Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(91)

Side by Side Diff: source/libvpx/vp9/encoder/vp9_ratectrl.c

Issue 111463005: libvpx: Pull from upstream (Closed) Base URL: svn://svn.chromium.org/chrome/trunk/deps/third_party/libvpx/
Patch Set: Created 7 years ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch | Annotate | Revision Log
« no previous file with comments | « source/libvpx/vp9/encoder/vp9_ratectrl.h ('k') | source/libvpx/vp9/encoder/vp9_rdopt.h » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
1 /* 1 /*
2 * Copyright (c) 2010 The WebM project authors. All Rights Reserved. 2 * Copyright (c) 2010 The WebM project authors. All Rights Reserved.
3 * 3 *
4 * Use of this source code is governed by a BSD-style license 4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source 5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found 6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may 7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree. 8 * be found in the AUTHORS file in the root of the source tree.
9 */ 9 */
10 10
11 11
12 #include <stdlib.h> 12 #include <stdlib.h>
13 #include <stdio.h> 13 #include <stdio.h>
14 #include <string.h> 14 #include <string.h>
15 #include <limits.h> 15 #include <limits.h>
16 #include <assert.h> 16 #include <assert.h>
17 #include <math.h> 17 #include <math.h>
18 18
19 #include "vp9/common/vp9_alloccommon.h" 19 #include "vp9/common/vp9_alloccommon.h"
20 #include "vp9/common/vp9_common.h" 20 #include "vp9/common/vp9_common.h"
21 #include "vp9/encoder/vp9_ratectrl.h" 21 #include "vp9/encoder/vp9_ratectrl.h"
22 #include "vp9/common/vp9_entropymode.h" 22 #include "vp9/common/vp9_entropymode.h"
23 #include "vpx_mem/vpx_mem.h" 23 #include "vpx_mem/vpx_mem.h"
24 #include "vp9/common/vp9_systemdependent.h" 24 #include "vp9/common/vp9_systemdependent.h"
25 #include "vp9/encoder/vp9_encodemv.h" 25 #include "vp9/encoder/vp9_encodemv.h"
26 #include "vp9/common/vp9_quant_common.h" 26 #include "vp9/common/vp9_quant_common.h"
27 #include "vp9/common/vp9_seg_common.h" 27 #include "vp9/common/vp9_seg_common.h"
28 28
29 #define LIMIT_QRANGE_FOR_ALTREF_AND_KEY 1
30
29 #define MIN_BPB_FACTOR 0.005 31 #define MIN_BPB_FACTOR 0.005
30 #define MAX_BPB_FACTOR 50 32 #define MAX_BPB_FACTOR 50
31 33
32 // Bits Per MB at different Q (Multiplied by 512) 34 // Bits Per MB at different Q (Multiplied by 512)
33 #define BPER_MB_NORMBITS 9 35 #define BPER_MB_NORMBITS 9
34 36
35 static const unsigned int prior_key_frame_weight[KEY_FRAME_CONTEXT] = 37 static const unsigned int prior_key_frame_weight[KEY_FRAME_CONTEXT] =
36 { 1, 2, 3, 4, 5 }; 38 { 1, 2, 3, 4, 5 };
37 39
40 // Tables relating active max Q to active min Q
41 static int kf_low_motion_minq[QINDEX_RANGE];
42 static int kf_high_motion_minq[QINDEX_RANGE];
43 static int gf_low_motion_minq[QINDEX_RANGE];
44 static int gf_high_motion_minq[QINDEX_RANGE];
45 static int inter_minq[QINDEX_RANGE];
46 static int afq_low_motion_minq[QINDEX_RANGE];
47 static int afq_high_motion_minq[QINDEX_RANGE];
48 static int gf_high = 2000;
49 static int gf_low = 400;
50 static int kf_high = 5000;
51 static int kf_low = 400;
52
53 // Functions to compute the active minq lookup table entries based on a
54 // formulaic approach to facilitate easier adjustment of the Q tables.
55 // The formulae were derived from computing a 3rd order polynomial best
56 // fit to the original data (after plotting real maxq vs minq (not q index))
57 static int calculate_minq_index(double maxq,
58 double x3, double x2, double x1, double c) {
59 int i;
60 const double minqtarget = MIN(((x3 * maxq + x2) * maxq + x1) * maxq + c,
61 maxq);
62
63 // Special case handling to deal with the step from q2.0
64 // down to lossless mode represented by q 1.0.
