Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(454)

Side by Side Diff: base/memory/scoped_ptr.h

Issue 11149006: Extend scoped_ptr to be closer to unique_ptr. Support custom deleters, and deleting arrays. (Closed) Base URL: svn://svn.chromium.org/chrome/trunk/src
Patch Set: rebased Created 8 years ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch | Annotate | Revision Log
« no previous file with comments | « base/callback_internal.h ('k') | base/memory/scoped_ptr_unittest.cc » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved. 1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be 2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file. 3 // found in the LICENSE file.
4 4
5 // Scopers help you manage ownership of a pointer, helping you easily manage the 5 // Scopers help you manage ownership of a pointer, helping you easily manage the
6 // a pointer within a scope, and automatically destroying the pointer at the 6 // a pointer within a scope, and automatically destroying the pointer at the
7 // end of a scope. There are two main classes you will use, which correspond 7 // end of a scope. There are two main classes you will use, which correspond
8 // to the operators new/delete and new[]/delete[]. 8 // to the operators new/delete and new[]/delete[].
9 // 9 //
10 // Example usage (scoped_ptr): 10 // Example usage (scoped_ptr):
(...skipping 77 matching lines...) Expand 10 before | Expand all | Expand 10 after
88 #define BASE_MEMORY_SCOPED_PTR_H_ 88 #define BASE_MEMORY_SCOPED_PTR_H_
89 89
90 // This is an implementation designed to match the anticipated future TR2 90 // This is an implementation designed to match the anticipated future TR2
91 // implementation of the scoped_ptr class, and its closely-related brethren, 91 // implementation of the scoped_ptr class, and its closely-related brethren,
92 // scoped_array, scoped_ptr_malloc. 92 // scoped_array, scoped_ptr_malloc.
93 93
94 #include <assert.h> 94 #include <assert.h>
95 #include <stddef.h> 95 #include <stddef.h>
96 #include <stdlib.h> 96 #include <stdlib.h>
97 97
98 #include <algorithm> // For std::swap().
99
98 #include "base/basictypes.h" 100 #include "base/basictypes.h"
99 #include "base/compiler_specific.h" 101 #include "base/compiler_specific.h"
100 #include "base/move.h" 102 #include "base/move.h"
101 #include "base/template_util.h" 103 #include "base/template_util.h"
102 104
103 namespace base { 105 namespace base {
104 106
105 namespace subtle { 107 namespace subtle {
106 class RefCountedBase; 108 class RefCountedBase;
107 class RefCountedThreadSafeBase; 109 class RefCountedThreadSafeBase;
108 } // namespace subtle 110 } // namespace subtle
109 111
112 // Function object which deletes its parameter, which must be a pointer.
113 // If C is an array type, invokes 'delete[]' on the parameter; otherwise,
114 // invokes 'delete'. The default deleter for scoped_ptr<T>.
115 template <class T>
116 struct DefaultDeleter {
117 DefaultDeleter() {}
118 template <typename U> DefaultDeleter(const DefaultDeleter<U>& other) {
119 // IMPLEMENTATION NOTE: C++11 20.7.1.1.2p2 only provides this constructor
120 // if U* is implicitly convertible to T* and U is not an array type.
121 //
122 // Correct implementation should use SFINAE to disable this
123 // constructor. However, since there are no other 1-argument constructors,
124 // using a COMPILE_ASSERT() based on is_convertible<> and requiring
125 // complete types is simpler and will cause compile failures for equivalent
126 // misuses.
127 //
128 // Note, the is_convertible<U*, T*> check also ensures that U is not an
129 // array. T is guaranteed to be a non-array, so any U* where U is an array
130 // cannot convert to T*.
131 enum { T_must_be_complete = sizeof(T) };
132 enum { U_must_be_complete = sizeof(U) };
133 COMPILE_ASSERT((base::is_convertible<U*, T*>::value),
134 U_ptr_must_implicitly_convert_to_T_ptr);
135 }
136 inline void operator()(T* ptr) const {
137 enum { type_must_be_complete = sizeof(T) };
138 delete ptr;
139 }
140 };
141
142 // Specialization of DefaultDeleter for array types.
143 template <class T>
144 struct DefaultDeleter<T[]> {
145 inline void operator()(T* ptr) const {
146 enum { type_must_be_complete = sizeof(T) };
147 delete[] ptr;
148 }
149
150 private:
151 // Disable this operator for any U != T because it is undefined to execute
152 // an array delete when the static type of the array mismatches the dynamic
153 // type.
