Index: source/libvpx/vp9/encoder/vp9_ratectrl.c |
=================================================================== |
--- source/libvpx/vp9/encoder/vp9_ratectrl.c (revision 240950) |
+++ source/libvpx/vp9/encoder/vp9_ratectrl.c (working copy) |
@@ -26,6 +26,8 @@ |
#include "vp9/common/vp9_quant_common.h" |
#include "vp9/common/vp9_seg_common.h" |
+#define LIMIT_QRANGE_FOR_ALTREF_AND_KEY 1 |
+ |
#define MIN_BPB_FACTOR 0.005 |
#define MAX_BPB_FACTOR 50 |
@@ -35,6 +37,88 @@ |
static const unsigned int prior_key_frame_weight[KEY_FRAME_CONTEXT] = |
{ 1, 2, 3, 4, 5 }; |
+// Tables relating active max Q to active min Q |
+static int kf_low_motion_minq[QINDEX_RANGE]; |
+static int kf_high_motion_minq[QINDEX_RANGE]; |
+static int gf_low_motion_minq[QINDEX_RANGE]; |
+static int gf_high_motion_minq[QINDEX_RANGE]; |
+static int inter_minq[QINDEX_RANGE]; |
+static int afq_low_motion_minq[QINDEX_RANGE]; |
+static int afq_high_motion_minq[QINDEX_RANGE]; |
+static int gf_high = 2000; |
+static int gf_low = 400; |
+static int kf_high = 5000; |
+static int kf_low = 400; |
+ |
+// Functions to compute the active minq lookup table entries based on a |
+// formulaic approach to facilitate easier adjustment of the Q tables. |
+// The formulae were derived from computing a 3rd order polynomial best |
+// fit to the original data (after plotting real maxq vs minq (not q index)) |
+static int calculate_minq_index(double maxq, |
+ double x3, double x2, double x1, double c) { |
+ int i; |
+ const double minqtarget = MIN(((x3 * maxq + x2) * maxq + x1) * maxq + c, |
+ maxq); |
+ |
+ // Special case handling to deal with the step from q2.0 |
+ // down to lossless mode represented by q 1.0. |
+ if (minqtarget <= 2.0) |
+ return 0; |
+ |
+ for (i = 0; i < QINDEX_RANGE; i++) { |
+ if (minqtarget <= vp9_convert_qindex_to_q(i)) |
+ return i; |
+ } |
+ |
+ return QINDEX_RANGE - 1; |
+} |
+ |
+void vp9_rc_init_minq_luts(void) { |
+ int i; |
+ |
+ for (i = 0; i < QINDEX_RANGE; i++) { |
+ const double maxq = vp9_convert_qindex_to_q(i); |
+ |
+ |
+ kf_low_motion_minq[i] = calculate_minq_index(maxq, |
+ 0.000001, |
+ -0.0004, |
+ 0.15, |
+ 0.0); |
+ kf_high_motion_minq[i] = calculate_minq_index(maxq, |
+ 0.000002, |
+ -0.0012, |
+ 0.50, |
+ 0.0); |
+ |
+ gf_low_motion_minq[i] = calculate_minq_index(maxq, |
+ 0.0000015, |
+ -0.0009, |
+ 0.32, |
+ 0.0); |
+ gf_high_motion_minq[i] = calculate_minq_index(maxq, |
+ 0.0000021, |
+ -0.00125, |
+ 0.50, |
+ 0.0); |
+ afq_low_motion_minq[i] = calculate_minq_index(maxq, |
+ 0.0000015, |
+ -0.0009, |
+ 0.33, |
+ 0.0); |
+ afq_high_motion_minq[i] = calculate_minq_index(maxq, |
+ 0.0000021, |
+ -0.00125, |
+ 0.55, |
+ 0.0); |
+ inter_minq[i] = calculate_minq_index(maxq, |
+ 0.00000271, |
+ -0.00113, |
+ 0.75, |
+ 0.0); |
+ } |
+} |
+ |
// These functions use formulaic calculations to make playing with the |
// quantizer tables easier. If necessary they can be replaced by lookup |
// tables if and when things settle down in the experimental bitstream |
@@ -43,23 +127,9 @@ |
return vp9_ac_quant(qindex, 0) / 4.0; |
} |
-int vp9_gfboost_qadjust(int qindex) { |
+int vp9_rc_bits_per_mb(FRAME_TYPE frame_type, int qindex, |
+ double correction_factor) { |
const double q = vp9_convert_qindex_to_q(qindex); |
- return (int)((0.00000828 * q * q * q) + |
- (-0.0055 * q * q) + |
- (1.32 * q) + 79.3); |
-} |
- |
-static int kfboost_qadjust(int qindex) { |
- const double q = vp9_convert_qindex_to_q(qindex); |
- return (int)((0.00000973 * q * q * q) + |
- (-0.00613 * q * q) + |
- (1.316 * q) + 121.2); |
