkToU8(256);
|
| - SkToU8(-5);
|
| -
|
| - SkToS16(32768);
|
| - SkToS16(-32769);
|
| - SkToU16(65536);
|
| - SkToU16(-5);
|
| -
|
| - if (sizeof(size_t) > 4) {
|
| - SkToS32(4*1024*1024);
|
| - SkToS32(-4*1024*1024);
|
| - SkToU32(5*1024*1024);
|
| - SkToU32(-5);
|
| - }
|
| -#endif
|
| -
|
| - test_muldiv255();
|
| -
|
| -#ifdef SK_DEBUG
|
| - {
|
| - SkScalar x = SK_ScalarNaN;
|
| - SkASSERT(SkScalarIsNaN(x));
|
| - }
|
| -#endif
|
| -
|
| - for (i = 1; i <= 10; i++) {
|
| - x = SkCubeRootBits(i*i*i, 11);
|
| - SkASSERT(x == i);
|
| - }
|
| -
|
| - x = SkFixedSqrt(SK_Fixed1);
|
| - SkASSERT(x == SK_Fixed1);
|
| - x = SkFixedSqrt(SK_Fixed1/4);
|
| - SkASSERT(x == SK_Fixed1/2);
|
| - x = SkFixedSqrt(SK_Fixed1*4);
|
| - SkASSERT(x == SK_Fixed1*2);
|
| -
|
| - x = SkFractSqrt(SK_Fract1);
|
| - SkASSERT(x == SK_Fract1);
|
| - x = SkFractSqrt(SK_Fract1/4);
|
| - SkASSERT(x == SK_Fract1/2);
|
| - x = SkFractSqrt(SK_Fract1/16);
|
| - SkASSERT(x == SK_Fract1/4);
|
| -
|
| - for (i = 1; i < 100; i++) {
|
| - x = SkFixedSqrt(SK_Fixed1 * i * i);
|
| - SkASSERT(x == SK_Fixed1 * i);
|
| - }
|
| -
|
| - for (i = 0; i < 1000; i++) {
|
| - int value = rand.nextS16();
|
| - int max = rand.nextU16();
|
| -
|
| - int clamp = SkClampMax(value, max);
|
| - int clamp2 = value < 0 ? 0 : (value > max ? max : value);
|
| - SkASSERT(clamp == clamp2);
|
| - }
|
| -
|
| - for (i = 0; i < 100000; i++) {
|
| - SkPoint p;
|
| -
|
| - p.setLength(rand.nextS(), rand.nextS(), SK_Scalar1);
|
| - check_length(p, SK_Scalar1);
|
| - p.setLength(rand.nextS() >> 13, rand.nextS() >> 13, SK_Scalar1);
|
| - check_length(p, SK_Scalar1);
|
| - }
|
| -
|
| - {
|
| - SkFixed result = SkFixedDiv(100, 100);
|
| - SkASSERT(result == SK_Fixed1);
|
| - result = SkFixedDiv(1, SK_Fixed1);
|
| - SkASSERT(result == 1);
|
| - }
|
| -
|
| -#ifdef SK_CAN_USE_FLOAT
|
| - unittest_fastfloat();
|
| -#endif
|
| -
|
| -#ifdef SkLONGLONG
|
| - for (i = 0; i < 100000; i++) {
|
| - SkFixed numer = rand.nextS();
|
| - SkFixed denom = rand.nextS();
|
| - SkFixed result = SkFixedDiv(numer, denom);
|
| - SkLONGLONG check = ((SkLONGLONG)numer << 16) / denom;
|
| -
|
| - (void)SkCLZ(numer);
|
| - (void)SkCLZ(denom);
|
| -
|
| - SkASSERT(result != (SkFixed)SK_NaN32);
|
| - if (check > SK_MaxS32) {
|
| - check = SK_MaxS32;
|
| - } else if (check < -SK_MaxS32) {
|
| - check = SK_MinS32;
|
| - }
|
| - SkASSERT(result == (int32_t)check);
|
| -
|
| - result = SkFractDiv(numer, denom);
|
| - check = ((SkLONGLONG)numer << 30) / denom;
|
| -
|
| - SkASSERT(result != (SkFixed)SK_NaN32);
|
| - if (check > SK_MaxS32) {
|
| - check = SK_MaxS32;
|
| - } else if (check < -SK_MaxS32) {
|
| - check = SK_MinS32;