154 //
155 // References:
156 // C++98 [expr.delete]p3
157 // http://cplusplus.github.com/LWG/lwg-defects.html#938
158 template <typename U> void operator()(U* array) const;
159 };
160
161 template <class T, int n>
162 struct DefaultDeleter<T[n]> {
163 // Never allow someone to declare something like scoped_ptr<int[10]>.
164 COMPILE_ASSERT(sizeof(T) == -1, do_not_use_array_with_size_as_type);
165 };
166
167 // Function object which invokes 'free' on its parameter, which must be
168 // a pointer. Can be used to store malloc-allocated pointers in scoped_ptr:
169 //
170 // scoped_ptr<int, base::FreeDeleter> foo_ptr(
171 // static_cast<int*>(malloc(sizeof(int))));
172 struct FreeDeleter {
173 inline void operator()(void* ptr) const {
174 free(ptr);
175 }
176 };
177
110 namespace internal { 178 namespace internal {
111 179
112 template <typename T> struct IsNotRefCounted { 180 template <typename T> struct IsNotRefCounted {
113 enum { 181 enum {
114 value = !base::is_convertible<T*, base::subtle::RefCountedBase*>::value && 182 value = !base::is_convertible<T*, base::subtle::RefCountedBase*>::value &&
115 !base::is_convertible<T*, base::subtle::RefCountedThreadSafeBase*>:: 183 !base::is_convertible<T*, base::subtle::RefCountedThreadSafeBase*>::
116 value 184 value
117 }; 185 };
118 }; 186 };
119 187
188 // Minimal implementation of the core logic of scoped_ptr, suitable for
189 // reuse in both scoped_ptr and its specializations.
190 template <class T, class D>
191 class scoped_ptr_impl {
192 public:
193 explicit scoped_ptr_impl(T* p) : data_(p) { }
194
195 // Initializer for deleters that have data parameters.
196 scoped_ptr_impl(T* p, const D& d) : data_(p, d) {}
197
198 // Templated constructor that destructively takes the value from another
199 // scoped_ptr_impl.
200 template <typename U, typename V>
201 scoped_ptr_impl(scoped_ptr_impl<U, V>* other)
202 : data_(other->release(), other->get_deleter()) {
203 // We do not support move-only deleters. We could modify our move
204 // emulation to have base::subtle::move() and base::subtle::forward()
205 // functions that are imperfect emulations of their C++11 equivalents,
206 // but until there's a requirement, just assume deleters are copyable.
207 }
208
209 template <typename U, typename V>
210 void TakeState(scoped_ptr_impl<U, V>* other) {
211 // See comment in templated constructor above regarding lack of support
212 // for move-only deleters.
213 reset(other->release());
214 get_deleter() = other->get_deleter();
215 }
216
217 ~scoped_ptr_impl() {
218 if (data_.ptr != NULL) {
219 // Not using get_deleter() saves one function call in non-optimized
220 // builds.
221 static_cast<D&>(data_)(data_.ptr);
222 }
223 }
224
225 void reset(T* p) {
226 // This self-reset check is deprecated.
227 // this->reset(this->get()) currently works, but it is DEPRECATED, and
228 // will be removed once we verify that no one depends on it.
229 //
230 // TODO(ajwong): Change this behavior to match unique_ptr<>.
231 // http://crbug.com/162971
232 if (p != data_.ptr) {
233 if (data_.ptr != NULL) {
234 // Note that this can lead to undefined behavior and memory leaks
235 // in the unlikely but possible case that get_deleter()(get())
236 // indirectly deletes this. The fix is to reset ptr_ before deleting
237 // its old value, but first we need to clean up the code that relies
238 // on the current sequencing.
239 static_cast<D&>(data_)(data_.ptr);
240 }
241 data_.ptr = p;
242 }
243 }
244
245 T* get() const { return data_.ptr; }
246
247 D& get_deleter() { return data_; }
248 const D& get_deleter() const { return data_; }
249
250 void swap(scoped_ptr_impl& p2) {
251 // Standard swap idiom: 'using std::swap' ensures that std::swap is
252 // present in the overload set, but we call swap unqualified so that
253 // any more-specific overloads can be used, if available.
