Chromium Code Reviews| Index: base/memory/scoped_ptr.h |
| diff --git a/base/memory/scoped_ptr.h b/base/memory/scoped_ptr.h |
| index 3547b7a15397f9c58f3c5193401d6d9defae333d..0c5a6a3d12e4ec2a9dbdea940c2a57ecb73b5431 100644 |
| --- a/base/memory/scoped_ptr.h |
| +++ b/base/memory/scoped_ptr.h |
| @@ -95,6 +95,8 @@ |
| #include <stddef.h> |
| #include <stdlib.h> |
| +#include <algorithm> // For std::swap(). |
| + |
| #include "base/basictypes.h" |
| #include "base/compiler_specific.h" |
| #include "base/move.h" |
| @@ -107,6 +109,47 @@ class RefCountedBase; |
| class RefCountedThreadSafeBase; |
| } // namespace subtle |
| +// Function object which deletes its parameter, which must be a pointer. |
| +// If C is an array type, invokes 'delete[]' on the parameter; otherwise, |
| +// invokes 'delete'. The default deleter for scoped_ptr<T>. |
| +template <class T> |
| +struct DefaultDeleter { |
| + DefaultDeleter() {} |
| + template <typename U> DefaultDeleter(const DefaultDeleter<U>& other) { |
| + // All default single-object deleters can trivially convert to one another. |
| + } |
| + inline void operator()(T* ptr) const { |
| + enum { type_must_be_complete = sizeof(T) }; |
| + delete ptr; |
| + } |
| +}; |
| + |
| +// Specialization of DefaultDeleter for array types. |
| +template <class T> |
| +struct DefaultDeleter<T[]> { |
| + inline void operator()(T* ptr) const { |
| + enum { type_must_be_complete = sizeof(T) }; |
| + delete[] ptr; |
| + } |
| + |
| + private: |
| + // Disable this operator for any U != T because it is unsafe to execute |
| + // an array delete when the static type of the array mismatches the dynamic |
| + // type. |
| + template <typename U> void operator()(U* array) const; |
| +}; |
| + |
| +// Function object which invokes 'free' on its parameter, which must be |
| +// a pointer. Can be used to store malloc-allocated pointers in scoped_ptr: |
| +// |
| +// scoped_ptr<int, base::FreeDeleter> foo_ptr( |
| +// static_cast<int>(malloc(sizeof(int)))); |
|
Jeffrey Yasskin
2012/11/28 06:07:18
static_cast<int*>, right?
awong
2012/11/28 10:20:35
Right. :)
|
| +struct FreeDeleter { |
| + inline void operator()(void* ptr) const { |
|
Jeffrey Yasskin
2012/11/28 06:07:18
This isn't going to work on const or volatile poin
awong
2012/11/28 10:20:35
I don't think we care. This is basically staging a
|
| + free(ptr); |
| + } |
| +}; |
| + |
| namespace internal { |
| template <typename T> struct IsNotRefCounted { |
| @@ -117,7 +160,106 @@ template <typename T> struct IsNotRefCounted { |
| }; |
| }; |
| +// Minimal implementation of the core logic of scoped_ptr, suitable for |
| +// reuse in both scoped_ptr and its specializations. |
| +template <class T, class D> |
| +class scoped_ptr_impl { |
| + MOVE_ONLY_TYPE_FOR_CPP_03(scoped_ptr_impl, RValue) |
| + |
| + public: |
| + explicit scoped_ptr_impl(T* p) : data_(p) { } |
| + |
| + // Initializer for deleters that have data parameters. |
| + scoped_ptr_impl(T* p, const D& d) : data_(p, d) {} |
| + |
| + template <typename U, typename V> |
| + scoped_ptr_impl(scoped_ptr_impl<U, V> other) |
| + : data_(other.data_.ptr, other.data_) { |
| + // We do not support move-only deleters. We could modify our move |
| + // emulation to have base::subtle::move() and base::subtle::forward() |
| + // functions that are imperfect emulations of their C++11 equivalents, |
| + // but until there's a requirement, just assume deleters are copyable. |