-} |
- |
-int vp9_bits_per_mb(FRAME_TYPE frame_type, int qindex, |
- double correction_factor) { |
- const double q = vp9_convert_qindex_to_q(qindex); |
int enumerator = frame_type == KEY_FRAME ? 3300000 : 2250000; |
// q based adjustment to baseline enumerator |
@@ -118,7 +188,7 @@ |
vp9_setup_past_independence(cm); |
// interval before next GF |
- cpi->frames_till_gf_update_due = cpi->baseline_gf_interval; |
+ cpi->rc.frames_till_gf_update_due = cpi->rc.baseline_gf_interval; |
/* All buffers are implicitly updated on key frames. */ |
cpi->refresh_golden_frame = 1; |
cpi->refresh_alt_ref_frame = 1; |
@@ -129,13 +199,13 @@ |
if (cm->error_resilient_mode || cm->intra_only) |
vp9_setup_past_independence(cm); |
- assert(cm->frame_context_idx < NUM_FRAME_CONTEXTS); |
+ assert(cm->frame_context_idx < FRAME_CONTEXTS); |
cm->fc = cm->frame_contexts[cm->frame_context_idx]; |
} |
static int estimate_bits_at_q(int frame_kind, int q, int mbs, |
double correction_factor) { |
- const int bpm = (int)(vp9_bits_per_mb(frame_kind, q, correction_factor)); |
+ const int bpm = (int)(vp9_rc_bits_per_mb(frame_kind, q, correction_factor)); |
// Attempt to retain reasonable accuracy without overflow. The cutoff is |
// chosen such that the maximum product of Bpm and MBs fits 31 bits. The |
@@ -153,20 +223,18 @@ |
vp9_clear_system_state(); // __asm emms; |
// New Two pass RC |
- target = cpi->per_frame_bandwidth; |
+ target = cpi->rc.per_frame_bandwidth; |
if (cpi->oxcf.rc_max_intra_bitrate_pct) { |
- int max_rate = cpi->per_frame_bandwidth |
+ int max_rate = cpi->rc.per_frame_bandwidth |
* cpi->oxcf.rc_max_intra_bitrate_pct / 100; |
if (target > max_rate) |
target = max_rate; |
} |
- |
- cpi->this_frame_target = target; |
+ cpi->rc.this_frame_target = target; |
} |
- |
// Do the best we can to define the parameters for the next GF based |
// on what information we have available. |
// |
@@ -174,21 +242,21 @@ |
// so we just use the interval determined in the two pass code. |
static void calc_gf_params(VP9_COMP *cpi) { |
// Set the gf interval |
- cpi->frames_till_gf_update_due = cpi->baseline_gf_interval; |
+ cpi->rc.frames_till_gf_update_due = cpi->rc.baseline_gf_interval; |
} |
static void calc_pframe_target_size(VP9_COMP *cpi) { |
- const int min_frame_target = MAX(cpi->min_frame_bandwidth, |
- cpi->av_per_frame_bandwidth >> 5); |
+ const int min_frame_target = MAX(cpi->rc.min_frame_bandwidth, |
+ cpi->rc.av_per_frame_bandwidth >> 5); |
if (cpi->refresh_alt_ref_frame) { |
// Special alt reference frame case |
// Per frame bit target for the alt ref frame |
- cpi->per_frame_bandwidth = cpi->twopass.gf_bits; |
- cpi->this_frame_target = cpi->per_frame_bandwidth; |
+ cpi->rc.per_frame_bandwidth = cpi->twopass.gf_bits; |
+ cpi->rc.this_frame_target = cpi->rc.per_frame_bandwidth; |
} else { |
// Normal frames (gf,and inter) |
- cpi->this_frame_target = cpi->per_frame_bandwidth; |
+ cpi->rc.this_frame_target = cpi->rc.per_frame_bandwidth; |
} |
// Check that the total sum of adjustments is not above the maximum allowed. |
@@ -197,47 +265,31 @@ |
// not capable of recovering all the extra bits we have spent in the KF or GF, |
// then the remainder will have to be recovered over a longer time span via |
// other buffer / rate control mechanisms. |
- if (cpi->this_frame_target < min_frame_target) |
- cpi->this_frame_target = min_frame_target; |
+ if (cpi->rc.this_frame_target < min_frame_target) |
+ cpi->rc.this_frame_target = min_frame_target; |
- if (!cpi->refresh_alt_ref_frame) |
