| Index: base/memory/scoped_ptr.h
|
| diff --git a/base/memory/scoped_ptr.h b/base/memory/scoped_ptr.h
|
| index 3547b7a15397f9c58f3c5193401d6d9defae333d..9b1c82e53e73c3227478a373c150baa4fa949b0c 100644
|
| --- a/base/memory/scoped_ptr.h
|
| +++ b/base/memory/scoped_ptr.h
|
| @@ -95,6 +95,8 @@
|
| #include <stddef.h>
|
| #include <stdlib.h>
|
|
|
| +#include <algorithm> // For std::swap().
|
| +
|
| #include "base/basictypes.h"
|
| #include "base/compiler_specific.h"
|
| #include "base/move.h"
|
| @@ -107,6 +109,72 @@ class RefCountedBase;
|
| class RefCountedThreadSafeBase;
|
| } // namespace subtle
|
|
|
| +// Function object which deletes its parameter, which must be a pointer.
|
| +// If C is an array type, invokes 'delete[]' on the parameter; otherwise,
|
| +// invokes 'delete'. The default deleter for scoped_ptr<T>.
|
| +template <class T>
|
| +struct DefaultDeleter {
|
| + DefaultDeleter() {}
|
| + template <typename U> DefaultDeleter(const DefaultDeleter<U>& other) {
|
| + // IMPLEMENTATION NOTE: C++11 20.7.1.1.2p2 only provides this constructor
|
| + // if U* is implicitly convertible to T* and U is not an array type.
|
| + //
|
| + // Correct implementation should use SFINAE to disable this
|
| + // constructor. However, since there are no other 1-argument constructors,
|
| + // using a COMPILE_ASSERT() based on is_convertible<> and requiring
|
| + // complete types is simpler and will cause compile failures for equivalent
|
| + // misuses.
|
| + //
|
| + // Note, the is_convertible<U*, T*> check also ensures that U is not an
|
| + // array. T is guaranteed to be a non-array, so any U* where U is an array
|
| + // cannot convert to T*.
|
| + enum { T_must_be_complete = sizeof(T) };
|
| + enum { U_must_be_complete = sizeof(U) };
|
| + COMPILE_ASSERT((base::is_convertible<U*, T*>::value),
|
| + U_ptr_must_implicitly_convert_to_T_ptr);
|
| + }
|
| + inline void operator()(T* ptr) const {
|
| + enum { type_must_be_complete = sizeof(T) };
|
| + delete ptr;
|
| + }
|
| +};
|
| +
|
| +// Specialization of DefaultDeleter for array types.
|
| +template <class T>
|
| +struct DefaultDeleter<T[]> {
|
| + inline void operator()(T* ptr) const {
|
| + enum { type_must_be_complete = sizeof(T) };
|
| + delete[] ptr;
|
| + }
|
| +
|
| + private:
|
| + // Disable this operator for any U != T because it is undefined to execute
|
| + // an array delete when the static type of the array mismatches the dynamic
|
| + // type.
|
| + //
|
| + // References:
|
| + // C++98 [expr.delete]p3
|
| + // http://cplusplus.github.com/LWG/lwg-defects.html#938
|
| + template <typename U> void operator()(U* array) const;
|
| +};
|
| +
|
| +template <class T, int n>
|
| +struct DefaultDeleter<T[n]> {
|
| + // Never allow someone to declare something like scoped_ptr<int[10]>.
|
| + COMPILE_ASSERT(sizeof(T) == -1, do_not_use_array_with_size_as_type);
|
| +};
|
| +
|
| +// Function object which invokes 'free' on its parameter, which must be
|
| +// a pointer. Can be used to store malloc-allocated pointers in scoped_ptr:
|
| +//
|
| +// scoped_ptr<int, base::FreeDeleter> foo_ptr(
|
| +// static_cast<int*>(malloc(sizeof(int))));
|
| +struct FreeDeleter {
|
| + inline void operator()(void* ptr) const {
|
| + free(ptr);
|
| + }
|
| +};
|
| +
|
| namespace internal {
|
|
|
| template <typename T> struct IsNotRefCounted {
|
| @@ -117,7 +185,104 @@ template <typename T> struct IsNotRefCounted {
|
| };
|
| };
|
|
|
| +// Minimal implementation of the core logic of scoped_ptr, suitable for
|
| +// reuse in both scoped_ptr and its specializations.