| + other.data_.ptr = NULL; |
| + } |
| + |
| + template <typename U, typename V> |
| + const scoped_ptr_impl& operator=(scoped_ptr_impl<U, V> rhs) { |
| + // See comment in move type-coverting constructor above regarding lack of |
| + // support for move-only deleters. |
| + reset(rhs.release()); |
| + get_deleter() = rhs.get_deleter(); |
| + return *this; |
| + } |
| + |
| + scoped_ptr_impl(RValue rvalue) : data_(rvalue.object->data_) { |
| + rvalue.object->data_.ptr = NULL; |
| + } |
| + |
| + ~scoped_ptr_impl() { |
| + if (data_.ptr != NULL) { |
| + get_deleter()(data_.ptr); |
| + } |
| + } |
| + |
| + void reset(T* p) { |
| + // This self-reset check is deprecated. |
| + // this->reset(this->get()) currently works, but it is DEPRECATED, and |
| + // will be removed once we verify that no one depends on it. |
| + // |
| + // TODO(ajwong): Change this behavior to match unique_ptr<>. |
| + // http://crbug.com/162971 |
| + if (p != data_.ptr) { |
| + if (data_.ptr != NULL) { |
| + // Note that this can lead to undefined behavior and memory leaks |
| + // in the unlikely but possible case that get_deleter()(get()) |
| + // indirectly deletes this. The fix is to reset ptr_ before deleting |
| + // its old value, but first we need to clean up the code that relies |
| + // on the current sequencing. |
| + get_deleter()(data_.ptr); |
| + } |
| + data_.ptr = p; |
| + } |
| + } |
| + |
| + T* get() const { return data_.ptr; } |
| + |
| + D& get_deleter() { return data_; } |
| + const D& get_deleter() const { return data_; } |
| + |
| + void swap(scoped_ptr_impl& p2) { |
| + // Standard swap idiom: 'using std::swap' ensures that std::swap is |
| + // present in the overload set, but we call swap unqualified so that |
| + // any more-specific overloads can be used, if available. |
| + using std::swap; |
| + swap(static_cast<D&>(data_), static_cast<D&>(p2.data_)); |
| + swap(data_.ptr, p2.data_.ptr); |
| + } |
| + |
| + T* release() { |
| + T* old_ptr = data_.ptr; |
| + data_.ptr = NULL; |
| + return old_ptr; |
| + } |
| + |
| + private: |
| + // Needed to allow type-converting constructor. |
| + template <typename U, typename V> friend class scoped_ptr_impl; |
| + |
| + // Use the empty base class optimization to allow us to have a D |
| + // member, while avoiding any space overhead for it when D is an |
| + // empty class. See e.g. http://www.cantrip.org/emptyopt.html for a good |
| + // discussion of this technique. |
| + struct Data : public D { |
| + explicit Data(T* ptr_in) : ptr(ptr_in) {} |
| + Data(T* ptr_in, const D& other) : D(other), ptr(ptr_in) {} |
| + T* ptr; |
| + }; |
| + |
| + Data data_; |
| +}; |
| + |
| } // namespace internal |
| + |
| } // namespace base |
| // A scoped_ptr<T> is like a T*, except that the destructor of scoped_ptr<T> |
| @@ -129,93 +271,81 @@ template <typename T> struct IsNotRefCounted { |
| // |
| // The size of a scoped_ptr is small: |
| // sizeof(scoped_ptr<C>) == sizeof(C*) |
| -template <class C> |
| +template <class T, class D = base::DefaultDeleter<T> > |
| class scoped_ptr { |
| MOVE_ONLY_TYPE_FOR_CPP_03(scoped_ptr, RValue) |
| - COMPILE_ASSERT(base::internal::IsNotRefCounted<C>::value, |
| - C_is_refcounted_type_and_needs_scoped_refptr); |
| + COMPILE_ASSERT(base::internal::IsNotRefCounted<T>::value, |
| + T_is_refcounted_type_and_needs_scoped_refptr); |
| public: |