- // Note the baseline target data rate for this inter frame. |
- cpi->inter_frame_target = cpi->this_frame_target; |
- |
// Adjust target frame size for Golden Frames: |
- if (cpi->frames_till_gf_update_due == 0) { |
- const int q = (cpi->oxcf.fixed_q < 0) ? cpi->last_q[INTER_FRAME] |
- : cpi->oxcf.fixed_q; |
- |
+ if (cpi->rc.frames_till_gf_update_due == 0) { |
cpi->refresh_golden_frame = 1; |
- |
calc_gf_params(cpi); |
- |
// If we are using alternate ref instead of gf then do not apply the boost |
// It will instead be applied to the altref update |
// Jims modified boost |
if (!cpi->source_alt_ref_active) { |
- if (cpi->oxcf.fixed_q < 0) { |
- // The spend on the GF is defined in the two pass code |
- // for two pass encodes |
- cpi->this_frame_target = cpi->per_frame_bandwidth; |
- } else { |
- cpi->this_frame_target = |
- (estimate_bits_at_q(1, q, cpi->common.MBs, 1.0) |
- * cpi->last_boost) / 100; |
- } |
+ // The spend on the GF is defined in the two pass code |
+ // for two pass encodes |
+ cpi->rc.this_frame_target = cpi->rc.per_frame_bandwidth; |
} else { |
// If there is an active ARF at this location use the minimum |
// bits on this frame even if it is a constructed arf. |
// The active maximum quantizer insures that an appropriate |
// number of bits will be spent if needed for constructed ARFs. |
- cpi->this_frame_target = 0; |
+ cpi->rc.this_frame_target = 0; |
} |
} |
} |
- |
-void vp9_update_rate_correction_factors(VP9_COMP *cpi, int damp_var) { |
+void vp9_rc_update_rate_correction_factors(VP9_COMP *cpi, int damp_var) { |
const int q = cpi->common.base_qindex; |
int correction_factor = 100; |
double rate_correction_factor; |
@@ -249,12 +301,12 @@ |
vp9_clear_system_state(); // __asm emms; |
if (cpi->common.frame_type == KEY_FRAME) { |
- rate_correction_factor = cpi->key_frame_rate_correction_factor; |
+ rate_correction_factor = cpi->rc.key_frame_rate_correction_factor; |
} else { |
if (cpi->refresh_alt_ref_frame || cpi->refresh_golden_frame) |
- rate_correction_factor = cpi->gf_rate_correction_factor; |
+ rate_correction_factor = cpi->rc.gf_rate_correction_factor; |
else |
- rate_correction_factor = cpi->rate_correction_factor; |
+ rate_correction_factor = cpi->rc.rate_correction_factor; |
} |
// Work out how big we would have expected the frame to be at this Q given |
@@ -267,7 +319,7 @@ |
// Work out a size correction factor. |
if (projected_size_based_on_q > 0) |
correction_factor = |
- (100 * cpi->projected_frame_size) / projected_size_based_on_q; |
+ (100 * cpi->rc.projected_frame_size) / projected_size_based_on_q; |
// More heavily damped adjustment used if we have been oscillating either side |
// of target. |
@@ -284,7 +336,6 @@ |
break; |
} |
- // if ( (correction_factor > 102) && (Q < cpi->active_worst_quality) ) |
if (correction_factor > 102) { |
// We are not already at the worst allowable quality |
correction_factor = |
@@ -308,18 +359,19 @@ |
} |
if (cpi->common.frame_type == KEY_FRAME) { |
- cpi->key_frame_rate_correction_factor = rate_correction_factor; |
+ cpi->rc.key_frame_rate_correction_factor = rate_correction_factor; |
} else { |
if (cpi->refresh_alt_ref_frame || cpi->refresh_golden_frame) |
- cpi->gf_rate_correction_factor = rate_correction_factor; |
+ cpi->rc.gf_rate_correction_factor = rate_correction_factor; |
else |
- cpi->rate_correction_factor = rate_correction_factor; |
+ cpi->rc.rate_correction_factor = rate_correction_factor; |
} |
} |
-int vp9_regulate_q(VP9_COMP *cpi, int target_bits_per_frame) { |
- int q = cpi->active_worst_quality; |