|
| +template <class T, class D>
|
| +class scoped_ptr_impl {
|
| + public:
|
| + explicit scoped_ptr_impl(T* p) : data_(p) { }
|
| +
|
| + // Initializer for deleters that have data parameters.
|
| + scoped_ptr_impl(T* p, const D& d) : data_(p, d) {}
|
| +
|
| + // Templated constructor that destructively takes the value from another
|
| + // scoped_ptr_impl.
|
| + template <typename U, typename V>
|
| + scoped_ptr_impl(scoped_ptr_impl<U, V>* other)
|
| + : data_(other->release(), other->get_deleter()) {
|
| + // We do not support move-only deleters. We could modify our move
|
| + // emulation to have base::subtle::move() and base::subtle::forward()
|
| + // functions that are imperfect emulations of their C++11 equivalents,
|
| + // but until there's a requirement, just assume deleters are copyable.
|
| + }
|
| +
|
| + template <typename U, typename V>
|
| + void TakeState(scoped_ptr_impl<U, V>* other) {
|
| + // See comment in templated constructor above regarding lack of support
|
| + // for move-only deleters.
|
| + reset(other->release());
|
| + get_deleter() = other->get_deleter();
|
| + }
|
| +
|
| + ~scoped_ptr_impl() {
|
| + if (data_.ptr != NULL) {
|
| + // Not using get_deleter() saves one function call in non-optimized
|
| + // builds.
|
| + static_cast<D&>(data_)(data_.ptr);
|
| + }
|
| + }
|
| +
|
| + void reset(T* p) {
|
| + // This self-reset check is deprecated.
|
| + // this->reset(this->get()) currently works, but it is DEPRECATED, and
|
| + // will be removed once we verify that no one depends on it.
|
| + //
|
| + // TODO(ajwong): Change this behavior to match unique_ptr<>.
|
| + // http://crbug.com/162971
|
| + if (p != data_.ptr) {
|
| + if (data_.ptr != NULL) {
|
| + // Note that this can lead to undefined behavior and memory leaks
|
| + // in the unlikely but possible case that get_deleter()(get())
|
| + // indirectly deletes this. The fix is to reset ptr_ before deleting
|
| + // its old value, but first we need to clean up the code that relies
|
| + // on the current sequencing.
|
| + static_cast<D&>(data_)(data_.ptr);
|
| + }
|
| + data_.ptr = p;
|
| + }
|
| + }
|
| +
|
| + T* get() const { return data_.ptr; }
|
| +
|
| + D& get_deleter() { return data_; }
|
| + const D& get_deleter() const { return data_; }
|
| +
|
| + void swap(scoped_ptr_impl& p2) {
|
| + // Standard swap idiom: 'using std::swap' ensures that std::swap is
|
| + // present in the overload set, but we call swap unqualified so that
|
| + // any more-specific overloads can be used, if available.
|
| + using std::swap;
|
| + swap(static_cast<D&>(data_), static_cast<D&>(p2.data_));
|
| + swap(data_.ptr, p2.data_.ptr);
|
| + }
|
| +
|
| + T* release() {
|
| + T* old_ptr = data_.ptr;
|
| + data_.ptr = NULL;
|
| + return old_ptr;
|
| + }
|
| +
|
| + private:
|
| + // Needed to allow type-converting constructor.
|
| + template <typename U, typename V> friend class scoped_ptr_impl;
|
| +
|
| + // Use the empty base class optimization to allow us to have a D
|
| + // member, while avoiding any space overhead for it when D is an
|
| + // empty class. See e.g. http://www.cantrip.org/emptyopt.html for a good
|
| + // discussion of this technique.