65 if (minqtarget <= 2.0)
66 return 0;
67
68 for (i = 0; i < QINDEX_RANGE; i++) {
69 if (minqtarget <= vp9_convert_qindex_to_q(i))
70 return i;
71 }
72
73 return QINDEX_RANGE - 1;
74 }
75
76 void vp9_rc_init_minq_luts(void) {
77 int i;
78
79 for (i = 0; i < QINDEX_RANGE; i++) {
80 const double maxq = vp9_convert_qindex_to_q(i);
81
82
83 kf_low_motion_minq[i] = calculate_minq_index(maxq,
84 0.000001,
85 -0.0004,
86 0.15,
87 0.0);
88 kf_high_motion_minq[i] = calculate_minq_index(maxq,
89 0.000002,
90 -0.0012,
91 0.50,
92 0.0);
93
94 gf_low_motion_minq[i] = calculate_minq_index(maxq,
95 0.0000015,
96 -0.0009,
97 0.32,
98 0.0);
99 gf_high_motion_minq[i] = calculate_minq_index(maxq,
100 0.0000021,
101 -0.00125,
102 0.50,
103 0.0);
104 afq_low_motion_minq[i] = calculate_minq_index(maxq,
105 0.0000015,
106 -0.0009,
107 0.33,
108 0.0);
109 afq_high_motion_minq[i] = calculate_minq_index(maxq,
110 0.0000021,
111 -0.00125,
112 0.55,
113 0.0);
114 inter_minq[i] = calculate_minq_index(maxq,
115 0.00000271,
116 -0.00113,
117 0.75,
118 0.0);
119 }
120 }
121
38 // These functions use formulaic calculations to make playing with the 122 // These functions use formulaic calculations to make playing with the
39 // quantizer tables easier. If necessary they can be replaced by lookup 123 // quantizer tables easier. If necessary they can be replaced by lookup
40 // tables if and when things settle down in the experimental bitstream 124 // tables if and when things settle down in the experimental bitstream
41 double vp9_convert_qindex_to_q(int qindex) { 125 double vp9_convert_qindex_to_q(int qindex) {
42 // Convert the index to a real Q value (scaled down to match old Q values) 126 // Convert the index to a real Q value (scaled down to match old Q values)
43 return vp9_ac_quant(qindex, 0) / 4.0; 127 return vp9_ac_quant(qindex, 0) / 4.0;
44 } 128 }
45 129
46 int vp9_gfboost_qadjust(int qindex) { 130 int vp9_rc_bits_per_mb(FRAME_TYPE frame_type, int qindex,
47 const double q = vp9_convert_qindex_to_q(qindex); 131 double correction_factor) {
48 return (int)((0.00000828 * q * q * q) +
49 (-0.0055 * q * q) +
50 (1.32 * q) + 79.3);
51 }
52
53 static int kfboost_qadjust(int qindex) {
54 const double q = vp9_convert_qindex_to_q(qindex);
55 return (int)((0.00000973 * q * q * q) +
56 (-0.00613 * q * q) +
57 (1.316 * q) + 121.2);
58 }
59
60 int vp9_bits_per_mb(FRAME_TYPE frame_type, int qindex,
61 double correction_factor) {
62 const double q = vp9_convert_qindex_to_q(qindex); 132 const double q = vp9_convert_qindex_to_q(qindex);
63 int enumerator = frame_type == KEY_FRAME ? 3300000 : 2250000; 133 int enumerator = frame_type == KEY_FRAME ? 3300000 : 2250000;
64 134
65 // q based adjustment to baseline enumerator 135 // q based adjustment to baseline enumerator
66 enumerator += (int)(enumerator * q) >> 12; 136 enumerator += (int)(enumerator * q) >> 12;
67 return (int)(0.5 + (enumerator * correction_factor / q)); 137 return (int)(0.5 + (enumerator * correction_factor / q));
68 } 138 }
69 139
70 void vp9_save_coding_context(VP9_COMP *cpi) { 140 void vp9_save_coding_context(VP9_COMP *cpi) {
71 CODING_CONTEXT *const cc = &cpi->coding_context; 141 CODING_CONTEXT *const cc = &cpi->coding_context;
(...skipping 39 matching lines...) Expand 10 before | Expand all | Expand 10 after
111 181
112 cm->fc = cc->fc; 182 cm->fc = cc->fc;
113 } 183 }
114 184
115 void vp9_setup_key_frame(VP9_COMP *cpi) { 185 void vp9_setup_key_frame(VP9_COMP *cpi) {
116 VP9_COMMON *cm = &cpi->common; 186 VP9_COMMON *cm = &cpi->common;
117 187
118 vp9_setup_past_independence(cm); 188 vp9_setup_past_independence(cm);
119 189
120 // interval before next GF 190 // interval before next GF
121 cpi->frames_till_gf_update_due = cpi->baseline_gf_interval; 191 cpi->rc.frames_till_gf_update_due = cpi->rc.baseline_gf_interval;
122 /* All buffers are implicitly updated on key frames. */ 192 /* All buffers are implicitly updated on key frames. */
123 cpi->refresh_golden_frame = 1; 193 cpi->refresh_golden_frame = 1;
124 cpi->refresh_alt_ref_frame = 1; 194 cpi->refresh_alt_ref_frame = 1;
125 } 195 }
126 196
127 void vp9_setup_inter_frame(VP9_COMP *cpi) { 197 void vp9_setup_inter_frame(VP9_COMP *cpi) {
128 VP9_COMMON *cm = &cpi->common; 198 VP9_COMMON *cm = &cpi->common;
129 if (cm->error_resilient_mode || cm->intra_only) 199 if (cm->error_resilient_mode || cm->intra_only)