+int vp9_rc_regulate_q(const VP9_COMP *cpi, int target_bits_per_frame, |
+ int active_best_quality, int active_worst_quality) { |
+ int q = active_worst_quality; |
int i; |
int last_error = INT_MAX; |
@@ -329,12 +381,12 @@ |
// Select the appropriate correction factor based upon type of frame. |
if (cpi->common.frame_type == KEY_FRAME) { |
- correction_factor = cpi->key_frame_rate_correction_factor; |
+ correction_factor = cpi->rc.key_frame_rate_correction_factor; |
} else { |
if (cpi->refresh_alt_ref_frame || cpi->refresh_golden_frame) |
- correction_factor = cpi->gf_rate_correction_factor; |
+ correction_factor = cpi->rc.gf_rate_correction_factor; |
else |
- correction_factor = cpi->rate_correction_factor; |
+ correction_factor = cpi->rc.rate_correction_factor; |
} |
// Calculate required scaling factor based on target frame size and size of |
@@ -347,11 +399,11 @@ |
target_bits_per_mb = |
(target_bits_per_frame << BPER_MB_NORMBITS) / cpi->common.MBs; |
- i = cpi->active_best_quality; |
+ i = active_best_quality; |
do { |
- bits_per_mb_at_this_q = (int)vp9_bits_per_mb(cpi->common.frame_type, i, |
- correction_factor); |
+ bits_per_mb_at_this_q = (int)vp9_rc_bits_per_mb(cpi->common.frame_type, i, |
+ correction_factor); |
if (bits_per_mb_at_this_q <= target_bits_per_mb) { |
if ((target_bits_per_mb - bits_per_mb_at_this_q) <= last_error) |
@@ -363,12 +415,238 @@ |
} else { |
last_error = bits_per_mb_at_this_q - target_bits_per_mb; |
} |
- } while (++i <= cpi->active_worst_quality); |
+ } while (++i <= active_worst_quality); |
return q; |
} |
+static int get_active_quality(int q, |
+ int gfu_boost, |
+ int low, |
+ int high, |
+ int *low_motion_minq, |
+ int *high_motion_minq) { |
+ int active_best_quality; |
+ if (gfu_boost > high) { |
+ active_best_quality = low_motion_minq[q]; |
+ } else if (gfu_boost < low) { |
+ active_best_quality = high_motion_minq[q]; |
+ } else { |
+ const int gap = high - low; |
+ const int offset = high - gfu_boost; |
+ const int qdiff = high_motion_minq[q] - low_motion_minq[q]; |
+ const int adjustment = ((offset * qdiff) + (gap >> 1)) / gap; |
+ active_best_quality = low_motion_minq[q] + adjustment; |
+ } |
+ return active_best_quality; |
+} |
+int vp9_rc_pick_q_and_adjust_q_bounds(const VP9_COMP *cpi, |
+ int *bottom_index, |
+ int *top_index, |
+ int *top_index_prop) { |
+ const VP9_COMMON *const cm = &cpi->common; |
+ int active_best_quality; |
+ int active_worst_quality = cpi->rc.active_worst_quality; |
+ int q; |
+ |
+ if (frame_is_intra_only(cm)) { |
+ active_best_quality = cpi->rc.best_quality; |
+#if !CONFIG_MULTIPLE_ARF |
+ // Handle the special case for key frames forced when we have75 reached |
+ // the maximum key frame interval. Here force the Q to a range |
+ // based on the ambient Q to reduce the risk of popping. |
+ if (cpi->this_key_frame_forced) { |
+ int delta_qindex; |
+ int qindex = cpi->rc.last_boosted_qindex; |
+ double last_boosted_q = vp9_convert_qindex_to_q(qindex); |
+ |
+ delta_qindex = vp9_compute_qdelta(cpi, last_boosted_q, |
+ (last_boosted_q * 0.75)); |
+ active_best_quality = MAX(qindex + delta_qindex, |
+ cpi->rc.best_quality); |
+ } else if (!(cpi->pass == 0 && cpi->common.current_video_frame == 0)) { |
+ // not first frame of one pass |
+ double q_adj_factor = 1.0; |
+ double q_val; |
+ |
+ // Baseline value derived from cpi->active_worst_quality and kf boost |
+ active_best_quality = get_active_quality(active_worst_quality, |
+ cpi->rc.kf_boost, |
+ kf_low, kf_high, |
+ kf_low_motion_minq, |
+ kf_high_motion_minq); |
