Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(712)

Unified Diff: source/libvpx/vp9/encoder/vp9_ratectrl.c

Issue 111463005: libvpx: Pull from upstream (Closed) Base URL: svn://svn.chromium.org/chrome/trunk/deps/third_party/libvpx/
Patch Set: Created 7 years ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
« no previous file with comments | « source/libvpx/vp9/encoder/vp9_ratectrl.h ('k') | source/libvpx/vp9/encoder/vp9_rdopt.h » ('j') | no next file with comments »
Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Index: source/libvpx/vp9/encoder/vp9_ratectrl.c
===================================================================
--- source/libvpx/vp9/encoder/vp9_ratectrl.c (revision 240950)
+++ source/libvpx/vp9/encoder/vp9_ratectrl.c (working copy)
@@ -26,6 +26,8 @@
#include "vp9/common/vp9_quant_common.h"
#include "vp9/common/vp9_seg_common.h"
+#define LIMIT_QRANGE_FOR_ALTREF_AND_KEY 1
+
#define MIN_BPB_FACTOR 0.005
#define MAX_BPB_FACTOR 50
@@ -35,6 +37,88 @@
static const unsigned int prior_key_frame_weight[KEY_FRAME_CONTEXT] =
{ 1, 2, 3, 4, 5 };
+// Tables relating active max Q to active min Q
+static int kf_low_motion_minq[QINDEX_RANGE];
+static int kf_high_motion_minq[QINDEX_RANGE];
+static int gf_low_motion_minq[QINDEX_RANGE];
+static int gf_high_motion_minq[QINDEX_RANGE];
+static int inter_minq[QINDEX_RANGE];
+static int afq_low_motion_minq[QINDEX_RANGE];
+static int afq_high_motion_minq[QINDEX_RANGE];
+static int gf_high = 2000;
+static int gf_low = 400;
+static int kf_high = 5000;
+static int kf_low = 400;
+
+// Functions to compute the active minq lookup table entries based on a
+// formulaic approach to facilitate easier adjustment of the Q tables.
+// The formulae were derived from computing a 3rd order polynomial best
+// fit to the original data (after plotting real maxq vs minq (not q index))
+static int calculate_minq_index(double maxq,
+ double x3, double x2, double x1, double c) {
+ int i;
+ const double minqtarget = MIN(((x3 * maxq + x2) * maxq + x1) * maxq + c,
+ maxq);
+
+ // Special case handling to deal with the step from q2.0
+ // down to lossless mode represented by q 1.0.
+ if (minqtarget <= 2.0)
+ return 0;
+
+ for (i = 0; i < QINDEX_RANGE; i++) {
+ if (minqtarget <= vp9_convert_qindex_to_q(i))
+ return i;
+ }
+
+ return QINDEX_RANGE - 1;
+}
+
+void vp9_rc_init_minq_luts(void) {
+ int i;
+
+ for (i = 0; i < QINDEX_RANGE; i++) {
+ const double maxq = vp9_convert_qindex_to_q(i);
+
+
+ kf_low_motion_minq[i] = calculate_minq_index(maxq,
+ 0.000001,
+ -0.0004,
+ 0.15,
+ 0.0);
+ kf_high_motion_minq[i] = calculate_minq_index(maxq,
+ 0.000002,
+ -0.0012,
+ 0.50,
+ 0.0);
+
+ gf_low_motion_minq[i] = calculate_minq_index(maxq,
+ 0.0000015,
+ -0.0009,
+ 0.32,
+ 0.0);
+ gf_high_motion_minq[i] = calculate_minq_index(maxq,
+ 0.0000021,
+ -0.00125,
+ 0.50,
+ 0.0);
+ afq_low_motion_minq[i] = calculate_minq_index(maxq,
+ 0.0000015,
+ -0.0009,
+ 0.33,
+ 0.0);
+ afq_high_motion_minq[i] = calculate_minq_index(maxq,
+ 0.0000021,
+ -0.00125,
+ 0.55,
+ 0.0);
+ inter_minq[i] = calculate_minq_index(maxq,
+ 0.00000271,
+ -0.00113,
+ 0.75,
+ 0.0);
+ }
+}
+
// These functions use formulaic calculations to make playing with the
// quantizer tables easier. If necessary they can be replaced by lookup
// tables if and when things settle down in the experimental bitstream
@@ -43,23 +127,9 @@