|
| + struct Data : public D {
|
| + explicit Data(T* ptr_in) : ptr(ptr_in) {}
|
| + Data(T* ptr_in, const D& other) : D(other), ptr(ptr_in) {}
|
| + T* ptr;
|
| + };
|
| +
|
| + Data data_;
|
| +
|
| + DISALLOW_COPY_AND_ASSIGN(scoped_ptr_impl);
|
| +};
|
| +
|
| } // namespace internal
|
| +
|
| } // namespace base
|
|
|
| // A scoped_ptr<T> is like a T*, except that the destructor of scoped_ptr<T>
|
| @@ -127,95 +292,109 @@ template <typename T> struct IsNotRefCounted {
|
| // Also like T*, scoped_ptr<T> is thread-compatible, and once you
|
| // dereference it, you get the thread safety guarantees of T.
|
| //
|
| -// The size of a scoped_ptr is small:
|
| -// sizeof(scoped_ptr<C>) == sizeof(C*)
|
| -template <class C>
|
| +// The size of scoped_ptr is small. On most compilers, when using the
|
| +// DefaultDeleter, sizeof(scoped_ptr<T>) == sizeof(T*). Custom deleters will
|
| +// increase the size proportional to whatever state they need to have. See
|
| +// comments inside scoped_ptr_impl<> for details.
|
| +//
|
| +// Current implementation targets having a strict subset of C++11's
|
| +// unique_ptr<> features. Known deficiencies include not supporting move-only
|
| +// deleteres, function pointers as deleters, and deleters with reference
|
| +// types.
|
| +template <class T, class D = base::DefaultDeleter<T> >
|
| class scoped_ptr {
|
| MOVE_ONLY_TYPE_FOR_CPP_03(scoped_ptr, RValue)
|
|
|
| - COMPILE_ASSERT(base::internal::IsNotRefCounted<C>::value,
|
| - C_is_refcounted_type_and_needs_scoped_refptr);
|
| + COMPILE_ASSERT(base::internal::IsNotRefCounted<T>::value,
|
| + T_is_refcounted_type_and_needs_scoped_refptr);
|
|
|
| public:
|
| -
|
| - // The element type
|
| - typedef C element_type;
|
| + // The element and deleter types.
|
| + typedef T element_type;
|
| + typedef D deleter_type;
|
|
|
| // Constructor. Defaults to initializing with NULL.
|
| - // There is no way to create an uninitialized scoped_ptr.
|
| - // The input parameter must be allocated with new.
|
| - explicit scoped_ptr(C* p = NULL) : ptr_(p) { }
|
| + scoped_ptr() : impl_(NULL) { }
|
|
|
| - // Constructor. Allows construction from a scoped_ptr rvalue for a
|
| - // convertible type.
|
| - template <typename U>
|
| - scoped_ptr(scoped_ptr<U> other) : ptr_(other.release()) { }
|
| + // Constructor. Takes ownership of p.
|
| + explicit scoped_ptr(element_type* p) : impl_(p) { }
|
|
|
| - // Constructor. Move constructor for C++03 move emulation of this type.
|
| - scoped_ptr(RValue rvalue)
|
| - : ptr_(rvalue.object->release()) {
|
| - }
|
| + // Constructor. Allows initialization of a stateful deleter.
|
| + scoped_ptr(element_type* p, const D& d) : impl_(p, d) { }
|
|
|
| - // Destructor. If there is a C object, delete it.
|
| - // We don't need to test ptr_ == NULL because C++ does that for us.
|
| - ~scoped_ptr() {
|
| - enum { type_must_be_complete = sizeof(C) };
|
| - delete ptr_;
|
| + // Constructor. Allows construction from a scoped_ptr rvalue for a
|
| + // convertible type and deleter.