+ |
+ // Allow somewhat lower kf minq with small image formats. |
+ if ((cm->width * cm->height) <= (352 * 288)) { |
+ q_adj_factor -= 0.25; |
+ } |
+ |
+ // Make a further adjustment based on the kf zero motion measure. |
+ q_adj_factor += 0.05 - (0.001 * (double)cpi->kf_zeromotion_pct); |
+ |
+ // Convert the adjustment factor to a qindex delta |
+ // on active_best_quality. |
+ q_val = vp9_convert_qindex_to_q(active_best_quality); |
+ active_best_quality += |
+ vp9_compute_qdelta(cpi, q_val, (q_val * q_adj_factor)); |
+ } |
+#else |
+ double current_q; |
+ // Force the KF quantizer to be 30% of the active_worst_quality. |
+ current_q = vp9_convert_qindex_to_q(active_worst_quality); |
+ active_best_quality = active_worst_quality |
+ + vp9_compute_qdelta(cpi, current_q, current_q * 0.3); |
+#endif |
+ } else if (!cpi->is_src_frame_alt_ref && |
+ (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) { |
+ |
+ // Use the lower of active_worst_quality and recent |
+ // average Q as basis for GF/ARF best Q limit unless last frame was |
+ // a key frame. |
+ if (cpi->frames_since_key > 1 && |
+ cpi->rc.avg_frame_qindex < active_worst_quality) { |
+ q = cpi->rc.avg_frame_qindex; |
+ } else { |
+ q = active_worst_quality; |
+ } |
+ // For constrained quality dont allow Q less than the cq level |
+ if (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) { |
+ if (q < cpi->cq_target_quality) |
+ q = cpi->cq_target_quality; |
+ if (cpi->frames_since_key > 1) { |
+ active_best_quality = get_active_quality(q, cpi->rc.gfu_boost, |
+ gf_low, gf_high, |
+ afq_low_motion_minq, |
+ afq_high_motion_minq); |
+ } else { |
+ active_best_quality = get_active_quality(q, cpi->rc.gfu_boost, |
+ gf_low, gf_high, |
+ gf_low_motion_minq, |
+ gf_high_motion_minq); |
+ } |
+ // Constrained quality use slightly lower active best. |
+ active_best_quality = active_best_quality * 15 / 16; |
+ |
+ } else if (cpi->oxcf.end_usage == USAGE_CONSTANT_QUALITY) { |
+ if (!cpi->refresh_alt_ref_frame) { |
+ active_best_quality = cpi->cq_target_quality; |
+ } else { |
+ if (cpi->frames_since_key > 1) { |
+ active_best_quality = get_active_quality( |
+ q, cpi->rc.gfu_boost, gf_low, gf_high, |
+ afq_low_motion_minq, afq_high_motion_minq); |
+ } else { |
+ active_best_quality = get_active_quality( |
+ q, cpi->rc.gfu_boost, gf_low, gf_high, |
+ gf_low_motion_minq, gf_high_motion_minq); |
+ } |
+ } |
+ } else { |
+ active_best_quality = get_active_quality( |
+ q, cpi->rc.gfu_boost, gf_low, gf_high, |
+ gf_low_motion_minq, gf_high_motion_minq); |
+ } |
+ } else { |
+ if (cpi->oxcf.end_usage == USAGE_CONSTANT_QUALITY) { |
+ active_best_quality = cpi->cq_target_quality; |
+ } else { |
+ if (cpi->pass == 0 && |
+ cpi->rc.avg_frame_qindex < active_worst_quality) |
+ // 1-pass: for now, use the average Q for the active_best, if its lower |
+ // than active_worst. |
+ active_best_quality = inter_minq[cpi->rc.avg_frame_qindex]; |
+ else |
+ active_best_quality = inter_minq[active_worst_quality]; |
+ |
+ // For the constrained quality mode we don't want |
+ // q to fall below the cq level. |
+ if ((cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) && |
+ (active_best_quality < cpi->cq_target_quality)) { |
+ // If we are strongly undershooting the target rate in the last |
+ // frames then use the user passed in cq value not the auto |
+ // cq value. |
+ if (cpi->rc.rolling_actual_bits < cpi->rc.min_frame_bandwidth) |
+ active_best_quality = cpi->oxcf.cq_level; |
+ else |
+ active_best_quality = cpi->cq_target_quality; |