254 using std::swap;
255 swap(static_cast<D&>(data_), static_cast<D&>(p2.data_));
256 swap(data_.ptr, p2.data_.ptr);
257 }
258
259 T* release() {
260 T* old_ptr = data_.ptr;
261 data_.ptr = NULL;
262 return old_ptr;
263 }
264
265 private:
266 // Needed to allow type-converting constructor.
267 template <typename U, typename V> friend class scoped_ptr_impl;
268
269 // Use the empty base class optimization to allow us to have a D
270 // member, while avoiding any space overhead for it when D is an
271 // empty class. See e.g. http://www.cantrip.org/emptyopt.html for a good
272 // discussion of this technique.
273 struct Data : public D {
274 explicit Data(T* ptr_in) : ptr(ptr_in) {}
275 Data(T* ptr_in, const D& other) : D(other), ptr(ptr_in) {}
276 T* ptr;
277 };
278
279 Data data_;
280
281 DISALLOW_COPY_AND_ASSIGN(scoped_ptr_impl);
282 };
283
120 } // namespace internal 284 } // namespace internal
285
121 } // namespace base 286 } // namespace base
122 287
123 // A scoped_ptr<T> is like a T*, except that the destructor of scoped_ptr<T> 288 // A scoped_ptr<T> is like a T*, except that the destructor of scoped_ptr<T>
124 // automatically deletes the pointer it holds (if any). 289 // automatically deletes the pointer it holds (if any).
125 // That is, scoped_ptr<T> owns the T object that it points to. 290 // That is, scoped_ptr<T> owns the T object that it points to.
126 // Like a T*, a scoped_ptr<T> may hold either NULL or a pointer to a T object. 291 // Like a T*, a scoped_ptr<T> may hold either NULL or a pointer to a T object.
127 // Also like T*, scoped_ptr<T> is thread-compatible, and once you 292 // Also like T*, scoped_ptr<T> is thread-compatible, and once you
128 // dereference it, you get the thread safety guarantees of T. 293 // dereference it, you get the thread safety guarantees of T.
129 // 294 //
130 // The size of a scoped_ptr is small: 295 // The size of scoped_ptr is small. On most compilers, when using the
131 // sizeof(scoped_ptr<C>) == sizeof(C*) 296 // DefaultDeleter, sizeof(scoped_ptr<T>) == sizeof(T*). Custom deleters will
132 template <class C> 297 // increase the size proportional to whatever state they need to have. See
298 // comments inside scoped_ptr_impl<> for details.
299 //
300 // Current implementation targets having a strict subset of C++11's
301 // unique_ptr<> features. Known deficiencies include not supporting move-only
302 // deleteres, function pointers as deleters, and deleters with reference
303 // types.
304 template <class T, class D = base::DefaultDeleter<T> >
133 class scoped_ptr { 305 class scoped_ptr {
134 MOVE_ONLY_TYPE_FOR_CPP_03(scoped_ptr, RValue) 306 MOVE_ONLY_TYPE_FOR_CPP_03(scoped_ptr, RValue)
135 307
136 COMPILE_ASSERT(base::internal::IsNotRefCounted<C>::value, 308 COMPILE_ASSERT(base::internal::IsNotRefCounted<T>::value,
137 C_is_refcounted_type_and_needs_scoped_refptr); 309 T_is_refcounted_type_and_needs_scoped_refptr);
138 310
139 public: 311 public:
140 312 // The element and deleter types.
141 // The element type 313 typedef T element_type;
142 typedef C element_type; 314 typedef D deleter_type;
143 315
144 // Constructor. Defaults to initializing with NULL. 316 // Constructor. Defaults to initializing with NULL.
145 // There is no way to create an uninitialized scoped_ptr. 317 scoped_ptr() : impl_(NULL) { }
146 // The input parameter must be allocated with new. 318
147 explicit scoped_ptr(C* p = NULL) : ptr_(p) { } 319 // Constructor. Takes ownership of p.
320 explicit scoped_ptr(element_type* p) : impl_(p) { }
321
322 // Constructor. Allows initialization of a stateful deleter.
323 scoped_ptr(element_type* p, const D& d) : impl_(p, d) { }
148 324
149 // Constructor. Allows construction from a scoped_ptr rvalue for a 325 // Constructor. Allows construction from a scoped_ptr rvalue for a
150 // convertible type. 326 // convertible type and deleter.