130 vp9_setup_past_independence(cm); 200 vp9_setup_past_independence(cm);
131 201
132 assert(cm->frame_context_idx < NUM_FRAME_CONTEXTS); 202 assert(cm->frame_context_idx < FRAME_CONTEXTS);
133 cm->fc = cm->frame_contexts[cm->frame_context_idx]; 203 cm->fc = cm->frame_contexts[cm->frame_context_idx];
134 } 204 }
135 205
136 static int estimate_bits_at_q(int frame_kind, int q, int mbs, 206 static int estimate_bits_at_q(int frame_kind, int q, int mbs,
137 double correction_factor) { 207 double correction_factor) {
138 const int bpm = (int)(vp9_bits_per_mb(frame_kind, q, correction_factor)); 208 const int bpm = (int)(vp9_rc_bits_per_mb(frame_kind, q, correction_factor));
139 209
140 // Attempt to retain reasonable accuracy without overflow. The cutoff is 210 // Attempt to retain reasonable accuracy without overflow. The cutoff is
141 // chosen such that the maximum product of Bpm and MBs fits 31 bits. The 211 // chosen such that the maximum product of Bpm and MBs fits 31 bits. The
142 // largest Bpm takes 20 bits. 212 // largest Bpm takes 20 bits.
143 return (mbs > (1 << 11)) ? (bpm >> BPER_MB_NORMBITS) * mbs 213 return (mbs > (1 << 11)) ? (bpm >> BPER_MB_NORMBITS) * mbs
144 : (bpm * mbs) >> BPER_MB_NORMBITS; 214 : (bpm * mbs) >> BPER_MB_NORMBITS;
145 } 215 }
146 216
147 217
148 static void calc_iframe_target_size(VP9_COMP *cpi) { 218 static void calc_iframe_target_size(VP9_COMP *cpi) {
149 // boost defaults to half second 219 // boost defaults to half second
150 int target; 220 int target;
151 221
152 // Clear down mmx registers to allow floating point in what follows 222 // Clear down mmx registers to allow floating point in what follows
153 vp9_clear_system_state(); // __asm emms; 223 vp9_clear_system_state(); // __asm emms;
154 224
155 // New Two pass RC 225 // New Two pass RC
156 target = cpi->per_frame_bandwidth; 226 target = cpi->rc.per_frame_bandwidth;
157 227
158 if (cpi->oxcf.rc_max_intra_bitrate_pct) { 228 if (cpi->oxcf.rc_max_intra_bitrate_pct) {
159 int max_rate = cpi->per_frame_bandwidth 229 int max_rate = cpi->rc.per_frame_bandwidth
160 * cpi->oxcf.rc_max_intra_bitrate_pct / 100; 230 * cpi->oxcf.rc_max_intra_bitrate_pct / 100;
161 231
162 if (target > max_rate) 232 if (target > max_rate)
163 target = max_rate; 233 target = max_rate;
164 } 234 }
165 235 cpi->rc.this_frame_target = target;
166 cpi->this_frame_target = target;
167 } 236 }
168 237
169
170 // Do the best we can to define the parameters for the next GF based 238 // Do the best we can to define the parameters for the next GF based
171 // on what information we have available. 239 // on what information we have available.
172 // 240 //
173 // In this experimental code only two pass is supported 241 // In this experimental code only two pass is supported
174 // so we just use the interval determined in the two pass code. 242 // so we just use the interval determined in the two pass code.
175 static void calc_gf_params(VP9_COMP *cpi) { 243 static void calc_gf_params(VP9_COMP *cpi) {
176 // Set the gf interval 244 // Set the gf interval
177 cpi->frames_till_gf_update_due = cpi->baseline_gf_interval; 245 cpi->rc.frames_till_gf_update_due = cpi->rc.baseline_gf_interval;
178 } 246 }
179 247
180 248
181 static void calc_pframe_target_size(VP9_COMP *cpi) { 249 static void calc_pframe_target_size(VP9_COMP *cpi) {
182 const int min_frame_target = MAX(cpi->min_frame_bandwidth, 250 const int min_frame_target = MAX(cpi->rc.min_frame_bandwidth,
183 cpi->av_per_frame_bandwidth >> 5); 251 cpi->rc.av_per_frame_bandwidth >> 5);
184 if (cpi->refresh_alt_ref_frame) { 252 if (cpi->refresh_alt_ref_frame) {
185 // Special alt reference frame case 253 // Special alt reference frame case
186 // Per frame bit target for the alt ref frame 254 // Per frame bit target for the alt ref frame
187 cpi->per_frame_bandwidth = cpi->twopass.gf_bits; 255 cpi->rc.per_frame_bandwidth = cpi->twopass.gf_bits;
188 cpi->this_frame_target = cpi->per_frame_bandwidth; 256 cpi->rc.this_frame_target = cpi->rc.per_frame_bandwidth;
189 } else { 257 } else {
190 // Normal frames (gf,and inter) 258 // Normal frames (gf,and inter)
191 cpi->this_frame_target = cpi->per_frame_bandwidth; 259 cpi->rc.this_frame_target = cpi->rc.per_frame_bandwidth;
192 } 260 }
193 261
194 // Check that the total sum of adjustments is not above the maximum allowed. 262 // Check that the total sum of adjustments is not above the maximum allowed.