+ } |
+ } |
+ } |
+ |
+ // Clip the active best and worst quality values to limits |
+ if (active_worst_quality > cpi->rc.worst_quality) |
+ active_worst_quality = cpi->rc.worst_quality; |
+ |
+ if (active_best_quality < cpi->rc.best_quality) |
+ active_best_quality = cpi->rc.best_quality; |
+ |
+ if (active_best_quality > cpi->rc.worst_quality) |
+ active_best_quality = cpi->rc.worst_quality; |
+ |
+ if (active_worst_quality < active_best_quality) |
+ active_worst_quality = active_best_quality; |
+ |
+ *top_index_prop = active_worst_quality; |
+ *top_index = active_worst_quality; |
+ *bottom_index = active_best_quality; |
+ |
+#if LIMIT_QRANGE_FOR_ALTREF_AND_KEY |
+ // Limit Q range for the adaptive loop. |
+ if (cm->frame_type == KEY_FRAME && !cpi->this_key_frame_forced) { |
+ if (!(cpi->pass == 0 && cpi->common.current_video_frame == 0)) { |
+ *top_index = active_worst_quality; |
+ *top_index = |
+ (active_worst_quality + active_best_quality * 3) / 4; |
+ } |
+ } else if (!cpi->is_src_frame_alt_ref && |
+ (cpi->oxcf.end_usage != USAGE_STREAM_FROM_SERVER) && |
+ (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) { |
+ *top_index = |
+ (active_worst_quality + active_best_quality) / 2; |
+ } |
+#endif |
+ |
+ if (cpi->oxcf.end_usage == USAGE_CONSTANT_QUALITY) { |
+ q = active_best_quality; |
+ // Special case code to try and match quality with forced key frames |
+ } else if ((cm->frame_type == KEY_FRAME) && cpi->this_key_frame_forced) { |
+ q = cpi->rc.last_boosted_qindex; |
+ } else { |
+ // Determine initial Q to try. |
+ if (cpi->pass == 0) { |
+ // 1-pass: for now, use per-frame-bw for target size of frame, scaled |
+ // by |x| for key frame. |
+ int scale = (cm->frame_type == KEY_FRAME) ? 5 : 1; |
+ q = vp9_rc_regulate_q(cpi, scale * cpi->rc.av_per_frame_bandwidth, |
+ active_best_quality, active_worst_quality); |
+ } else { |
+ q = vp9_rc_regulate_q(cpi, cpi->rc.this_frame_target, |
+ active_best_quality, active_worst_quality); |
+ } |
+ if (q > *top_index) |
+ q = *top_index; |
+ } |
+#if CONFIG_MULTIPLE_ARF |
+ // Force the quantizer determined by the coding order pattern. |
+ if (cpi->multi_arf_enabled && (cm->frame_type != KEY_FRAME) && |
+ cpi->oxcf.end_usage != USAGE_CONSTANT_QUALITY) { |
+ double new_q; |
+ double current_q = vp9_convert_qindex_to_q(active_worst_quality); |
+ int level = cpi->this_frame_weight; |
+ assert(level >= 0); |
+ new_q = current_q * (1.0 - (0.2 * (cpi->max_arf_level - level))); |
+ q = active_worst_quality + |
+ vp9_compute_qdelta(cpi, current_q, new_q); |
+ |
+ *bottom_index = q; |
+ *top_index = q; |
+ printf("frame:%d q:%d\n", cm->current_video_frame, q); |
+ } |
+#endif |
+ return q; |
+} |
+ |
static int estimate_keyframe_frequency(VP9_COMP *cpi) { |
int i; |
@@ -378,7 +656,7 @@ |
/* First key frame at start of sequence is a special case. We have no |
* frequency data. |
*/ |
- if (cpi->key_frame_count == 1) { |
+ if (cpi->rc.key_frame_count == 1) { |
/* Assume a default of 1 kf every 2 seconds, or the max kf interval, |
* whichever is smaller. |
*/ |
@@ -388,7 +666,7 @@ |
if (cpi->oxcf.auto_key && av_key_frame_frequency > key_freq) |
av_key_frame_frequency = cpi->oxcf.key_freq; |
- cpi->prior_key_frame_distance[KEY_FRAME_CONTEXT - 1] |
+ cpi->rc.prior_key_frame_distance[KEY_FRAME_CONTEXT - 1] |
= av_key_frame_frequency; |
} else { |
unsigned int total_weight = 0; |
@@ -400,13 +678,13 @@ |
*/ |
for (i = 0; i < KEY_FRAME_CONTEXT; i++) { |
if (i < KEY_FRAME_CONTEXT - 1) |
- cpi->prior_key_frame_distance[i] |