|
| + //
|
| + // IMPLEMENTATION NOTE: C++11 unique_ptr<> keeps this constructor distinct
|
| + // from the normal move constructor. By C++11 20.7.1.2.1.21, this constructor
|
| + // has different post-conditions if D is a reference type. Since this
|
| + // implementation does not support deleters with reference type,
|
| + // we do not need a separate move constructor allowing us to avoid one
|
| + // use of SFINAE. You only need to care about this if you modify the
|
| + // implementation of scoped_ptr.
|
| + template <typename U, typename V>
|
| + scoped_ptr(scoped_ptr<U, V> other) : impl_(&other.impl_) {
|
| + COMPILE_ASSERT(!base::is_array<U>::value, U_cannot_be_an_array);
|
| }
|
|
|
| - // operator=. Allows assignment from a scoped_ptr rvalue for a convertible
|
| - // type.
|
| - template <typename U>
|
| - scoped_ptr& operator=(scoped_ptr<U> rhs) {
|
| - reset(rhs.release());
|
| - return *this;
|
| - }
|
| + // Constructor. Move constructor for C++03 move emulation of this type.
|
| + scoped_ptr(RValue rvalue) : impl_(&rvalue.object->impl_) { }
|
|
|
| - // operator=. Move operator= for C++03 move emulation of this type.
|
| - scoped_ptr& operator=(RValue rhs) {
|
| - swap(*rhs->object);
|
| + // operator=. Allows assignment from a scoped_ptr rvalue for a convertible
|
| + // type and deleter.
|
| + //
|
| + // IMPLEMENTATION NOTE: C++11 unique_ptr<> keeps this operator= distinct from
|
| + // the normal move assignment operator. By C++11 20.7.1.2.3.4, this templated
|
| + // form has different requirements on for move-only Deleters. Since this
|
| + // implementation does not support move-only Deleters, we do not need a
|
| + // separate move assignment operator allowing us to avoid one use of SFINAE.
|
| + // You only need to care about this if you modify the implementation of
|
| + // scoped_ptr.
|
| + template <typename U, typename V>
|
| + scoped_ptr& operator=(scoped_ptr<U, V> rhs) {
|
| + COMPILE_ASSERT(!base::is_array<U>::value, U_cannot_be_an_array);
|
| + impl_.TakeState(&rhs.impl_);
|
| return *this;
|
| }
|
|
|
| - // Reset. Deletes the current owned object, if any.
|
| + // Reset. Deletes the currently owned object, if any.
|
| // Then takes ownership of a new object, if given.
|
| - // this->reset(this->get()) works.
|
| - void reset(C* p = NULL) {
|
| - if (p != ptr_) {
|
| - enum { type_must_be_complete = sizeof(C) };
|
| - delete ptr_;
|
| - ptr_ = p;
|
| - }
|
| - }
|
| + void reset(element_type* p = NULL) { impl_.reset(p); }
|
|
|
| // Accessors to get the owned object.
|
| // operator* and operator-> will assert() if there is no current object.
|
| - C& operator*() const {
|
| - assert(ptr_ != NULL);
|
| - return *ptr_;
|
| + element_type& operator*() const {
|
| + assert(impl_.get() != NULL);
|
| + return *impl_.get();
|
| }
|
| - C* operator->() const {
|
| - assert(ptr_ != NULL);
|
| - return ptr_;
|
| + element_type* operator->() const {
|
| + assert(impl_.get() != NULL);
|
| + return impl_.get();
|
| }
|
| - C* get() const { return ptr_; }
|
| + element_type* get() const { return impl_.get(); }
|
|
|
| - // Allow scoped_ptr<C> to be used in boolean expressions, but not
|
| + // Access to the deleter.
|
| + deleter_type& get_deleter() { return impl_.get_deleter(); }
|
| + const deleter_type& get_deleter() const { return impl_.get_deleter(); }
|
| +
|
| + // Allow scoped_ptr<element_type> to be used in boolean expressions, but not
|
| // implicitly convertible to a real bool (which is dangerous).