return vp9_ac_quant(qindex, 0) / 4.0;
}
-int vp9_gfboost_qadjust(int qindex) {
+int vp9_rc_bits_per_mb(FRAME_TYPE frame_type, int qindex,
+ double correction_factor) {
const double q = vp9_convert_qindex_to_q(qindex);
- return (int)((0.00000828 * q * q * q) +
- (-0.0055 * q * q) +
- (1.32 * q) + 79.3);
-}
-
-static int kfboost_qadjust(int qindex) {
- const double q = vp9_convert_qindex_to_q(qindex);
- return (int)((0.00000973 * q * q * q) +
- (-0.00613 * q * q) +
- (1.316 * q) + 121.2);
-}
-
-int vp9_bits_per_mb(FRAME_TYPE frame_type, int qindex,
- double correction_factor) {
- const double q = vp9_convert_qindex_to_q(qindex);
int enumerator = frame_type == KEY_FRAME ? 3300000 : 2250000;
// q based adjustment to baseline enumerator
@@ -118,7 +188,7 @@
vp9_setup_past_independence(cm);
// interval before next GF
- cpi->frames_till_gf_update_due = cpi->baseline_gf_interval;
+ cpi->rc.frames_till_gf_update_due = cpi->rc.baseline_gf_interval;
/* All buffers are implicitly updated on key frames. */
cpi->refresh_golden_frame = 1;
cpi->refresh_alt_ref_frame = 1;
@@ -129,13 +199,13 @@
if (cm->error_resilient_mode || cm->intra_only)
vp9_setup_past_independence(cm);
- assert(cm->frame_context_idx < NUM_FRAME_CONTEXTS);
+ assert(cm->frame_context_idx < FRAME_CONTEXTS);
cm->fc = cm->frame_contexts[cm->frame_context_idx];
}
static int estimate_bits_at_q(int frame_kind, int q, int mbs,
double correction_factor) {
- const int bpm = (int)(vp9_bits_per_mb(frame_kind, q, correction_factor));
+ const int bpm = (int)(vp9_rc_bits_per_mb(frame_kind, q, correction_factor));
// Attempt to retain reasonable accuracy without overflow. The cutoff is
// chosen such that the maximum product of Bpm and MBs fits 31 bits. The
@@ -153,20 +223,18 @@
vp9_clear_system_state(); // __asm emms;
// New Two pass RC
- target = cpi->per_frame_bandwidth;
+ target = cpi->rc.per_frame_bandwidth;
if (cpi->oxcf.rc_max_intra_bitrate_pct) {
- int max_rate = cpi->per_frame_bandwidth
+ int max_rate = cpi->rc.per_frame_bandwidth
* cpi->oxcf.rc_max_intra_bitrate_pct / 100;
if (target > max_rate)
target = max_rate;
}
-
- cpi->this_frame_target = target;
+ cpi->rc.this_frame_target = target;
}
-
// Do the best we can to define the parameters for the next GF based
// on what information we have available.
//
@@ -174,21 +242,21 @@
// so we just use the interval determined in the two pass code.
static void calc_gf_params(VP9_COMP *cpi) {
// Set the gf interval
- cpi->frames_till_gf_update_due = cpi->baseline_gf_interval;
+ cpi->rc.frames_till_gf_update_due = cpi->rc.baseline_gf_interval;
}
static void calc_pframe_target_size(VP9_COMP *cpi) {
- const int min_frame_target = MAX(cpi->min_frame_bandwidth,
- cpi->av_per_frame_bandwidth >> 5);
+ const int min_frame_target = MAX(cpi->rc.min_frame_bandwidth,
+ cpi->rc.av_per_frame_bandwidth >> 5);
if (cpi->refresh_alt_ref_frame) {
// Special alt reference frame case
// Per frame bit target for the alt ref frame
- cpi->per_frame_bandwidth = cpi->twopass.gf_bits;
- cpi->this_frame_target = cpi->per_frame_bandwidth;
+ cpi->rc.per_frame_bandwidth = cpi->twopass.gf_bits;
+ cpi->rc.this_frame_target = cpi->rc.per_frame_bandwidth;
} else {
// Normal frames (gf,and inter)
- cpi->this_frame_target = cpi->per_frame_bandwidth;
+ cpi->rc.this_frame_target = cpi->rc.per_frame_bandwidth;
}
// Check that the total sum of adjustments is not above the maximum allowed.