- = cpi->prior_key_frame_distance[i + 1]; |
+ cpi->rc.prior_key_frame_distance[i] |
+ = cpi->rc.prior_key_frame_distance[i + 1]; |
else |
- cpi->prior_key_frame_distance[i] = last_kf_interval; |
+ cpi->rc.prior_key_frame_distance[i] = last_kf_interval; |
av_key_frame_frequency += prior_key_frame_weight[i] |
- * cpi->prior_key_frame_distance[i]; |
+ * cpi->rc.prior_key_frame_distance[i]; |
total_weight += prior_key_frame_weight[i]; |
} |
@@ -416,38 +694,38 @@ |
} |
-void vp9_adjust_key_frame_context(VP9_COMP *cpi) { |
+static void adjust_key_frame_context(VP9_COMP *cpi) { |
// Clear down mmx registers to allow floating point in what follows |
vp9_clear_system_state(); |
cpi->frames_since_key = 0; |
- cpi->key_frame_count++; |
+ cpi->rc.key_frame_count++; |
} |
- |
-void vp9_compute_frame_size_bounds(VP9_COMP *cpi, int *frame_under_shoot_limit, |
- int *frame_over_shoot_limit) { |
+void vp9_rc_compute_frame_size_bounds(const VP9_COMP *cpi, |
+ int this_frame_target, |
+ int *frame_under_shoot_limit, |
+ int *frame_over_shoot_limit) { |
// Set-up bounds on acceptable frame size: |
- if (cpi->oxcf.fixed_q >= 0) { |
- // Fixed Q scenario: frame size never outranges target (there is no target!) |
+ if (cpi->oxcf.end_usage == USAGE_CONSTANT_QUALITY) { |
*frame_under_shoot_limit = 0; |
*frame_over_shoot_limit = INT_MAX; |
} else { |
if (cpi->common.frame_type == KEY_FRAME) { |
- *frame_over_shoot_limit = cpi->this_frame_target * 9 / 8; |
- *frame_under_shoot_limit = cpi->this_frame_target * 7 / 8; |
+ *frame_over_shoot_limit = this_frame_target * 9 / 8; |
+ *frame_under_shoot_limit = this_frame_target * 7 / 8; |
} else { |
if (cpi->refresh_alt_ref_frame || cpi->refresh_golden_frame) { |
- *frame_over_shoot_limit = cpi->this_frame_target * 9 / 8; |
- *frame_under_shoot_limit = cpi->this_frame_target * 7 / 8; |
+ *frame_over_shoot_limit = this_frame_target * 9 / 8; |
+ *frame_under_shoot_limit = this_frame_target * 7 / 8; |
} else { |
// Stron overshoot limit for constrained quality |
if (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) { |
- *frame_over_shoot_limit = cpi->this_frame_target * 11 / 8; |
- *frame_under_shoot_limit = cpi->this_frame_target * 2 / 8; |
+ *frame_over_shoot_limit = this_frame_target * 11 / 8; |
+ *frame_under_shoot_limit = this_frame_target * 2 / 8; |
} else { |
- *frame_over_shoot_limit = cpi->this_frame_target * 11 / 8; |
- *frame_under_shoot_limit = cpi->this_frame_target * 5 / 8; |
+ *frame_over_shoot_limit = this_frame_target * 11 / 8; |
+ *frame_under_shoot_limit = this_frame_target * 5 / 8; |
} |
} |
} |
@@ -462,9 +740,8 @@ |
} |
} |
- |
// return of 0 means drop frame |
-int vp9_pick_frame_size(VP9_COMP *cpi) { |
+int vp9_rc_pick_frame_size_target(VP9_COMP *cpi) { |
VP9_COMMON *cm = &cpi->common; |
if (cm->frame_type == KEY_FRAME) |
@@ -472,5 +749,111 @@ |
else |
calc_pframe_target_size(cpi); |
+ // Target rate per SB64 (including partial SB64s. |
+ cpi->rc.sb64_target_rate = ((int64_t)cpi->rc.this_frame_target * 64 * 64) / |
+ (cpi->common.width * cpi->common.height); |
return 1; |
} |
+ |
+void vp9_rc_postencode_update(VP9_COMP *cpi, uint64_t bytes_used, |
+ int worst_q) { |
+ VP9_COMMON *const cm = &cpi->common; |
+ // Update rate control heuristics |
+ cpi->rc.projected_frame_size = (bytes_used << 3); |
+ |
+ // Post encode loop adjustment of Q prediction. |
+ vp9_rc_update_rate_correction_factors( |
+ cpi, (cpi->sf.recode_loop || |
+ cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) ? 2 : 0); |
+ |
+ cpi->rc.last_q[cm->frame_type] = cm->base_qindex; |