195 // That is, having allowed for the KF and GF penalties, we have not pushed 263 // That is, having allowed for the KF and GF penalties, we have not pushed
196 // the current inter-frame target too low. If the adjustment we apply here is 264 // the current inter-frame target too low. If the adjustment we apply here is
197 // not capable of recovering all the extra bits we have spent in the KF or GF, 265 // not capable of recovering all the extra bits we have spent in the KF or GF,
198 // then the remainder will have to be recovered over a longer time span via 266 // then the remainder will have to be recovered over a longer time span via
199 // other buffer / rate control mechanisms. 267 // other buffer / rate control mechanisms.
200 if (cpi->this_frame_target < min_frame_target) 268 if (cpi->rc.this_frame_target < min_frame_target)
201 cpi->this_frame_target = min_frame_target; 269 cpi->rc.this_frame_target = min_frame_target;
202
203 if (!cpi->refresh_alt_ref_frame)
204 // Note the baseline target data rate for this inter frame.
205 cpi->inter_frame_target = cpi->this_frame_target;
206 270
207 // Adjust target frame size for Golden Frames: 271 // Adjust target frame size for Golden Frames:
208 if (cpi->frames_till_gf_update_due == 0) { 272 if (cpi->rc.frames_till_gf_update_due == 0) {
209 const int q = (cpi->oxcf.fixed_q < 0) ? cpi->last_q[INTER_FRAME]
210 : cpi->oxcf.fixed_q;
211
212 cpi->refresh_golden_frame = 1; 273 cpi->refresh_golden_frame = 1;
213
214 calc_gf_params(cpi); 274 calc_gf_params(cpi);
215
216 // If we are using alternate ref instead of gf then do not apply the boost 275 // If we are using alternate ref instead of gf then do not apply the boost
217 // It will instead be applied to the altref update 276 // It will instead be applied to the altref update
218 // Jims modified boost 277 // Jims modified boost
219 if (!cpi->source_alt_ref_active) { 278 if (!cpi->source_alt_ref_active) {
220 if (cpi->oxcf.fixed_q < 0) { 279 // The spend on the GF is defined in the two pass code
221 // The spend on the GF is defined in the two pass code 280 // for two pass encodes
222 // for two pass encodes 281 cpi->rc.this_frame_target = cpi->rc.per_frame_bandwidth;
223 cpi->this_frame_target = cpi->per_frame_bandwidth;
224 } else {
225 cpi->this_frame_target =
226 (estimate_bits_at_q(1, q, cpi->common.MBs, 1.0)
227 * cpi->last_boost) / 100;
228 }
229 } else { 282 } else {
230 // If there is an active ARF at this location use the minimum 283 // If there is an active ARF at this location use the minimum
231 // bits on this frame even if it is a constructed arf. 284 // bits on this frame even if it is a constructed arf.
232 // The active maximum quantizer insures that an appropriate 285 // The active maximum quantizer insures that an appropriate
233 // number of bits will be spent if needed for constructed ARFs. 286 // number of bits will be spent if needed for constructed ARFs.