| - |
| - // The element type |
| - typedef C element_type; |
| + // The element and deleter types. |
| + typedef T element_type; |
| + typedef D deleter_type; |
| // Constructor. Defaults to initializing with NULL. |
| - // There is no way to create an uninitialized scoped_ptr. |
| - // The input parameter must be allocated with new. |
| - explicit scoped_ptr(C* p = NULL) : ptr_(p) { } |
| + scoped_ptr() : impl_(NULL) { } |
| + |
| + // Constructor. Takes ownership of p. |
| + explicit scoped_ptr(element_type* p) : impl_(p) { } |
| + |
| + // Constructor. Allows initialization of a stateful deleter. |
| + scoped_ptr(element_type* p, const D& d) : impl_(p, d) { } |
| // Constructor. Allows construction from a scoped_ptr rvalue for a |
| - // convertible type. |
| - template <typename U> |
| - scoped_ptr(scoped_ptr<U> other) : ptr_(other.release()) { } |
| + // convertible type and deleter. |
| + template <typename U, typename V> |
| + scoped_ptr(scoped_ptr<U, V> other) : impl_(other.impl_.Pass()) { } |
| // Constructor. Move constructor for C++03 move emulation of this type. |
| - scoped_ptr(RValue rvalue) |
| - : ptr_(rvalue.object->release()) { |
| - } |
| - |
| - // Destructor. If there is a C object, delete it. |
| - // We don't need to test ptr_ == NULL because C++ does that for us. |
| - ~scoped_ptr() { |
| - enum { type_must_be_complete = sizeof(C) }; |
| - delete ptr_; |
| - } |
| + scoped_ptr(RValue rvalue) : impl_(rvalue.object->impl_.Pass()) { } |
| // operator=. Allows assignment from a scoped_ptr rvalue for a convertible |
| - // type. |
| - template <typename U> |
| - scoped_ptr& operator=(scoped_ptr<U> rhs) { |
| - reset(rhs.release()); |
| + // type and deleter. |
| + template <typename U, typename V> |
| + scoped_ptr& operator=(scoped_ptr<U, V> rhs) { |
| + impl_ = rhs.impl_.Pass(); |
| return *this; |
| } |
| - // operator=. Move operator= for C++03 move emulation of this type. |
| - scoped_ptr& operator=(RValue rhs) { |
| - swap(*rhs->object); |
| - return *this; |
| - } |
| - |
| - // Reset. Deletes the current owned object, if any. |
| + // Reset. Deletes the currently owned object, if any. |
| // Then takes ownership of a new object, if given. |
| - // this->reset(this->get()) works. |
| - void reset(C* p = NULL) { |
| - if (p != ptr_) { |
| - enum { type_must_be_complete = sizeof(C) }; |
| - delete ptr_; |
| - ptr_ = p; |
| - } |
| - } |
| + void reset(element_type* p = NULL) { impl_.reset(p); } |
| // Accessors to get the owned object. |
| // operator* and operator-> will assert() if there is no current object. |
| - C& operator*() const { |
| - assert(ptr_ != NULL); |
| - return *ptr_; |
| + element_type& operator*() const { |
| + assert(impl_.get() != NULL); |
| + return *impl_.get(); |
| } |
| - C* operator->() const { |
| - assert(ptr_ != NULL); |
| - return ptr_; |
| + element_type* operator->() const { |
| + assert(impl_.get() != NULL); |
| + return impl_.get(); |
| } |
| - C* get() const { return ptr_; } |
| + element_type* get() const { return impl_.get(); } |
| + |
| + // Access to the deleter. |
| + deleter_type& get_deleter() { return impl_.get_deleter(); } |
| + const deleter_type& get_deleter() const { return impl_.get_deleter(); } |
| - // Allow scoped_ptr<C> to be used in boolean expressions, but not |
| + // Allow scoped_ptr<element_type> to be used in boolean expressions, but not |