+ cpi->rc.active_worst_quality = worst_q; |
+ |
+ // Keep record of last boosted (KF/KF/ARF) Q value. |
+ // If the current frame is coded at a lower Q then we also update it. |
+ // If all mbs in this group are skipped only update if the Q value is |
+ // better than that already stored. |
+ // This is used to help set quality in forced key frames to reduce popping |
+ if ((cm->base_qindex < cpi->rc.last_boosted_qindex) || |
+ ((cpi->static_mb_pct < 100) && |
+ ((cm->frame_type == KEY_FRAME) || cpi->refresh_alt_ref_frame || |
+ (cpi->refresh_golden_frame && !cpi->is_src_frame_alt_ref)))) { |
+ cpi->rc.last_boosted_qindex = cm->base_qindex; |
+ } |
+ |
+ if (cm->frame_type == KEY_FRAME) { |
+ adjust_key_frame_context(cpi); |
+ } |
+ |
+ // Keep a record of ambient average Q. |
+ if (cm->frame_type != KEY_FRAME) |
+ cpi->rc.avg_frame_qindex = (2 + 3 * cpi->rc.avg_frame_qindex + |
+ cm->base_qindex) >> 2; |
+ |
+ // Keep a record from which we can calculate the average Q excluding GF |
+ // updates and key frames. |
+ if (cm->frame_type != KEY_FRAME && |
+ !cpi->refresh_golden_frame && !cpi->refresh_alt_ref_frame) { |
+ cpi->rc.ni_frames++; |
+ cpi->rc.tot_q += vp9_convert_qindex_to_q(cm->base_qindex); |
+ cpi->rc.avg_q = cpi->rc.tot_q / (double)cpi->rc.ni_frames; |
+ |
+ // Calculate the average Q for normal inter frames (not key or GFU frames). |
+ cpi->rc.ni_tot_qi += cm->base_qindex; |
+ cpi->rc.ni_av_qi = cpi->rc.ni_tot_qi / cpi->rc.ni_frames; |
+ } |
+ |
+ // Update the buffer level variable. |
+ // Non-viewable frames are a special case and are treated as pure overhead. |
+ if (!cm->show_frame) |
+ cpi->rc.bits_off_target -= cpi->rc.projected_frame_size; |
+ else |
+ cpi->rc.bits_off_target += cpi->rc.av_per_frame_bandwidth - |
+ cpi->rc.projected_frame_size; |
+ |
+ // Clip the buffer level at the maximum buffer size |
+ if (cpi->rc.bits_off_target > cpi->oxcf.maximum_buffer_size) |
+ cpi->rc.bits_off_target = cpi->oxcf.maximum_buffer_size; |
+ |
+ // Rolling monitors of whether we are over or underspending used to help |
+ // regulate min and Max Q in two pass. |
+ if (cm->frame_type != KEY_FRAME) { |
+ cpi->rc.rolling_target_bits = |
+ ((cpi->rc.rolling_target_bits * 3) + |
+ cpi->rc.this_frame_target + 2) / 4; |
+ cpi->rc.rolling_actual_bits = |
+ ((cpi->rc.rolling_actual_bits * 3) + |
+ cpi->rc.projected_frame_size + 2) / 4; |
+ cpi->rc.long_rolling_target_bits = |
+ ((cpi->rc.long_rolling_target_bits * 31) + |
+ cpi->rc.this_frame_target + 16) / 32; |
+ cpi->rc.long_rolling_actual_bits = |
+ ((cpi->rc.long_rolling_actual_bits * 31) + |
+ cpi->rc.projected_frame_size + 16) / 32; |
+ } |
+ |
+ // Actual bits spent |
+ cpi->rc.total_actual_bits += cpi->rc.projected_frame_size; |
+ |
+ // Debug stats |
+ cpi->rc.total_target_vs_actual += (cpi->rc.this_frame_target - |
+ cpi->rc.projected_frame_size); |
+ |
+ cpi->rc.buffer_level = cpi->rc.bits_off_target; |
+ |
+#ifndef DISABLE_RC_LONG_TERM_MEM |
+ // Update bits left to the kf and gf groups to account for overshoot or |
+ // undershoot on these frames |
+ if (cm->frame_type == KEY_FRAME) { |
+ cpi->twopass.kf_group_bits += cpi->rc.this_frame_target - |
+ cpi->rc.projected_frame_size; |
+ |
+ cpi->twopass.kf_group_bits = MAX(cpi->twopass.kf_group_bits, 0); |
+ } else if (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame) { |
+ cpi->twopass.gf_group_bits += cpi->rc.this_frame_target - |
+ cpi->rc.projected_frame_size; |
+ |
+ cpi->twopass.gf_group_bits = MAX(cpi->twopass.gf_group_bits, 0); |
+ } |
+#endif |
+} |