|
| - }
|
| - SkASSERT(result == (int32_t)check);
|
| -
|
| - // make them <= 2^24, so we don't overflow in fixmul
|
| - numer = numer << 8 >> 8;
|
| - denom = denom << 8 >> 8;
|
| -
|
| - result = SkFixedMul(numer, denom);
|
| - SkFixed r2 = symmetric_fixmul(numer, denom);
|
| -// SkASSERT(result == r2);
|
| -
|
| - result = SkFixedMul(numer, numer);
|
| - r2 = SkFixedSquare(numer);
|
| - SkASSERT(result == r2);
|
| -
|
| -#ifdef SK_CAN_USE_FLOAT
|
| - if (numer >= 0 && denom >= 0) {
|
| - SkFixed mean = SkFixedMean(numer, denom);
|
| - float fm = sk_float_sqrt(sk_float_abs(SkFixedToFloat(numer) * SkFixedToFloat(denom)));
|
| - SkFixed mean2 = SkFloatToFixed(fm);
|
| - int diff = SkAbs32(mean - mean2);
|
| - SkASSERT(diff <= 1);
|
| - }
|
| -
|
| - {
|
| - SkFixed mod = SkFixedMod(numer, denom);
|
| - float n = SkFixedToFloat(numer);
|
| - float d = SkFixedToFloat(denom);
|
| - float m = sk_float_mod(n, d);
|
| -#if 0
|
| - SkDebugf("%g mod %g = %g [%g]\n",
|
| - SkFixedToFloat(numer), SkFixedToFloat(denom),
|
| - SkFixedToFloat(mod), m);
|
| -#endif
|
| - SkASSERT(mod == 0 || (mod < 0) == (m < 0)); // ensure the same sign
|
| - int diff = SkAbs32(mod - SkFloatToFixed(m));
|
| - SkASSERT((diff >> 7) == 0);
|
| - }
|
| -#endif
|
| - }
|
| -#endif
|
| -
|
| -#ifdef SK_CAN_USE_FLOAT
|
| - for (i = 0; i < 100000; i++) {
|
| - SkFract x = rand.nextU() >> 1;
|
| - double xx = (double)x / SK_Fract1;
|
| - SkFract xr = SkFractSqrt(x);
|
| - SkFract check = SkFloatToFract(sqrt(xx));
|
| - SkASSERT(xr == check || xr == check-1 || xr == check+1);
|
| -
|
| - xr = SkFixedSqrt(x);
|
| - xx = (double)x / SK_Fixed1;
|
| - check = SkFloatToFixed(sqrt(xx));
|
| - SkASSERT(xr == check || xr == check-1);
|
| -
|
| - xr = SkSqrt32(x);
|
| - xx = (double)x;
|
| - check = (int32_t)sqrt(xx);
|
| - SkASSERT(xr == check || xr == check-1);
|
| - }
|
| -#endif
|
| -
|
| -#if !defined(SK_SCALAR_IS_FLOAT) && defined(SK_CAN_USE_FLOAT)
|
| - {
|
| - SkFixed s, c;
|
| - s = SkFixedSinCos(0, &c);
|
| - SkASSERT(s == 0);
|
| - SkASSERT(c == SK_Fixed1);
|
| - }
|
| -
|
| - int maxDiff = 0;
|
| - for (i = 0; i < 10000; i++) {
|
| - SkFixed rads = rand.nextS() >> 10;
|
| - double frads = SkFixedToFloat(rads);
|
| -
|
| - SkFixed s, c;
|
| - s = SkScalarSinCos(rads, &c);
|
| -
|
| - double fs = sin(frads);
|
| - double fc = cos(frads);
|
| -
|
| - SkFixed is = SkFloatToFixed(fs);
|
| - SkFixed ic = SkFloatToFixed(fc);
|
| -
|
| - maxDiff = SkMax32(maxDiff, SkAbs32(is - s));
|
| - maxDiff = SkMax32(maxDiff, SkAbs32(ic - c));
|
| - }
|
| - SkDebugf("SinCos: maximum error = %d\n", maxDiff);
|
| -#endif
|
| -#endif
|
| -}
|
| -
|
| -#endif
|
|
|