151 template <typename U> 327 //
152 scoped_ptr(scoped_ptr<U> other) : ptr_(other.release()) { } 328 // IMPLEMENTATION NOTE: C++11 unique_ptr<> keeps this constructor distinct
329 // from the normal move constructor. By C++11 20.7.1.2.1.21, this constructor
330 // has different post-conditions if D is a reference type. Since this
331 // implementation does not support deleters with reference type,
332 // we do not need a separate move constructor allowing us to avoid one
333 // use of SFINAE. You only need to care about this if you modify the
334 // implementation of scoped_ptr.
335 template <typename U, typename V>
336 scoped_ptr(scoped_ptr<U, V> other) : impl_(&other.impl_) {
337 COMPILE_ASSERT(!base::is_array<U>::value, U_cannot_be_an_array);
338 }
153 339
154 // Constructor. Move constructor for C++03 move emulation of this type. 340 // Constructor. Move constructor for C++03 move emulation of this type.
155 scoped_ptr(RValue rvalue) 341 scoped_ptr(RValue rvalue) : impl_(&rvalue.object->impl_) { }
156 : ptr_(rvalue.object->release()) {
157 }
158
159 // Destructor. If there is a C object, delete it.
160 // We don't need to test ptr_ == NULL because C++ does that for us.
161 ~scoped_ptr() {
162 enum { type_must_be_complete = sizeof(C) };
163 delete ptr_;
164 }
165 342
166 // operator=. Allows assignment from a scoped_ptr rvalue for a convertible 343 // operator=. Allows assignment from a scoped_ptr rvalue for a convertible
167 // type. 344 // type and deleter.
168 template <typename U> 345 //
169 scoped_ptr& operator=(scoped_ptr<U> rhs) { 346 // IMPLEMENTATION NOTE: C++11 unique_ptr<> keeps this operator= distinct from
170 reset(rhs.release()); 347 // the normal move assignment operator. By C++11 20.7.1.2.3.4, this templated
348 // form has different requirements on for move-only Deleters. Since this
349 // implementation does not support move-only Deleters, we do not need a
350 // separate move assignment operator allowing us to avoid one use of SFINAE.
351 // You only need to care about this if you modify the implementation of
352 // scoped_ptr.
353 template <typename U, typename V>
354 scoped_ptr& operator=(scoped_ptr<U, V> rhs) {
355 COMPILE_ASSERT(!base::is_array<U>::value, U_cannot_be_an_array);
356 impl_.TakeState(&rhs.impl_);
171 return *this; 357 return *this;
172 } 358 }
173 359
174 // operator=. Move operator= for C++03 move emulation of this type. 360 // Reset. Deletes the currently owned object, if any.
175 scoped_ptr& operator=(RValue rhs) {
176 swap(*rhs->object);
177 return *this;
178 }
179
180 // Reset. Deletes the current owned object, if any.
181 // Then takes ownership of a new object, if given. 361 // Then takes ownership of a new object, if given.
182 // this->reset(this->get()) works. 362 void reset(element_type* p = NULL) { impl_.reset(p); }
183 void reset(C* p = NULL) {
184 if (p != ptr_) {
185 enum { type_must_be_complete = sizeof(C) };
186 delete ptr_;
187 ptr_ = p;
188 }
189 }
190 363
191 // Accessors to get the owned object. 364 // Accessors to get the owned object.
192 // operator* and operator-> will assert() if there is no current object. 365 // operator* and operator-> will assert() if there is no current object.
193 C& operator*() const { 366 element_type& operator*() const {
194 assert(ptr_ != NULL); 367 assert(impl_.get() != NULL);
195 return *ptr_; 368 return *impl_.get();
196 } 369 }
197 C* operator->() const { 370 element_type* operator->() const {
198 assert(ptr_ != NULL); 371 assert(impl_.get() != NULL);
199 return ptr_; 372 return impl_.get();
200 } 373 }
201 C* get() const { return ptr_; } 374 element_type* get() const { return impl_.get(); }
202 375
203 // Allow scoped_ptr<C> to be used in boolean expressions, but not 376 // Access to the deleter.
377 deleter_type& get_deleter() { return impl_.get_deleter(); }
378 const deleter_type& get_deleter() const { return impl_.get_deleter(); }
379
380 // Allow scoped_ptr<element_type> to be used in boolean expressions, but not
204 // implicitly convertible to a real bool (which is dangerous). 381 // implicitly convertible to a real bool (which is dangerous).