@@ -197,47 +265,31 @@
// not capable of recovering all the extra bits we have spent in the KF or GF,
// then the remainder will have to be recovered over a longer time span via
// other buffer / rate control mechanisms.
- if (cpi->this_frame_target < min_frame_target)
- cpi->this_frame_target = min_frame_target;
+ if (cpi->rc.this_frame_target < min_frame_target)
+ cpi->rc.this_frame_target = min_frame_target;
- if (!cpi->refresh_alt_ref_frame)
- // Note the baseline target data rate for this inter frame.
- cpi->inter_frame_target = cpi->this_frame_target;
-
// Adjust target frame size for Golden Frames:
- if (cpi->frames_till_gf_update_due == 0) {
- const int q = (cpi->oxcf.fixed_q < 0) ? cpi->last_q[INTER_FRAME]
- : cpi->oxcf.fixed_q;
-
+ if (cpi->rc.frames_till_gf_update_due == 0) {
cpi->refresh_golden_frame = 1;
-
calc_gf_params(cpi);
-
// If we are using alternate ref instead of gf then do not apply the boost
// It will instead be applied to the altref update
// Jims modified boost
if (!cpi->source_alt_ref_active) {
- if (cpi->oxcf.fixed_q < 0) {
- // The spend on the GF is defined in the two pass code
- // for two pass encodes
- cpi->this_frame_target = cpi->per_frame_bandwidth;
- } else {
- cpi->this_frame_target =
- (estimate_bits_at_q(1, q, cpi->common.MBs, 1.0)
- * cpi->last_boost) / 100;
- }
+ // The spend on the GF is defined in the two pass code
+ // for two pass encodes
+ cpi->rc.this_frame_target = cpi->rc.per_frame_bandwidth;
} else {
// If there is an active ARF at this location use the minimum
// bits on this frame even if it is a constructed arf.
// The active maximum quantizer insures that an appropriate
// number of bits will be spent if needed for constructed ARFs.
- cpi->this_frame_target = 0;
+ cpi->rc.this_frame_target = 0;
}
}
}
-
-void vp9_update_rate_correction_factors(VP9_COMP *cpi, int damp_var) {
+void vp9_rc_update_rate_correction_factors(VP9_COMP *cpi, int damp_var) {
const int q = cpi->common.base_qindex;
int correction_factor = 100;
double rate_correction_factor;
@@ -249,12 +301,12 @@
vp9_clear_system_state(); // __asm emms;
if (cpi->common.frame_type == KEY_FRAME) {
- rate_correction_factor = cpi->key_frame_rate_correction_factor;
+ rate_correction_factor = cpi->rc.key_frame_rate_correction_factor;
} else {
if (cpi->refresh_alt_ref_frame || cpi->refresh_golden_frame)
- rate_correction_factor = cpi->gf_rate_correction_factor;
+ rate_correction_factor = cpi->rc.gf_rate_correction_factor;
else
- rate_correction_factor = cpi->rate_correction_factor;
+ rate_correction_factor = cpi->rc.rate_correction_factor;
}
// Work out how big we would have expected the frame to be at this Q given
@@ -267,7 +319,7 @@
// Work out a size correction factor.
if (projected_size_based_on_q > 0)
correction_factor =
- (100 * cpi->projected_frame_size) / projected_size_based_on_q;
+ (100 * cpi->rc.projected_frame_size) / projected_size_based_on_q;
// More heavily damped adjustment used if we have been oscillating either side
// of target.
@@ -284,7 +336,6 @@
break;
}
- // if ( (correction_factor > 102) && (Q < cpi->active_worst_quality) )
if (correction_factor > 102) {
// We are not already at the worst allowable quality
correction_factor =
@@ -308,18 +359,19 @@
}
if (cpi->common.frame_type == KEY_FRAME) {
- cpi->key_frame_rate_correction_factor = rate_correction_factor;
+ cpi->rc.key_frame_rate_correction_factor = rate_correction_factor;
} else {
if (cpi->refresh_alt_ref_frame || cpi->refresh_golden_frame)
- cpi->gf_rate_correction_factor = rate_correction_factor;
+ cpi->rc.gf_rate_correction_factor = rate_correction_factor;
else
- cpi->rate_correction_factor = rate_correction_factor;
+ cpi->rc.rate_correction_factor = rate_correction_factor;
}
}
-int vp9_regulate_q(VP9_COMP *cpi, int target_bits_per_frame) {
- int q = cpi->active_worst_quality;
+int vp9_rc_regulate_q(const VP9_COMP *cpi, int target_bits_per_frame,
+ int active_best_quality, int active_worst_quality) {
+ int q = active_worst_quality;
int i;
int last_error = INT_MAX;
@@ -329,12 +381,12 @@
// Select the appropriate correction factor based upon type of frame.