|
| - typedef C* scoped_ptr::*Testable;
|
| - operator Testable() const { return ptr_ ? &scoped_ptr::ptr_ : NULL; }
|
| + private:
|
| + typedef base::internal::scoped_ptr_impl<element_type, deleter_type>
|
| + scoped_ptr::*Testable;
|
| +
|
| + public:
|
| + operator Testable() const { return impl_.get() ? &scoped_ptr::impl_ : NULL; }
|
|
|
| // Comparison operators.
|
| // These return whether two scoped_ptr refer to the same object, not just to
|
| // two different but equal objects.
|
| - bool operator==(C* p) const { return ptr_ == p; }
|
| - bool operator!=(C* p) const { return ptr_ != p; }
|
| + bool operator==(element_type* p) const { return impl_.get() == p; }
|
| + bool operator!=(element_type* p) const { return impl_.get() != p; }
|
|
|
| // Swap two scoped pointers.
|
| void swap(scoped_ptr& p2) {
|
| - C* tmp = ptr_;
|
| - ptr_ = p2.ptr_;
|
| - p2.ptr_ = tmp;
|
| + impl_.swap(p2.impl_);
|
| }
|
|
|
| // Release a pointer.
|
| @@ -223,44 +402,161 @@ class scoped_ptr {
|
| // If this object holds a NULL pointer, the return value is NULL.
|
| // After this operation, this object will hold a NULL pointer,
|
| // and will not own the object any more.
|
| - C* release() WARN_UNUSED_RESULT {
|
| - C* retVal = ptr_;
|
| - ptr_ = NULL;
|
| - return retVal;
|
| + element_type* release() WARN_UNUSED_RESULT {
|
| + return impl_.release();
|
| }
|
|
|
| + // C++98 doesn't support functions templates with default parameters which
|
| + // makes it hard to write a PassAs() that understands converting the deleter
|
| + // while preserving simple calling semantics.
|
| + //
|
| + // Until there is a use case for PassAs() with custom deleters, just ignore
|
| + // the custom deleter.
|
| template <typename PassAsType>
|
| scoped_ptr<PassAsType> PassAs() {
|
| - return scoped_ptr<PassAsType>(release());
|
| + return scoped_ptr<PassAsType>(Pass());
|
| }
|
|
|
| private:
|
| - C* ptr_;
|
| + // Needed to reach into |impl_| in the constructor.
|
| + template <typename U, typename V> friend class scoped_ptr;
|
| + base::internal::scoped_ptr_impl<element_type, deleter_type> impl_;
|
| +
|
| + // Forbid comparison of scoped_ptr types. If U != T, it totally
|
| + // doesn't make sense, and if U == T, it still doesn't make sense
|
| + // because you should never have the same object owned by two different
|
| + // scoped_ptrs.
|
| + template <class U> bool operator==(scoped_ptr<U> const& p2) const;
|
| + template <class U> bool operator!=(scoped_ptr<U> const& p2) const;
|
| +};
|
| +
|
| +template <class T, class D>
|
| +class scoped_ptr<T[], D> {
|
| + MOVE_ONLY_TYPE_FOR_CPP_03(scoped_ptr, RValue)
|
| +
|
| + public:
|
| + // The element and deleter types.
|
| + typedef T element_type;
|
| + typedef D deleter_type;
|
| +
|
| + // Constructor. Defaults to initializing with NULL.
|
| + scoped_ptr() : impl_(NULL) { }
|
| +
|
| + // Constructor. Stores the given array. Note that the argument's type
|
| + // must exactly match T*. In particular:
|
| + // - it cannot be a pointer to a type derived from T, because it is
|
| + // inherently unsafe in the general case to access an array through a
|
| + // pointer whose dynamic type does not match its static type (eg., if
|
| + // T and the derived types had different sizes access would be
|
| + // incorrectly calculated). Deletion is also always undefined
|
| + // (C++98 [expr.delete]p3). If you're doing this, fix your code.
|
| + // - it cannot be NULL, because NULL is an integral expression, not a
|
| + // pointer to T. Use the no-argument version instead of explicitly
|
| + // passing NULL.