205 typedef C* scoped_ptr::*Testable; 382 private:
206 operator Testable() const { return ptr_ ? &scoped_ptr::ptr_ : NULL; } 383 typedef base::internal::scoped_ptr_impl<element_type, deleter_type>
384 scoped_ptr::*Testable;
385
386 public:
387 operator Testable() const { return impl_.get() ? &scoped_ptr::impl_ : NULL; }
207 388
208 // Comparison operators. 389 // Comparison operators.
209 // These return whether two scoped_ptr refer to the same object, not just to 390 // These return whether two scoped_ptr refer to the same object, not just to
210 // two different but equal objects. 391 // two different but equal objects.
211 bool operator==(C* p) const { return ptr_ == p; } 392 bool operator==(element_type* p) const { return impl_.get() == p; }
212 bool operator!=(C* p) const { return ptr_ != p; } 393 bool operator!=(element_type* p) const { return impl_.get() != p; }
213 394
214 // Swap two scoped pointers. 395 // Swap two scoped pointers.
215 void swap(scoped_ptr& p2) { 396 void swap(scoped_ptr& p2) {
216 C* tmp = ptr_; 397 impl_.swap(p2.impl_);
217 ptr_ = p2.ptr_;
218 p2.ptr_ = tmp;
219 } 398 }
220 399
221 // Release a pointer. 400 // Release a pointer.
222 // The return value is the current pointer held by this object. 401 // The return value is the current pointer held by this object.
223 // If this object holds a NULL pointer, the return value is NULL. 402 // If this object holds a NULL pointer, the return value is NULL.
224 // After this operation, this object will hold a NULL pointer, 403 // After this operation, this object will hold a NULL pointer,
225 // and will not own the object any more. 404 // and will not own the object any more.
226 C* release() WARN_UNUSED_RESULT { 405 element_type* release() WARN_UNUSED_RESULT {
227 C* retVal = ptr_; 406 return impl_.release();
228 ptr_ = NULL;
229 return retVal;
230 } 407 }
231 408
409 // C++98 doesn't support functions templates with default parameters which
410 // makes it hard to write a PassAs() that understands converting the deleter
411 // while preserving simple calling semantics.
412 //
413 // Until there is a use case for PassAs() with custom deleters, just ignore
414 // the custom deleter.
232 template <typename PassAsType> 415 template <typename PassAsType>
233 scoped_ptr<PassAsType> PassAs() { 416 scoped_ptr<PassAsType> PassAs() {
234 return scoped_ptr<PassAsType>(release()); 417 return scoped_ptr<PassAsType>(Pass());
235 } 418 }
236 419
237 private: 420 private:
238 C* ptr_; 421 // Needed to reach into |impl_| in the constructor.
422 template <typename U, typename V> friend class scoped_ptr;
423 base::internal::scoped_ptr_impl<element_type, deleter_type> impl_;
239 424
240 // Forbid comparison of scoped_ptr types. If C2 != C, it totally doesn't 425 // Forbid comparison of scoped_ptr types. If U != T, it totally
241 // make sense, and if C2 == C, it still doesn't make sense because you should 426 // doesn't make sense, and if U == T, it still doesn't make sense
242 // never have the same object owned by two different scoped_ptrs. 427 // because you should never have the same object owned by two different
243 template <class C2> bool operator==(scoped_ptr<C2> const& p2) const; 428 // scoped_ptrs.
244 template <class C2> bool operator!=(scoped_ptr<C2> const& p2) const; 429 template <class U> bool operator==(scoped_ptr<U> const& p2) const;
430 template <class U> bool operator!=(scoped_ptr<U> const& p2) const;
431 };
245 432
433 template <class T, class D>
434 class scoped_ptr<T[], D> {
435 MOVE_ONLY_TYPE_FOR_CPP_03(scoped_ptr, RValue)
436
437 public:
438 // The element and deleter types.
439 typedef T element_type;
440 typedef D deleter_type;
441
442 // Constructor. Defaults to initializing with NULL.
443 scoped_ptr() : impl_(NULL) { }
444
445 // Constructor. Stores the given array. Note that the argument's type
446 // must exactly match T*. In particular:
447 // - it cannot be a pointer to a type derived from T, because it is
448 // inherently unsafe in the general case to access an array through a
449 // pointer whose dynamic type does not match its static type (eg., if
450 // T and the derived types had different sizes access would be
451 // incorrectly calculated). Deletion is also always undefined
452 // (C++98 [expr.delete]p3). If you're doing this, fix your code.
453 // - it cannot be NULL, because NULL is an integral expression, not a
454 // pointer to T. Use the no-argument version instead of explicitly
455 // passing NULL.