if (cpi->common.frame_type == KEY_FRAME) {
- correction_factor = cpi->key_frame_rate_correction_factor;
+ correction_factor = cpi->rc.key_frame_rate_correction_factor;
} else {
if (cpi->refresh_alt_ref_frame || cpi->refresh_golden_frame)
- correction_factor = cpi->gf_rate_correction_factor;
+ correction_factor = cpi->rc.gf_rate_correction_factor;
else
- correction_factor = cpi->rate_correction_factor;
+ correction_factor = cpi->rc.rate_correction_factor;
}
// Calculate required scaling factor based on target frame size and size of
@@ -347,11 +399,11 @@
target_bits_per_mb =
(target_bits_per_frame << BPER_MB_NORMBITS) / cpi->common.MBs;
- i = cpi->active_best_quality;
+ i = active_best_quality;
do {
- bits_per_mb_at_this_q = (int)vp9_bits_per_mb(cpi->common.frame_type, i,
- correction_factor);
+ bits_per_mb_at_this_q = (int)vp9_rc_bits_per_mb(cpi->common.frame_type, i,
+ correction_factor);
if (bits_per_mb_at_this_q <= target_bits_per_mb) {
if ((target_bits_per_mb - bits_per_mb_at_this_q) <= last_error)
@@ -363,12 +415,238 @@
} else {
last_error = bits_per_mb_at_this_q - target_bits_per_mb;
}
- } while (++i <= cpi->active_worst_quality);
+ } while (++i <= active_worst_quality);
return q;
}
+static int get_active_quality(int q,
+ int gfu_boost,
+ int low,
+ int high,
+ int *low_motion_minq,
+ int *high_motion_minq) {
+ int active_best_quality;
+ if (gfu_boost > high) {
+ active_best_quality = low_motion_minq[q];
+ } else if (gfu_boost < low) {
+ active_best_quality = high_motion_minq[q];
+ } else {
+ const int gap = high - low;
+ const int offset = high - gfu_boost;
+ const int qdiff = high_motion_minq[q] - low_motion_minq[q];
+ const int adjustment = ((offset * qdiff) + (gap >> 1)) / gap;
+ active_best_quality = low_motion_minq[q] + adjustment;
+ }
+ return active_best_quality;
+}
+int vp9_rc_pick_q_and_adjust_q_bounds(const VP9_COMP *cpi,
+ int *bottom_index,
+ int *top_index,
+ int *top_index_prop) {
+ const VP9_COMMON *const cm = &cpi->common;
+ int active_best_quality;
+ int active_worst_quality = cpi->rc.active_worst_quality;
+ int q;
+
+ if (frame_is_intra_only(cm)) {
+ active_best_quality = cpi->rc.best_quality;
+#if !CONFIG_MULTIPLE_ARF
+ // Handle the special case for key frames forced when we have75 reached
+ // the maximum key frame interval. Here force the Q to a range
+ // based on the ambient Q to reduce the risk of popping.
+ if (cpi->this_key_frame_forced) {
+ int delta_qindex;
+ int qindex = cpi->rc.last_boosted_qindex;
+ double last_boosted_q = vp9_convert_qindex_to_q(qindex);
+
+ delta_qindex = vp9_compute_qdelta(cpi, last_boosted_q,
+ (last_boosted_q * 0.75));
+ active_best_quality = MAX(qindex + delta_qindex,
+ cpi->rc.best_quality);
+ } else if (!(cpi->pass == 0 && cpi->common.current_video_frame == 0)) {
+ // not first frame of one pass
+ double q_adj_factor = 1.0;
+ double q_val;
+
+ // Baseline value derived from cpi->active_worst_quality and kf boost
+ active_best_quality = get_active_quality(active_worst_quality,
+ cpi->rc.kf_boost,
+ kf_low, kf_high,
+ kf_low_motion_minq,
+ kf_high_motion_minq);
+
+ // Allow somewhat lower kf minq with small image formats.