234 cpi->this_frame_target = 0; 287 cpi->rc.this_frame_target = 0;
235 } 288 }
236 } 289 }
237 } 290 }
238 291
239 292 void vp9_rc_update_rate_correction_factors(VP9_COMP *cpi, int damp_var) {
240 void vp9_update_rate_correction_factors(VP9_COMP *cpi, int damp_var) {
241 const int q = cpi->common.base_qindex; 293 const int q = cpi->common.base_qindex;
242 int correction_factor = 100; 294 int correction_factor = 100;
243 double rate_correction_factor; 295 double rate_correction_factor;
244 double adjustment_limit; 296 double adjustment_limit;
245 297
246 int projected_size_based_on_q = 0; 298 int projected_size_based_on_q = 0;
247 299
248 // Clear down mmx registers to allow floating point in what follows 300 // Clear down mmx registers to allow floating point in what follows
249 vp9_clear_system_state(); // __asm emms; 301 vp9_clear_system_state(); // __asm emms;
250 302
251 if (cpi->common.frame_type == KEY_FRAME) { 303 if (cpi->common.frame_type == KEY_FRAME) {
252 rate_correction_factor = cpi->key_frame_rate_correction_factor; 304 rate_correction_factor = cpi->rc.key_frame_rate_correction_factor;
253 } else { 305 } else {
254 if (cpi->refresh_alt_ref_frame || cpi->refresh_golden_frame) 306 if (cpi->refresh_alt_ref_frame || cpi->refresh_golden_frame)
255 rate_correction_factor = cpi->gf_rate_correction_factor; 307 rate_correction_factor = cpi->rc.gf_rate_correction_factor;
256 else 308 else
257 rate_correction_factor = cpi->rate_correction_factor; 309 rate_correction_factor = cpi->rc.rate_correction_factor;
258 } 310 }
259 311
260 // Work out how big we would have expected the frame to be at this Q given 312 // Work out how big we would have expected the frame to be at this Q given
261 // the current correction factor. 313 // the current correction factor.
262 // Stay in double to avoid int overflow when values are large 314 // Stay in double to avoid int overflow when values are large
263 projected_size_based_on_q = estimate_bits_at_q(cpi->common.frame_type, q, 315 projected_size_based_on_q = estimate_bits_at_q(cpi->common.frame_type, q,
264 cpi->common.MBs, 316 cpi->common.MBs,
265 rate_correction_factor); 317 rate_correction_factor);
266 318
267 // Work out a size correction factor. 319 // Work out a size correction factor.
268 if (projected_size_based_on_q > 0) 320 if (projected_size_based_on_q > 0)
269 correction_factor = 321 correction_factor =
270 (100 * cpi->projected_frame_size) / projected_size_based_on_q; 322 (100 * cpi->rc.projected_frame_size) / projected_size_based_on_q;
271 323
272 // More heavily damped adjustment used if we have been oscillating either side 324 // More heavily damped adjustment used if we have been oscillating either side
273 // of target. 325 // of target.
274 switch (damp_var) { 326 switch (damp_var) {
275 case 0: 327 case 0:
276 adjustment_limit = 0.75; 328 adjustment_limit = 0.75;
277 break; 329 break;
278 case 1: 330 case 1:
279 adjustment_limit = 0.375; 331 adjustment_limit = 0.375;
280 break; 332 break;
281 case 2: 333 case 2:
282 default: 334 default:
283 adjustment_limit = 0.25; 335 adjustment_limit = 0.25;
284 break; 336 break;
285 } 337 }
286 338
287 // if ( (correction_factor > 102) && (Q < cpi->active_worst_quality) )
288 if (correction_factor > 102) { 339 if (correction_factor > 102) {
289 // We are not already at the worst allowable quality 340 // We are not already at the worst allowable quality
290 correction_factor = 341 correction_factor =
291 (int)(100 + ((correction_factor - 100) * adjustment_limit)); 342 (int)(100 + ((correction_factor - 100) * adjustment_limit));
292 rate_correction_factor = 343 rate_correction_factor =
293 ((rate_correction_factor * correction_factor) / 100); 344 ((rate_correction_factor * correction_factor) / 100);
294 345
295 // Keep rate_correction_factor within limits 346 // Keep rate_correction_factor within limits
296 if (rate_correction_factor > MAX_BPB_FACTOR) 347 if (rate_correction_factor > MAX_BPB_FACTOR)
297 rate_correction_factor = MAX_BPB_FACTOR; 348 rate_correction_factor = MAX_BPB_FACTOR;
298 } else if (correction_factor < 99) { 349 } else if (correction_factor < 99) {
299 // We are not already at the best allowable quality 350 // We are not already at the best allowable quality
300 correction_factor = 351 correction_factor =
301 (int)(100 - ((100 - correction_factor) * adjustment_limit)); 352 (int)(100 - ((100 - correction_factor) * adjustment_limit));
302 rate_correction_factor = 353 rate_correction_factor =
303 ((rate_correction_factor * correction_factor) / 100); 354 ((rate_correction_factor * correction_factor) / 100);
304 355
305 // Keep rate_correction_factor within limits 356 // Keep rate_correction_factor within limits
306 if (rate_correction_factor < MIN_BPB_FACTOR) 357 if (rate_correction_factor < MIN_BPB_FACTOR)
307 rate_correction_factor = MIN_BPB_FACTOR; 358 rate_correction_factor = MIN_BPB_FACTOR;
308 } 359 }
309 360
310 if (cpi->common.frame_type == KEY_FRAME) { 361 if (cpi->common.frame_type == KEY_FRAME) {
311 cpi->key_frame_rate_correction_factor = rate_correction_factor; 362 cpi->rc.key_frame_rate_correction_factor = rate_correction_factor;
312 } else { 363 } else {
313 if (cpi->refresh_alt_ref_frame || cpi->refresh_golden_frame) 364 if (cpi->refresh_alt_ref_frame || cpi->refresh_golden_frame)
314 cpi->gf_rate_correction_factor = rate_correction_factor; 365 cpi->rc.gf_rate_correction_factor = rate_correction_factor;
315 else 366 else
316 cpi->rate_correction_factor = rate_correction_factor; 367 cpi->rc.rate_correction_factor = rate_correction_factor;
317 } 368 }
318 } 369 }
319 370
320 371
321 int vp9_regulate_q(VP9_COMP *cpi, int target_bits_per_frame) { 372 int vp9_rc_regulate_q(const VP9_COMP *cpi, int target_bits_per_frame,
322 int q = cpi->active_worst_quality; 373 int active_best_quality, int active_worst_quality) {
374 int q = active_worst_quality;
323 375
324 int i; 376 int i;
325 int last_error = INT_MAX; 377 int last_error = INT_MAX;
326 int target_bits_per_mb; 378 int target_bits_per_mb;
327 int bits_per_mb_at_this_q; 379 int bits_per_mb_at_this_q;
328 double correction_factor; 380 double correction_factor;
329 381
330 // Select the appropriate correction factor based upon type of frame. 382 // Select the appropriate correction factor based upon type of frame.