|
| + // - it cannot be const-qualified differently from T per unique_ptr spec
|
| + // (http://cplusplus.github.com/LWG/lwg-active.html#2118). Users wanting
|
| + // to work around this may use implicit_cast<const T*>().
|
| + // However, because of the first bullet in this comment, users MUST
|
| + // NOT use implicit_cast<Base*>() to upcast the static type of the array.
|
| + explicit scoped_ptr(element_type* array) : impl_(array) { }
|
| +
|
| + // Constructor. Move constructor for C++03 move emulation of this type.
|
| + scoped_ptr(RValue rvalue) : impl_(&rvalue.object->impl_) { }
|
| +
|
| + // operator=. Move operator= for C++03 move emulation of this type.
|
| + scoped_ptr& operator=(RValue rhs) {
|
| + impl_.TakeState(&rhs.object->impl_);
|
| + return *this;
|
| + }
|
| +
|
| + // Reset. Deletes the currently owned array, if any.
|
| + // Then takes ownership of a new object, if given.
|
| + void reset(element_type* array = NULL) { impl_.reset(array); }
|
| +
|
| + // Accessors to get the owned array.
|
| + element_type& operator[](size_t i) const {
|
| + assert(impl_.get() != NULL);
|
| + return impl_.get()[i];
|
| + }
|
| + element_type* get() const { return impl_.get(); }
|
|
|
| - // Forbid comparison of scoped_ptr types. If C2 != C, it totally doesn't
|
| - // make sense, and if C2 == C, it still doesn't make sense because you should
|
| - // never have the same object owned by two different scoped_ptrs.
|
| - template <class C2> bool operator==(scoped_ptr<C2> const& p2) const;
|
| - template <class C2> bool operator!=(scoped_ptr<C2> const& p2) const;
|
| + // Access to the deleter.
|
| + deleter_type& get_deleter() { return impl_.get_deleter(); }
|
| + const deleter_type& get_deleter() const { return impl_.get_deleter(); }
|
|
|
| + // Allow scoped_ptr<element_type> to be used in boolean expressions, but not
|
| + // implicitly convertible to a real bool (which is dangerous).
|
| + private:
|
| + typedef base::internal::scoped_ptr_impl<element_type, deleter_type>
|
| + scoped_ptr::*Testable;
|
| +
|
| + public:
|
| + operator Testable() const { return impl_.get() ? &scoped_ptr::impl_ : NULL; }
|
| +
|
| + // Comparison operators.
|
| + // These return whether two scoped_ptr refer to the same object, not just to
|
| + // two different but equal objects.
|
| + bool operator==(element_type* array) const { return impl_.get() == array; }
|
| + bool operator!=(element_type* array) const { return impl_.get() != array; }
|
| +
|
| + // Swap two scoped pointers.
|
| + void swap(scoped_ptr& p2) {
|
| + impl_.swap(p2.impl_);
|
| + }
|
| +
|
| + // Release a pointer.
|
| + // The return value is the current pointer held by this object.
|
| + // If this object holds a NULL pointer, the return value is NULL.
|
| + // After this operation, this object will hold a NULL pointer,
|
| + // and will not own the object any more.
|
| + element_type* release() WARN_UNUSED_RESULT {
|
| + return impl_.release();
|
| + }
|
| +
|
| + private:
|
| + // Force element_type to be a complete type.
|
| + enum { type_must_be_complete = sizeof(element_type) };
|
| +
|
| + // Actually hold the data.
|
| + base::internal::scoped_ptr_impl<element_type, deleter_type> impl_;
|
| +
|
| + // Disable initialization from any type other than element_type*, by
|
| + // providing a constructor that matches such an initialization, but is
|
| + // private and has no definition. This is disabled because it is not safe to
|
| + // call delete[] on an array whose static type does not match its dynamic
|
| + // type.