| // implicitly convertible to a real bool (which is dangerous). |
| - typedef C* scoped_ptr::*Testable; |
| - operator Testable() const { return ptr_ ? &scoped_ptr::ptr_ : NULL; } |
| + private: |
| + typedef base::internal::scoped_ptr_impl<element_type, deleter_type> |
| + scoped_ptr::*Testable; |
| + |
| + public: |
| + operator Testable() const { return impl_.get() ? &scoped_ptr::impl_ : NULL; } |
| // Comparison operators. |
| // These return whether two scoped_ptr refer to the same object, not just to |
| // two different but equal objects. |
| - bool operator==(C* p) const { return ptr_ == p; } |
| - bool operator!=(C* p) const { return ptr_ != p; } |
| + bool operator==(element_type* p) const { return impl_.get() == p; } |
| + bool operator!=(element_type* p) const { return impl_.get() != p; } |
| // Swap two scoped pointers. |
| void swap(scoped_ptr& p2) { |
| - C* tmp = ptr_; |
| - ptr_ = p2.ptr_; |
| - p2.ptr_ = tmp; |
| + impl_.swap(p2.impl_); |
| } |
| // Release a pointer. |
| @@ -223,41 +353,154 @@ class scoped_ptr { |
| // If this object holds a NULL pointer, the return value is NULL. |
| // After this operation, this object will hold a NULL pointer, |
| // and will not own the object any more. |
| - C* release() WARN_UNUSED_RESULT { |
| - C* retVal = ptr_; |
| - ptr_ = NULL; |
| - return retVal; |
| + element_type* release() WARN_UNUSED_RESULT { |
| + return impl_.release(); |
| } |
| + // C++98 doesn't support functions templates with default parameters which |
| + // makes it hard to write a PassAs() that understands converting the deleter |
| + // while preserving simple calling semantics. |
| + // |
| + // Until there is a use case for PassAs() with custom deleters, just ignore |
| + // the custom deleter. |
| template <typename PassAsType> |
| scoped_ptr<PassAsType> PassAs() { |
| - return scoped_ptr<PassAsType>(release()); |
| + return scoped_ptr<PassAsType>(Pass()); |
| } |
| private: |
| - C* ptr_; |
| + // Needed to reach into |impl_| in the constructor. |
| + template <typename U, typename V> friend class scoped_ptr; |
| + base::internal::scoped_ptr_impl<element_type, deleter_type> impl_; |
| + |
| + // Forbid comparison of scoped_ptr types. If U != T, it totally |
| + // doesn't make sense, and if U == T, it still doesn't make sense |
| + // because you should never have the same object owned by two different |
| + // scoped_ptrs. |
| + template <class U> bool operator==(scoped_ptr<U> const& p2) const; |
| + template <class U> bool operator!=(scoped_ptr<U> const& p2) const; |
| +}; |
| + |
| +template <class T, class D> |
| +class scoped_ptr<T[], D> { |
| + MOVE_ONLY_TYPE_FOR_CPP_03(scoped_ptr, RValue) |
| + |
| + public: |
| + // The element and deleter types. |
| + typedef T element_type; |
| + typedef D deleter_type; |
| + |
| + // Constructor. Defaults to initializing with NULL. |
| + scoped_ptr() : impl_(NULL) { } |
| + |
| + // Constructor. Stores the given array. Note that the argument's type |
| + // must exactly match T*. In particular: |
| + // - it cannot be a pointer to a type derived from T, because it is |
| + // inherently unsafe to access an array through a pointer whose |
| + // dynamic type does not match its static type. If you're doing this, |
| + // fix your code. |
| + // http://cplusplus.github.com/LWG/lwg-defects.html#938 |
| + // - it cannot be NULL, because NULL is an integral expression, not a |