331 if (cpi->common.frame_type == KEY_FRAME) { 383 if (cpi->common.frame_type == KEY_FRAME) {
332 correction_factor = cpi->key_frame_rate_correction_factor; 384 correction_factor = cpi->rc.key_frame_rate_correction_factor;
333 } else { 385 } else {
334 if (cpi->refresh_alt_ref_frame || cpi->refresh_golden_frame) 386 if (cpi->refresh_alt_ref_frame || cpi->refresh_golden_frame)
335 correction_factor = cpi->gf_rate_correction_factor; 387 correction_factor = cpi->rc.gf_rate_correction_factor;
336 else 388 else
337 correction_factor = cpi->rate_correction_factor; 389 correction_factor = cpi->rc.rate_correction_factor;
338 } 390 }
339 391
340 // Calculate required scaling factor based on target frame size and size of 392 // Calculate required scaling factor based on target frame size and size of
341 // frame produced using previous Q. 393 // frame produced using previous Q.
342 if (target_bits_per_frame >= (INT_MAX >> BPER_MB_NORMBITS)) 394 if (target_bits_per_frame >= (INT_MAX >> BPER_MB_NORMBITS))
343 target_bits_per_mb = 395 target_bits_per_mb =
344 (target_bits_per_frame / cpi->common.MBs) 396 (target_bits_per_frame / cpi->common.MBs)
345 << BPER_MB_NORMBITS; // Case where we would overflow int 397 << BPER_MB_NORMBITS; // Case where we would overflow int
346 else 398 else
347 target_bits_per_mb = 399 target_bits_per_mb =
348 (target_bits_per_frame << BPER_MB_NORMBITS) / cpi->common.MBs; 400 (target_bits_per_frame << BPER_MB_NORMBITS) / cpi->common.MBs;
349 401
350 i = cpi->active_best_quality; 402 i = active_best_quality;
351 403
352 do { 404 do {
353 bits_per_mb_at_this_q = (int)vp9_bits_per_mb(cpi->common.frame_type, i, 405 bits_per_mb_at_this_q = (int)vp9_rc_bits_per_mb(cpi->common.frame_type, i,
354 correction_factor); 406 correction_factor);
355 407
356 if (bits_per_mb_at_this_q <= target_bits_per_mb) { 408 if (bits_per_mb_at_this_q <= target_bits_per_mb) {
357 if ((target_bits_per_mb - bits_per_mb_at_this_q) <= last_error) 409 if ((target_bits_per_mb - bits_per_mb_at_this_q) <= last_error)
358 q = i; 410 q = i;
359 else 411 else
360 q = i - 1; 412 q = i - 1;
361 413
362 break; 414 break;
363 } else { 415 } else {
364 last_error = bits_per_mb_at_this_q - target_bits_per_mb; 416 last_error = bits_per_mb_at_this_q - target_bits_per_mb;
365 } 417 }
366 } while (++i <= cpi->active_worst_quality); 418 } while (++i <= active_worst_quality);
367 419
368 return q; 420 return q;
369 } 421 }
370 422
423 static int get_active_quality(int q,
424 int gfu_boost,
425 int low,
426 int high,
427 int *low_motion_minq,
428 int *high_motion_minq) {
429 int active_best_quality;
430 if (gfu_boost > high) {
431 active_best_quality = low_motion_minq[q];
432 } else if (gfu_boost < low) {
433 active_best_quality = high_motion_minq[q];
434 } else {
435 const int gap = high - low;
436 const int offset = high - gfu_boost;
437 const int qdiff = high_motion_minq[q] - low_motion_minq[q];
438 const int adjustment = ((offset * qdiff) + (gap >> 1)) / gap;
439 active_best_quality = low_motion_minq[q] + adjustment;
440 }
441 return active_best_quality;
442 }
443
444 int vp9_rc_pick_q_and_adjust_q_bounds(const VP9_COMP *cpi,
445 int *bottom_index,
446 int *top_index,
447 int *top_index_prop) {
448 const VP9_COMMON *const cm = &cpi->common;
449 int active_best_quality;
450 int active_worst_quality = cpi->rc.active_worst_quality;
451 int q;
452
453 if (frame_is_intra_only(cm)) {
454 active_best_quality = cpi->rc.best_quality;
455 #if !CONFIG_MULTIPLE_ARF
456 // Handle the special case for key frames forced when we have75 reached
457 // the maximum key frame interval. Here force the Q to a range
458 // based on the ambient Q to reduce the risk of popping.