|
| + template <typename U> explicit scoped_ptr(U* array);
|
| +
|
| + // Disable reset() from any type other than element_type*, for the same
|
| + // reasons as the constructor above.
|
| + template <typename U> void reset(U* array);
|
| +
|
| + // Forbid comparison of scoped_ptr types. If U != T, it totally
|
| + // doesn't make sense, and if U == T, it still doesn't make sense
|
| + // because you should never have the same object owned by two different
|
| + // scoped_ptrs.
|
| + template <class U> bool operator==(scoped_ptr<U> const& p2) const;
|
| + template <class U> bool operator!=(scoped_ptr<U> const& p2) const;
|
| };
|
|
|
| // Free functions
|
| -template <class C>
|
| -void swap(scoped_ptr<C>& p1, scoped_ptr<C>& p2) {
|
| +template <class T, class D>
|
| +void swap(scoped_ptr<T, D>& p1, scoped_ptr<T, D>& p2) {
|
| p1.swap(p2);
|
| }
|
|
|
| -template <class C>
|
| -bool operator==(C* p1, const scoped_ptr<C>& p2) {
|
| +template <class T, class D>
|
| +bool operator==(T* p1, const scoped_ptr<T, D>& p2) {
|
| return p1 == p2.get();
|
| }
|
|
|
| -template <class C>
|
| -bool operator!=(C* p1, const scoped_ptr<C>& p2) {
|
| +template <class T, class D>
|
| +bool operator!=(T* p1, const scoped_ptr<T, D>& p2) {
|
| return p1 != p2.get();
|
| }
|
|
|
| +// DEPRECATED: Use scoped_ptr<C[]> instead.
|
| +//
|
| // scoped_array<C> is like scoped_ptr<C>, except that the caller must allocate
|
| // with new [] and the destructor deletes objects with delete [].
|
| //
|
| @@ -298,7 +594,7 @@ class scoped_array {
|
|
|
| // operator=. Move operator= for C++03 move emulation of this type.
|
| scoped_array& operator=(RValue rhs) {
|
| - swap(*rhs.object);
|
| + reset(rhs.object->release());
|
| return *this;
|
| }
|
|
|
| @@ -380,19 +676,12 @@ bool operator!=(C* p1, const scoped_array<C>& p2) {
|
| return p1 != p2.get();
|
| }
|
|
|
| -// This class wraps the c library function free() in a class that can be
|
| -// passed as a template argument to scoped_ptr_malloc below.
|
| -class ScopedPtrMallocFree {
|
| - public:
|
| - inline void operator()(void* x) const {
|
| - free(x);
|
| - }
|
| -};
|
| -
|
| +// DEPRECATED: Use scoped_ptr<C, base::FreeDeleter> instead.
|
| +//
|
| // scoped_ptr_malloc<> is similar to scoped_ptr<>, but it accepts a
|
| // second template argument, the functor used to free the object.
|
|
|
| -template<class C, class FreeProc = ScopedPtrMallocFree>
|
| +template<class C, class FreeProc = base::FreeDeleter>
|
| class scoped_ptr_malloc {
|
| MOVE_ONLY_TYPE_FOR_CPP_03(scoped_ptr_malloc, RValue)
|
|
|
| @@ -420,7 +709,7 @@ class scoped_ptr_malloc {
|
|
|
| // operator=. Move operator= for C++03 move emulation of this type.
|
| scoped_ptr_malloc& operator=(RValue rhs) {
|
| - swap(*rhs.object);
|
| + reset(rhs.object->release());
|
| return *this;
|
| }
|
|
|
| @@ -429,8 +718,10 @@ class scoped_ptr_malloc {
|
| // this->reset(this->get()) works.
|
| void reset(C* p = NULL) {
|
| if (ptr_ != p) {
|
| - FreeProc free_proc;
|
| - free_proc(ptr_);
|
| + if (ptr_ != NULL) {
|
| + FreeProc free_proc;
|
| + free_proc(ptr_);
|
| + }
|
| ptr_ = p;
|
| }
|
| }
|
|
|