| + // pointer to T. Use the no-argument version instead of explicitly |
| + // passing NULL. |
| + // - it cannot be const-qualified differently from T per unique_ptr spec. |
| + // http://cplusplus.github.com/LWG/lwg-active.html#2118 |
| + explicit scoped_ptr(element_type* array) : impl_(array) { } |
| + |
| + // Constructor. Move constructor for C++03 move emulation of this type. |
| + scoped_ptr(RValue rvalue) : impl_(rvalue.object->impl_.Pass()) { } |
| + |
| + // operator=. Move operator= for C++03 move emulation of this type. |
| + scoped_ptr& operator=(RValue rhs) { |
| + impl_ = rhs.object->impl_.Pass(); |
| + return *this; |
| + } |
| + |
| + // Reset. Deletes the currently owned array, if any. |
| + // Then takes ownership of a new object, if given. |
| + void reset(element_type* array = NULL) { impl_.reset(array); } |
| + |
| + // Accessors to get the owned array. |
| + element_type& operator[](size_t i) const { |
| + assert(impl_.get() != NULL); |
| + return impl_.get()[i]; |
| + } |
| + element_type* get() const { return impl_.get(); } |
| - // Forbid comparison of scoped_ptr types. If C2 != C, it totally doesn't |
| - // make sense, and if C2 == C, it still doesn't make sense because you should |
| - // never have the same object owned by two different scoped_ptrs. |
| - template <class C2> bool operator==(scoped_ptr<C2> const& p2) const; |
| - template <class C2> bool operator!=(scoped_ptr<C2> const& p2) const; |
| + // Access to the deleter. |
| + deleter_type& get_deleter() { return impl_.get_deleter(); } |
| + const deleter_type& get_deleter() const { return impl_.get_deleter(); } |
| + // Allow scoped_ptr<element_type> to be used in boolean expressions, but not |
| + // implicitly convertible to a real bool (which is dangerous). |
| + private: |
| + typedef base::internal::scoped_ptr_impl<element_type, deleter_type> |
| + scoped_ptr::*Testable; |
| + |
| + public: |
| + operator Testable() const { return impl_.get() ? &scoped_ptr::impl_ : NULL; } |
| + |
| + // Comparison operators. |
| + // These return whether two scoped_ptr refer to the same object, not just to |
| + // two different but equal objects. |
| + bool operator==(element_type* array) const { return impl_.get() == array; } |
| + bool operator!=(element_type* array) const { return impl_.get() != array; } |
| + |
| + // Swap two scoped pointers. |
| + void swap(scoped_ptr& p2) { |
| + impl_.swap(p2.impl_); |
| + } |
| + |
| + // Release a pointer. |
| + // The return value is the current pointer held by this object. |
| + // If this object holds a NULL pointer, the return value is NULL. |
| + // After this operation, this object will hold a NULL pointer, |
| + // and will not own the object any more. |
| + element_type* release() WARN_UNUSED_RESULT { |
| + return impl_.release(); |
| + } |
| + |
| + private: |
| + // Force element_type to be a complete type. |
| + enum { type_must_be_complete = sizeof(element_type) }; |
| + |
| + // Actually hold the data. |
| + base::internal::scoped_ptr_impl<element_type, deleter_type> impl_; |
| + |
| + // Disable initialization from any type other than element_type*, by |
| + // providing a constructor that matches such an initialization, but is |
| + // private and has no definition. This is disabled because it is not safe to |
| + // call delete[] on an array whose static type does not match its dynamic |
| + // type. |
| + template <typename U> |