+ if ((cm->width * cm->height) <= (352 * 288)) {
+ q_adj_factor -= 0.25;
+ }
+
+ // Make a further adjustment based on the kf zero motion measure.
+ q_adj_factor += 0.05 - (0.001 * (double)cpi->kf_zeromotion_pct);
+
+ // Convert the adjustment factor to a qindex delta
+ // on active_best_quality.
+ q_val = vp9_convert_qindex_to_q(active_best_quality);
+ active_best_quality +=
+ vp9_compute_qdelta(cpi, q_val, (q_val * q_adj_factor));
+ }
+#else
+ double current_q;
+ // Force the KF quantizer to be 30% of the active_worst_quality.
+ current_q = vp9_convert_qindex_to_q(active_worst_quality);
+ active_best_quality = active_worst_quality
+ + vp9_compute_qdelta(cpi, current_q, current_q * 0.3);
+#endif
+ } else if (!cpi->is_src_frame_alt_ref &&
+ (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) {
+
+ // Use the lower of active_worst_quality and recent
+ // average Q as basis for GF/ARF best Q limit unless last frame was
+ // a key frame.
+ if (cpi->frames_since_key > 1 &&
+ cpi->rc.avg_frame_qindex < active_worst_quality) {
+ q = cpi->rc.avg_frame_qindex;
+ } else {
+ q = active_worst_quality;
+ }
+ // For constrained quality dont allow Q less than the cq level
+ if (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) {
+ if (q < cpi->cq_target_quality)
+ q = cpi->cq_target_quality;
+ if (cpi->frames_since_key > 1) {
+ active_best_quality = get_active_quality(q, cpi->rc.gfu_boost,
+ gf_low, gf_high,
+ afq_low_motion_minq,
+ afq_high_motion_minq);
+ } else {
+ active_best_quality = get_active_quality(q, cpi->rc.gfu_boost,
+ gf_low, gf_high,
+ gf_low_motion_minq,
+ gf_high_motion_minq);
+ }
+ // Constrained quality use slightly lower active best.
+ active_best_quality = active_best_quality * 15 / 16;
+
+ } else if (cpi->oxcf.end_usage == USAGE_CONSTANT_QUALITY) {
+ if (!cpi->refresh_alt_ref_frame) {
+ active_best_quality = cpi->cq_target_quality;
+ } else {
+ if (cpi->frames_since_key > 1) {
+ active_best_quality = get_active_quality(
+ q, cpi->rc.gfu_boost, gf_low, gf_high,
+ afq_low_motion_minq, afq_high_motion_minq);
+ } else {
+ active_best_quality = get_active_quality(
+ q, cpi->rc.gfu_boost, gf_low, gf_high,
+ gf_low_motion_minq, gf_high_motion_minq);
+ }
+ }
+ } else {
+ active_best_quality = get_active_quality(
+ q, cpi->rc.gfu_boost, gf_low, gf_high,
+ gf_low_motion_minq, gf_high_motion_minq);
+ }
+ } else {
+ if (cpi->oxcf.end_usage == USAGE_CONSTANT_QUALITY) {
+ active_best_quality = cpi->cq_target_quality;
+ } else {
+ if (cpi->pass == 0 &&
+ cpi->rc.avg_frame_qindex < active_worst_quality)
+ // 1-pass: for now, use the average Q for the active_best, if its lower
+ // than active_worst.
+ active_best_quality = inter_minq[cpi->rc.avg_frame_qindex];
+ else
+ active_best_quality = inter_minq[active_worst_quality];
+
+ // For the constrained quality mode we don't want
+ // q to fall below the cq level.
+ if ((cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) &&
+ (active_best_quality < cpi->cq_target_quality)) {
+ // If we are strongly undershooting the target rate in the last
+ // frames then use the user passed in cq value not the auto
+ // cq value.
+ if (cpi->rc.rolling_actual_bits < cpi->rc.min_frame_bandwidth)
+ active_best_quality = cpi->oxcf.cq_level;
+ else
+ active_best_quality = cpi->cq_target_quality;
+ }
+ }
+ }
+
+ // Clip the active best and worst quality values to limits
+ if (active_worst_quality > cpi->rc.worst_quality)
+ active_worst_quality = cpi->rc.worst_quality;
+
+ if (active_best_quality < cpi->rc.best_quality)
+ active_best_quality = cpi->rc.best_quality;
+
+ if (active_best_quality > cpi->rc.worst_quality)
+ active_best_quality = cpi->rc.worst_quality;
+
+ if (active_worst_quality < active_best_quality)
+ active_worst_quality = active_best_quality;
+
+ *top_index_prop = active_worst_quality;
+ *top_index = active_worst_quality;
+ *bottom_index = active_best_quality;
+
+#if LIMIT_QRANGE_FOR_ALTREF_AND_KEY
+ // Limit Q range for the adaptive loop.