456 // - it cannot be const-qualified differently from T per unique_ptr spec
457 // (http://cplusplus.github.com/LWG/lwg-active.html#2118). Users wanting
458 // to work around this may use implicit_cast<const T*>().
459 // However, because of the first bullet in this comment, users MUST
460 // NOT use implicit_cast<Base*>() to upcast the static type of the array.
461 explicit scoped_ptr(element_type* array) : impl_(array) { }
462
463 // Constructor. Move constructor for C++03 move emulation of this type.
464 scoped_ptr(RValue rvalue) : impl_(&rvalue.object->impl_) { }
465
466 // operator=. Move operator= for C++03 move emulation of this type.
467 scoped_ptr& operator=(RValue rhs) {
468 impl_.TakeState(&rhs.object->impl_);
469 return *this;
470 }
471
472 // Reset. Deletes the currently owned array, if any.
473 // Then takes ownership of a new object, if given.
474 void reset(element_type* array = NULL) { impl_.reset(array); }
475
476 // Accessors to get the owned array.
477 element_type& operator[](size_t i) const {
478 assert(impl_.get() != NULL);
479 return impl_.get()[i];
480 }
481 element_type* get() const { return impl_.get(); }
482
483 // Access to the deleter.
484 deleter_type& get_deleter() { return impl_.get_deleter(); }
485 const deleter_type& get_deleter() const { return impl_.get_deleter(); }
486
487 // Allow scoped_ptr<element_type> to be used in boolean expressions, but not
488 // implicitly convertible to a real bool (which is dangerous).
489 private:
490 typedef base::internal::scoped_ptr_impl<element_type, deleter_type>
491 scoped_ptr::*Testable;
492
493 public:
494 operator Testable() const { return impl_.get() ? &scoped_ptr::impl_ : NULL; }
495
496 // Comparison operators.
497 // These return whether two scoped_ptr refer to the same object, not just to
498 // two different but equal objects.
499 bool operator==(element_type* array) const { return impl_.get() == array; }
500 bool operator!=(element_type* array) const { return impl_.get() != array; }
501
502 // Swap two scoped pointers.
503 void swap(scoped_ptr& p2) {
504 impl_.swap(p2.impl_);
505 }
506
507 // Release a pointer.
508 // The return value is the current pointer held by this object.
509 // If this object holds a NULL pointer, the return value is NULL.
510 // After this operation, this object will hold a NULL pointer,
511 // and will not own the object any more.
512 element_type* release() WARN_UNUSED_RESULT {
513 return impl_.release();
514 }
515
516 private:
517 // Force element_type to be a complete type.
518 enum { type_must_be_complete = sizeof(element_type) };
519
520 // Actually hold the data.
521 base::internal::scoped_ptr_impl<element_type, deleter_type> impl_;
522
523 // Disable initialization from any type other than element_type*, by
524 // providing a constructor that matches such an initialization, but is
525 // private and has no definition. This is disabled because it is not safe to
526 // call delete[] on an array whose static type does not match its dynamic
527 // type.
528 template <typename U> explicit scoped_ptr(U* array);
529
530 // Disable reset() from any type other than element_type*, for the same
531 // reasons as the constructor above.
532 template <typename U> void reset(U* array);
533
534 // Forbid comparison of scoped_ptr types. If U != T, it totally
535 // doesn't make sense, and if U == T, it still doesn't make sense
536 // because you should never have the same object owned by two different
537 // scoped_ptrs.
538 template <class U> bool operator==(scoped_ptr<U> const& p2) const;
539 template <class U> bool operator!=(scoped_ptr<U> const& p2) const;
246 }; 540 };
247 541
248 // Free functions 542 // Free functions
249 template <class C> 543 template <class T, class D>
250 void swap(scoped_ptr<C>& p1, scoped_ptr<C>& p2) { 544 void swap(scoped_ptr<T, D>& p1, scoped_ptr<T, D>& p2) {
251 p1.swap(p2); 545 p1.swap(p2);
252 } 546 }
253 547
254 template <class C> 548 template <class T, class D>
255 bool operator==(C* p1, const scoped_ptr<C>& p2) { 549 bool operator==(T* p1, const scoped_ptr<T, D>& p2) {
256 return p1 == p2.get(); 550 return p1 == p2.get();
257 } 551 }
258 552
259 template <class C> 553 template <class T, class D>
260 bool operator!=(C* p1, const scoped_ptr<C>& p2) { 554 bool operator!=(T* p1, const scoped_ptr<T, D>& p2) {
261 return p1 != p2.get(); 555 return p1 != p2.get();
262 } 556 }
263 557
558 // DEPRECATED: Use scoped_ptr<C[]> instead.