459 if (cpi->this_key_frame_forced) {
460 int delta_qindex;
461 int qindex = cpi->rc.last_boosted_qindex;
462 double last_boosted_q = vp9_convert_qindex_to_q(qindex);
463
464 delta_qindex = vp9_compute_qdelta(cpi, last_boosted_q,
465 (last_boosted_q * 0.75));
466 active_best_quality = MAX(qindex + delta_qindex,
467 cpi->rc.best_quality);
468 } else if (!(cpi->pass == 0 && cpi->common.current_video_frame == 0)) {
469 // not first frame of one pass
470 double q_adj_factor = 1.0;
471 double q_val;
472
473 // Baseline value derived from cpi->active_worst_quality and kf boost
474 active_best_quality = get_active_quality(active_worst_quality,
475 cpi->rc.kf_boost,
476 kf_low, kf_high,
477 kf_low_motion_minq,
478 kf_high_motion_minq);
479
480 // Allow somewhat lower kf minq with small image formats.
481 if ((cm->width * cm->height) <= (352 * 288)) {
482 q_adj_factor -= 0.25;
483 }
484
485 // Make a further adjustment based on the kf zero motion measure.
486 q_adj_factor += 0.05 - (0.001 * (double)cpi->kf_zeromotion_pct);
487
488 // Convert the adjustment factor to a qindex delta
489 // on active_best_quality.
490 q_val = vp9_convert_qindex_to_q(active_best_quality);
491 active_best_quality +=
492 vp9_compute_qdelta(cpi, q_val, (q_val * q_adj_factor));
493 }
494 #else
495 double current_q;
496 // Force the KF quantizer to be 30% of the active_worst_quality.
497 current_q = vp9_convert_qindex_to_q(active_worst_quality);
498 active_best_quality = active_worst_quality
499 + vp9_compute_qdelta(cpi, current_q, current_q * 0.3);
500 #endif
501 } else if (!cpi->is_src_frame_alt_ref &&
502 (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) {
503
504 // Use the lower of active_worst_quality and recent
505 // average Q as basis for GF/ARF best Q limit unless last frame was
506 // a key frame.
507 if (cpi->frames_since_key > 1 &&
508 cpi->rc.avg_frame_qindex < active_worst_quality) {
509 q = cpi->rc.avg_frame_qindex;
510 } else {
511 q = active_worst_quality;
512 }
513 // For constrained quality dont allow Q less than the cq level
514 if (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) {
515 if (q < cpi->cq_target_quality)
516 q = cpi->cq_target_quality;
517 if (cpi->frames_since_key > 1) {
518 active_best_quality = get_active_quality(q, cpi->rc.gfu_boost,
519 gf_low, gf_high,
520 afq_low_motion_minq,
521 afq_high_motion_minq);
522 } else {
523 active_best_quality = get_active_quality(q, cpi->rc.gfu_boost,
524 gf_low, gf_high,
525 gf_low_motion_minq,
526 gf_high_motion_minq);
527 }
528 // Constrained quality use slightly lower active best.
529 active_best_quality = active_best_quality * 15 / 16;
530
531 } else if (cpi->oxcf.end_usage == USAGE_CONSTANT_QUALITY) {
532 if (!cpi->refresh_alt_ref_frame) {
533 active_best_quality = cpi->cq_target_quality;
534 } else {
535 if (cpi->frames_since_key > 1) {
536 active_best_quality = get_active_quality(
537 q, cpi->rc.gfu_boost, gf_low, gf_high,
538 afq_low_motion_minq, afq_high_motion_minq);
539 } else {
540 active_best_quality = get_active_quality(
541 q, cpi->rc.gfu_boost, gf_low, gf_high,
542 gf_low_motion_minq, gf_high_motion_minq);
543 }
544 }
545 } else {
546 active_best_quality = get_active_quality(
547 q, cpi->rc.gfu_boost, gf_low, gf_high,
548 gf_low_motion_minq, gf_high_motion_minq);
549 }
550 } else {
551 if (cpi->oxcf.end_usage == USAGE_CONSTANT_QUALITY) {
552 active_best_quality = cpi->cq_target_quality;
553 } else {
554 if (cpi->pass == 0 &&
555 cpi->rc.avg_frame_qindex < active_worst_quality)
556 // 1-pass: for now, use the average Q for the active_best, if its lower
557 // than active_worst.