+ if (cm->frame_type == KEY_FRAME && !cpi->this_key_frame_forced) {
+ if (!(cpi->pass == 0 && cpi->common.current_video_frame == 0)) {
+ *top_index = active_worst_quality;
+ *top_index =
+ (active_worst_quality + active_best_quality * 3) / 4;
+ }
+ } else if (!cpi->is_src_frame_alt_ref &&
+ (cpi->oxcf.end_usage != USAGE_STREAM_FROM_SERVER) &&
+ (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) {
+ *top_index =
+ (active_worst_quality + active_best_quality) / 2;
+ }
+#endif
+
+ if (cpi->oxcf.end_usage == USAGE_CONSTANT_QUALITY) {
+ q = active_best_quality;
+ // Special case code to try and match quality with forced key frames
+ } else if ((cm->frame_type == KEY_FRAME) && cpi->this_key_frame_forced) {
+ q = cpi->rc.last_boosted_qindex;
+ } else {
+ // Determine initial Q to try.
+ if (cpi->pass == 0) {
+ // 1-pass: for now, use per-frame-bw for target size of frame, scaled
+ // by |x| for key frame.
+ int scale = (cm->frame_type == KEY_FRAME) ? 5 : 1;
+ q = vp9_rc_regulate_q(cpi, scale * cpi->rc.av_per_frame_bandwidth,
+ active_best_quality, active_worst_quality);
+ } else {
+ q = vp9_rc_regulate_q(cpi, cpi->rc.this_frame_target,
+ active_best_quality, active_worst_quality);
+ }
+ if (q > *top_index)
+ q = *top_index;
+ }
+#if CONFIG_MULTIPLE_ARF
+ // Force the quantizer determined by the coding order pattern.
+ if (cpi->multi_arf_enabled && (cm->frame_type != KEY_FRAME) &&
+ cpi->oxcf.end_usage != USAGE_CONSTANT_QUALITY) {
+ double new_q;
+ double current_q = vp9_convert_qindex_to_q(active_worst_quality);
+ int level = cpi->this_frame_weight;
+ assert(level >= 0);
+ new_q = current_q * (1.0 - (0.2 * (cpi->max_arf_level - level)));
+ q = active_worst_quality +
+ vp9_compute_qdelta(cpi, current_q, new_q);
+
+ *bottom_index = q;
+ *top_index = q;
+ printf("frame:%d q:%d\n", cm->current_video_frame, q);
+ }
+#endif
+ return q;
+}
+
static int estimate_keyframe_frequency(VP9_COMP *cpi) {
int i;
@@ -378,7 +656,7 @@
/* First key frame at start of sequence is a special case. We have no
* frequency data.
*/
- if (cpi->key_frame_count == 1) {
+ if (cpi->rc.key_frame_count == 1) {
/* Assume a default of 1 kf every 2 seconds, or the max kf interval,
* whichever is smaller.
*/
@@ -388,7 +666,7 @@
if (cpi->oxcf.auto_key && av_key_frame_frequency > key_freq)
av_key_frame_frequency = cpi->oxcf.key_freq;
- cpi->prior_key_frame_distance[KEY_FRAME_CONTEXT - 1]
+ cpi->rc.prior_key_frame_distance[KEY_FRAME_CONTEXT - 1]
= av_key_frame_frequency;
} else {
unsigned int total_weight = 0;
@@ -400,13 +678,13 @@
*/
for (i = 0; i < KEY_FRAME_CONTEXT; i++) {
if (i < KEY_FRAME_CONTEXT - 1)
- cpi->prior_key_frame_distance[i]
- = cpi->prior_key_frame_distance[i + 1];
+ cpi->rc.prior_key_frame_distance[i]
+ = cpi->rc.prior_key_frame_distance[i + 1];
else
- cpi->prior_key_frame_distance[i] = last_kf_interval;
+ cpi->rc.prior_key_frame_distance[i] = last_kf_interval;
av_key_frame_frequency += prior_key_frame_weight[i]
- * cpi->prior_key_frame_distance[i];
+ * cpi->rc.prior_key_frame_distance[i];
total_weight += prior_key_frame_weight[i];
}
@@ -416,38 +694,38 @@
}
-void vp9_adjust_key_frame_context(VP9_COMP *cpi) {
+static void adjust_key_frame_context(VP9_COMP *cpi) {
// Clear down mmx registers to allow floating point in what follows
vp9_clear_system_state();
cpi->frames_since_key = 0;
- cpi->key_frame_count++;
+ cpi->rc.key_frame_count++;
}
-
-void vp9_compute_frame_size_bounds(VP9_COMP *cpi, int *frame_under_shoot_limit,
- int *frame_over_shoot_limit) {
+void vp9_rc_compute_frame_size_bounds(const VP9_COMP *cpi,
+ int this_frame_target,
+ int *frame_under_shoot_limit,
+ int *frame_over_shoot_limit) {
// Set-up bounds on acceptable frame size:
- if (cpi->oxcf.fixed_q >= 0) {
- // Fixed Q scenario: frame size never outranges target (there is no target!)