559 //
264 // scoped_array<C> is like scoped_ptr<C>, except that the caller must allocate 560 // scoped_array<C> is like scoped_ptr<C>, except that the caller must allocate
265 // with new [] and the destructor deletes objects with delete []. 561 // with new [] and the destructor deletes objects with delete [].
266 // 562 //
267 // As with scoped_ptr<C>, a scoped_array<C> either points to an object 563 // As with scoped_ptr<C>, a scoped_array<C> either points to an object
268 // or is NULL. A scoped_array<C> owns the object that it points to. 564 // or is NULL. A scoped_array<C> owns the object that it points to.
269 // scoped_array<T> is thread-compatible, and once you index into it, 565 // scoped_array<T> is thread-compatible, and once you index into it,
270 // the returned objects have only the thread safety guarantees of T. 566 // the returned objects have only the thread safety guarantees of T.
271 // 567 //
272 // Size: sizeof(scoped_array<C>) == sizeof(C*) 568 // Size: sizeof(scoped_array<C>) == sizeof(C*)
273 template <class C> 569 template <class C>
(...skipping 17 matching lines...) Expand all
291 587
292 // Destructor. If there is a C object, delete it. 588 // Destructor. If there is a C object, delete it.
293 // We don't need to test ptr_ == NULL because C++ does that for us. 589 // We don't need to test ptr_ == NULL because C++ does that for us.
294 ~scoped_array() { 590 ~scoped_array() {
295 enum { type_must_be_complete = sizeof(C) }; 591 enum { type_must_be_complete = sizeof(C) };
296 delete[] array_; 592 delete[] array_;
297 } 593 }
298 594
299 // operator=. Move operator= for C++03 move emulation of this type. 595 // operator=. Move operator= for C++03 move emulation of this type.
300 scoped_array& operator=(RValue rhs) { 596 scoped_array& operator=(RValue rhs) {
301 swap(*rhs.object); 597 reset(rhs.object->release());
302 return *this; 598 return *this;
303 } 599 }
304 600
305 // Reset. Deletes the current owned object, if any. 601 // Reset. Deletes the current owned object, if any.
306 // Then takes ownership of a new object, if given. 602 // Then takes ownership of a new object, if given.
307 // this->reset(this->get()) works. 603 // this->reset(this->get()) works.
308 void reset(C* p = NULL) { 604 void reset(C* p = NULL) {
309 if (p != array_) { 605 if (p != array_) {
310 enum { type_must_be_complete = sizeof(C) }; 606 enum { type_must_be_complete = sizeof(C) };
311 delete[] array_; 607 delete[] array_;
(...skipping 61 matching lines...) Expand 10 before | Expand all | Expand 10 after
373 template <class C> 669 template <class C>
374 bool operator==(C* p1, const scoped_array<C>& p2) { 670 bool operator==(C* p1, const scoped_array<C>& p2) {
375 return p1 == p2.get(); 671 return p1 == p2.get();
376 } 672 }
377 673
378 template <class C> 674 template <class C>
379 bool operator!=(C* p1, const scoped_array<C>& p2) { 675 bool operator!=(C* p1, const scoped_array<C>& p2) {
380 return p1 != p2.get(); 676 return p1 != p2.get();
381 } 677 }
382 678
383 // This class wraps the c library function free() in a class that can be 679 // DEPRECATED: Use scoped_ptr<C, base::FreeDeleter> instead.
384 // passed as a template argument to scoped_ptr_malloc below. 680 //
385 class ScopedPtrMallocFree {
386 public:
387 inline void operator()(void* x) const {
388 free(x);
389 }
390 };
391
392 // scoped_ptr_malloc<> is similar to scoped_ptr<>, but it accepts a 681 // scoped_ptr_malloc<> is similar to scoped_ptr<>, but it accepts a
393 // second template argument, the functor used to free the object. 682 // second template argument, the functor used to free the object.