| + explicit scoped_ptr(U* array); |
| + |
| + // Disable reset() from any type other than element_type*, for the same |
| + // reasons as the constructor above. |
| + template <typename U> |
| + void reset(U* array); |
| + |
| + // Forbid comparison of scoped_ptr types. If U != T, it totally |
| + // doesn't make sense, and if U == T, it still doesn't make sense |
| + // because you should never have the same object owned by two different |
| + // scoped_ptrs. |
| + template <class U> bool operator==(scoped_ptr<U> const& p2) const; |
| + template <class U> bool operator!=(scoped_ptr<U> const& p2) const; |
| }; |
| // Free functions |
| -template <class C> |
| -void swap(scoped_ptr<C>& p1, scoped_ptr<C>& p2) { |
| +template <class T, class D> |
| +void swap(scoped_ptr<T, D>& p1, scoped_ptr<T, D>& p2) { |
| p1.swap(p2); |
| } |
| -template <class C> |
| -bool operator==(C* p1, const scoped_ptr<C>& p2) { |
| +template <class T, class D> |
| +bool operator==(T* p1, const scoped_ptr<T, D>& p2) { |
| return p1 == p2.get(); |
| } |
| -template <class C> |
| -bool operator!=(C* p1, const scoped_ptr<C>& p2) { |
| +template <class T, class D> |
| +bool operator!=(T* p1, const scoped_ptr<T, D>& p2) { |
| return p1 != p2.get(); |
| } |
| @@ -298,7 +541,7 @@ class scoped_array { |
| // operator=. Move operator= for C++03 move emulation of this type. |
| scoped_array& operator=(RValue rhs) { |
| - swap(*rhs.object); |
| + reset(rhs.object->release()); |
| return *this; |
| } |
| @@ -307,8 +550,10 @@ class scoped_array { |
| // this->reset(this->get()) works. |
| void reset(C* p = NULL) { |
| if (p != array_) { |
| - enum { type_must_be_complete = sizeof(C) }; |
| - delete[] array_; |
| + if (array_ != NULL) { |
|
Jeffrey Yasskin
2012/11/28 06:07:18
Note that delete[] does nothing if array_ is NULL,
awong
2012/11/28 10:20:35
yeah. Good point. I spent about an hour of headach
|
| + enum { type_must_be_complete = sizeof(C) }; |
| + delete[] array_; |
| + } |
| array_ = p; |
| } |
| } |
| @@ -380,19 +625,10 @@ bool operator!=(C* p1, const scoped_array<C>& p2) { |
| return p1 != p2.get(); |
| } |
| -// This class wraps the c library function free() in a class that can be |
| -// passed as a template argument to scoped_ptr_malloc below. |
| -class ScopedPtrMallocFree { |
| - public: |
| - inline void operator()(void* x) const { |
| - free(x); |
| - } |
| -}; |
| - |
| // scoped_ptr_malloc<> is similar to scoped_ptr<>, but it accepts a |
|
Jeffrey Yasskin
2012/11/28 06:07:18
Should this be deprecated in favor of scoped_ptr<T
awong
2012/11/28 10:20:35
Yes.
|
| // second template argument, the functor used to free the object. |
| -template<class C, class FreeProc = ScopedPtrMallocFree> |
| +template<class C, class FreeProc = base::FreeDeleter> |
| class scoped_ptr_malloc { |
| MOVE_ONLY_TYPE_FOR_CPP_03(scoped_ptr_malloc, RValue) |
| @@ -420,7 +656,7 @@ class scoped_ptr_malloc { |
| // operator=. Move operator= for C++03 move emulation of this type. |
| scoped_ptr_malloc& operator=(RValue rhs) { |
| - swap(*rhs.object); |
| + reset(rhs.object->release()); |
| return *this; |
| } |
| @@ -429,8 +665,10 @@ class scoped_ptr_malloc { |
| // this->reset(this->get()) works. |
| void reset(C* p = NULL) { |
| if (ptr_ != p) { |
| - FreeProc free_proc; |
| - free_proc(ptr_); |
| + if (ptr_ != NULL) { |
| + FreeProc free_proc; |
| + free_proc(ptr_); |
| + } |
| ptr_ = p; |
| } |
| } |