+ if (cpi->oxcf.end_usage == USAGE_CONSTANT_QUALITY) {
*frame_under_shoot_limit = 0;
*frame_over_shoot_limit = INT_MAX;
} else {
if (cpi->common.frame_type == KEY_FRAME) {
- *frame_over_shoot_limit = cpi->this_frame_target * 9 / 8;
- *frame_under_shoot_limit = cpi->this_frame_target * 7 / 8;
+ *frame_over_shoot_limit = this_frame_target * 9 / 8;
+ *frame_under_shoot_limit = this_frame_target * 7 / 8;
} else {
if (cpi->refresh_alt_ref_frame || cpi->refresh_golden_frame) {
- *frame_over_shoot_limit = cpi->this_frame_target * 9 / 8;
- *frame_under_shoot_limit = cpi->this_frame_target * 7 / 8;
+ *frame_over_shoot_limit = this_frame_target * 9 / 8;
+ *frame_under_shoot_limit = this_frame_target * 7 / 8;
} else {
// Stron overshoot limit for constrained quality
if (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) {
- *frame_over_shoot_limit = cpi->this_frame_target * 11 / 8;
- *frame_under_shoot_limit = cpi->this_frame_target * 2 / 8;
+ *frame_over_shoot_limit = this_frame_target * 11 / 8;
+ *frame_under_shoot_limit = this_frame_target * 2 / 8;
} else {
- *frame_over_shoot_limit = cpi->this_frame_target * 11 / 8;
- *frame_under_shoot_limit = cpi->this_frame_target * 5 / 8;
+ *frame_over_shoot_limit = this_frame_target * 11 / 8;
+ *frame_under_shoot_limit = this_frame_target * 5 / 8;
}
}
}
@@ -462,9 +740,8 @@
}
}
-
// return of 0 means drop frame
-int vp9_pick_frame_size(VP9_COMP *cpi) {
+int vp9_rc_pick_frame_size_target(VP9_COMP *cpi) {
VP9_COMMON *cm = &cpi->common;
if (cm->frame_type == KEY_FRAME)
@@ -472,5 +749,111 @@
else
calc_pframe_target_size(cpi);
+ // Target rate per SB64 (including partial SB64s.
+ cpi->rc.sb64_target_rate = ((int64_t)cpi->rc.this_frame_target * 64 * 64) /
+ (cpi->common.width * cpi->common.height);
return 1;
}
+
+void vp9_rc_postencode_update(VP9_COMP *cpi, uint64_t bytes_used,
+ int worst_q) {
+ VP9_COMMON *const cm = &cpi->common;
+ // Update rate control heuristics
+ cpi->rc.projected_frame_size = (bytes_used << 3);
+
+ // Post encode loop adjustment of Q prediction.
+ vp9_rc_update_rate_correction_factors(
+ cpi, (cpi->sf.recode_loop ||
+ cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) ? 2 : 0);
+
+ cpi->rc.last_q[cm->frame_type] = cm->base_qindex;
+ cpi->rc.active_worst_quality = worst_q;
+
+ // Keep record of last boosted (KF/KF/ARF) Q value.
+ // If the current frame is coded at a lower Q then we also update it.
+ // If all mbs in this group are skipped only update if the Q value is
+ // better than that already stored.