394 683
395 template<class C, class FreeProc = ScopedPtrMallocFree> 684 template<class C, class FreeProc = base::FreeDeleter>
396 class scoped_ptr_malloc { 685 class scoped_ptr_malloc {
397 MOVE_ONLY_TYPE_FOR_CPP_03(scoped_ptr_malloc, RValue) 686 MOVE_ONLY_TYPE_FOR_CPP_03(scoped_ptr_malloc, RValue)
398 687
399 public: 688 public:
400 689
401 // The element type 690 // The element type
402 typedef C element_type; 691 typedef C element_type;
403 692
404 // Constructor. Defaults to initializing with NULL. 693 // Constructor. Defaults to initializing with NULL.
405 // There is no way to create an uninitialized scoped_ptr. 694 // There is no way to create an uninitialized scoped_ptr.
406 // The input parameter must be allocated with an allocator that matches the 695 // The input parameter must be allocated with an allocator that matches the
407 // Free functor. For the default Free functor, this is malloc, calloc, or 696 // Free functor. For the default Free functor, this is malloc, calloc, or
408 // realloc. 697 // realloc.
409 explicit scoped_ptr_malloc(C* p = NULL): ptr_(p) {} 698 explicit scoped_ptr_malloc(C* p = NULL): ptr_(p) {}
410 699
411 // Constructor. Move constructor for C++03 move emulation of this type. 700 // Constructor. Move constructor for C++03 move emulation of this type.
412 scoped_ptr_malloc(RValue rvalue) 701 scoped_ptr_malloc(RValue rvalue)
413 : ptr_(rvalue.object->release()) { 702 : ptr_(rvalue.object->release()) {
414 } 703 }
415 704
416 // Destructor. If there is a C object, call the Free functor. 705 // Destructor. If there is a C object, call the Free functor.
417 ~scoped_ptr_malloc() { 706 ~scoped_ptr_malloc() {
418 reset(); 707 reset();
419 } 708 }
420 709
421 // operator=. Move operator= for C++03 move emulation of this type. 710 // operator=. Move operator= for C++03 move emulation of this type.
422 scoped_ptr_malloc& operator=(RValue rhs) { 711 scoped_ptr_malloc& operator=(RValue rhs) {
423 swap(*rhs.object); 712 reset(rhs.object->release());
424 return *this; 713 return *this;
425 } 714 }
426 715
427 // Reset. Calls the Free functor on the current owned object, if any. 716 // Reset. Calls the Free functor on the current owned object, if any.
428 // Then takes ownership of a new object, if given. 717 // Then takes ownership of a new object, if given.
429 // this->reset(this->get()) works. 718 // this->reset(this->get()) works.
430 void reset(C* p = NULL) { 719 void reset(C* p = NULL) {
431 if (ptr_ != p) { 720 if (ptr_ != p) {
432 FreeProc free_proc; 721 if (ptr_ != NULL) {
433 free_proc(ptr_); 722 FreeProc free_proc;
723 free_proc(ptr_);
724 }
434 ptr_ = p; 725 ptr_ = p;
435 } 726 }
436 } 727 }
437 728
438 // Get the current object. 729 // Get the current object.
439 // operator* and operator-> will cause an assert() failure if there is 730 // operator* and operator-> will cause an assert() failure if there is
440 // no current object. 731 // no current object.
441 C& operator*() const { 732 C& operator*() const {
442 assert(ptr_ != NULL); 733 assert(ptr_ != NULL);
443 return *ptr_; 734 return *ptr_;
(...skipping 71 matching lines...) Expand 10 before | Expand all | Expand 10 after
515 806
516 // A function to convert T* into scoped_ptr<T> 807 // A function to convert T* into scoped_ptr<T>
517 // Doing e.g. make_scoped_ptr(new FooBarBaz<type>(arg)) is a shorter notation 808 // Doing e.g. make_scoped_ptr(new FooBarBaz<type>(arg)) is a shorter notation
518 // for scoped_ptr<FooBarBaz<type> >(new FooBarBaz<type>(arg)) 809 // for scoped_ptr<FooBarBaz<type> >(new FooBarBaz<type>(arg))
519 template <typename T> 810 template <typename T>
520 scoped_ptr<T> make_scoped_ptr(T* ptr) { 811 scoped_ptr<T> make_scoped_ptr(T* ptr) {
521 return scoped_ptr<T>(ptr); 812 return scoped_ptr<T>(ptr);
522 } 813 }
523 814
524 #endif // BASE_MEMORY_SCOPED_PTR_H_ 815 #endif // BASE_MEMORY_SCOPED_PTR_H_
OLDNEW
« no previous file with comments | « base/callback_internal.h ('k') | base/memory/scoped_ptr_unittest.cc » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698