+ // This is used to help set quality in forced key frames to reduce popping
+ if ((cm->base_qindex < cpi->rc.last_boosted_qindex) ||
+ ((cpi->static_mb_pct < 100) &&
+ ((cm->frame_type == KEY_FRAME) || cpi->refresh_alt_ref_frame ||
+ (cpi->refresh_golden_frame && !cpi->is_src_frame_alt_ref)))) {
+ cpi->rc.last_boosted_qindex = cm->base_qindex;
+ }
+
+ if (cm->frame_type == KEY_FRAME) {
+ adjust_key_frame_context(cpi);
+ }
+
+ // Keep a record of ambient average Q.
+ if (cm->frame_type != KEY_FRAME)
+ cpi->rc.avg_frame_qindex = (2 + 3 * cpi->rc.avg_frame_qindex +
+ cm->base_qindex) >> 2;
+
+ // Keep a record from which we can calculate the average Q excluding GF
+ // updates and key frames.
+ if (cm->frame_type != KEY_FRAME &&
+ !cpi->refresh_golden_frame && !cpi->refresh_alt_ref_frame) {
+ cpi->rc.ni_frames++;
+ cpi->rc.tot_q += vp9_convert_qindex_to_q(cm->base_qindex);
+ cpi->rc.avg_q = cpi->rc.tot_q / (double)cpi->rc.ni_frames;
+
+ // Calculate the average Q for normal inter frames (not key or GFU frames).
+ cpi->rc.ni_tot_qi += cm->base_qindex;
+ cpi->rc.ni_av_qi = cpi->rc.ni_tot_qi / cpi->rc.ni_frames;
+ }
+
+ // Update the buffer level variable.
+ // Non-viewable frames are a special case and are treated as pure overhead.
+ if (!cm->show_frame)
+ cpi->rc.bits_off_target -= cpi->rc.projected_frame_size;
+ else
+ cpi->rc.bits_off_target += cpi->rc.av_per_frame_bandwidth -
+ cpi->rc.projected_frame_size;
+
+ // Clip the buffer level at the maximum buffer size
+ if (cpi->rc.bits_off_target > cpi->oxcf.maximum_buffer_size)
+ cpi->rc.bits_off_target = cpi->oxcf.maximum_buffer_size;
+
+ // Rolling monitors of whether we are over or underspending used to help
+ // regulate min and Max Q in two pass.
+ if (cm->frame_type != KEY_FRAME) {
+ cpi->rc.rolling_target_bits =
+ ((cpi->rc.rolling_target_bits * 3) +
+ cpi->rc.this_frame_target + 2) / 4;
+ cpi->rc.rolling_actual_bits =
+ ((cpi->rc.rolling_actual_bits * 3) +
+ cpi->rc.projected_frame_size + 2) / 4;
+ cpi->rc.long_rolling_target_bits =
+ ((cpi->rc.long_rolling_target_bits * 31) +
+ cpi->rc.this_frame_target + 16) / 32;
+ cpi->rc.long_rolling_actual_bits =
+ ((cpi->rc.long_rolling_actual_bits * 31) +
+ cpi->rc.projected_frame_size + 16) / 32;
+ }
+
+ // Actual bits spent
+ cpi->rc.total_actual_bits += cpi->rc.projected_frame_size;
+
+ // Debug stats
+ cpi->rc.total_target_vs_actual += (cpi->rc.this_frame_target -
+ cpi->rc.projected_frame_size);
+
+ cpi->rc.buffer_level = cpi->rc.bits_off_target;
+
+#ifndef DISABLE_RC_LONG_TERM_MEM
+ // Update bits left to the kf and gf groups to account for overshoot or
+ // undershoot on these frames
+ if (cm->frame_type == KEY_FRAME) {
+ cpi->twopass.kf_group_bits += cpi->rc.this_frame_target -
+ cpi->rc.projected_frame_size;
+
+ cpi->twopass.kf_group_bits = MAX(cpi->twopass.kf_group_bits, 0);
+ } else if (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame) {
+ cpi->twopass.gf_group_bits += cpi->rc.this_frame_target -
+ cpi->rc.projected_frame_size;
+
+ cpi->twopass.gf_group_bits = MAX(cpi->twopass.gf_group_bits, 0);
+ }
+#endif
+}
« no previous file with comments | « source/libvpx/vp9/encoder/vp9_ratectrl.h ('k') | source/libvpx/vp9/encoder/vp9_rdopt.h » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698