558 active_best_quality = inter_minq[cpi->rc.avg_frame_qindex];
559 else
560 active_best_quality = inter_minq[active_worst_quality];
561
562 // For the constrained quality mode we don't want
563 // q to fall below the cq level.
564 if ((cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) &&
565 (active_best_quality < cpi->cq_target_quality)) {
566 // If we are strongly undershooting the target rate in the last
567 // frames then use the user passed in cq value not the auto
568 // cq value.
569 if (cpi->rc.rolling_actual_bits < cpi->rc.min_frame_bandwidth)
570 active_best_quality = cpi->oxcf.cq_level;
571 else
572 active_best_quality = cpi->cq_target_quality;
573 }
574 }
575 }
576
577 // Clip the active best and worst quality values to limits
578 if (active_worst_quality > cpi->rc.worst_quality)
579 active_worst_quality = cpi->rc.worst_quality;
580
581 if (active_best_quality < cpi->rc.best_quality)
582 active_best_quality = cpi->rc.best_quality;
583
584 if (active_best_quality > cpi->rc.worst_quality)
585 active_best_quality = cpi->rc.worst_quality;
586
587 if (active_worst_quality < active_best_quality)
588 active_worst_quality = active_best_quality;
589
590 *top_index_prop = active_worst_quality;
591 *top_index = active_worst_quality;
592 *bottom_index = active_best_quality;
593
594 #if LIMIT_QRANGE_FOR_ALTREF_AND_KEY
595 // Limit Q range for the adaptive loop.
596 if (cm->frame_type == KEY_FRAME && !cpi->this_key_frame_forced) {
597 if (!(cpi->pass == 0 && cpi->common.current_video_frame == 0)) {
598 *top_index = active_worst_quality;
599 *top_index =
600 (active_worst_quality + active_best_quality * 3) / 4;
601 }
602 } else if (!cpi->is_src_frame_alt_ref &&
603 (cpi->oxcf.end_usage != USAGE_STREAM_FROM_SERVER) &&
604 (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) {
605 *top_index =
606 (active_worst_quality + active_best_quality) / 2;
607 }
608 #endif
609
610 if (cpi->oxcf.end_usage == USAGE_CONSTANT_QUALITY) {
611 q = active_best_quality;
612 // Special case code to try and match quality with forced key frames
613 } else if ((cm->frame_type == KEY_FRAME) && cpi->this_key_frame_forced) {
614 q = cpi->rc.last_boosted_qindex;
615 } else {
616 // Determine initial Q to try.
617 if (cpi->pass == 0) {
618 // 1-pass: for now, use per-frame-bw for target size of frame, scaled
619 // by |x| for key frame.
620 int scale = (cm->frame_type == KEY_FRAME) ? 5 : 1;
621 q = vp9_rc_regulate_q(cpi, scale * cpi->rc.av_per_frame_bandwidth,
622 active_best_quality, active_worst_quality);
623 } else {
624 q = vp9_rc_regulate_q(cpi, cpi->rc.this_frame_target,
625 active_best_quality, active_worst_quality);
626 }
627 if (q > *top_index)
628 q = *top_index;
629 }
630 #if CONFIG_MULTIPLE_ARF
631 // Force the quantizer determined by the coding order pattern.
632 if (cpi->multi_arf_enabled && (cm->frame_type != KEY_FRAME) &&
633 cpi->oxcf.end_usage != USAGE_CONSTANT_QUALITY) {
634 double new_q;
635 double current_q = vp9_convert_qindex_to_q(active_worst_quality);
636 int level = cpi->this_frame_weight;
637 assert(level >= 0);
638 new_q = current_q * (1.0 - (0.2 * (cpi->max_arf_level - level)));
639 q = active_worst_quality +
640 vp9_compute_qdelta(cpi, current_q, new_q);
641
642 *bottom_index = q;
643 *top_index = q;
644 printf("frame:%d q:%d\n", cm->current_video_frame, q);
645 }
646 #endif
647 return q;
648 }
371 649
372 static int estimate_keyframe_frequency(VP9_COMP *cpi) { 650 static int estimate_keyframe_frequency(VP9_COMP *cpi) {
373 int i; 651 int i;
374 652
375 // Average key frame frequency 653 // Average key frame frequency
376 int av_key_frame_frequency = 0; 654 int av_key_frame_frequency = 0;
377 655
378 /* First key frame at start of sequence is a special case. We have no 656 /* First key frame at start of sequence is a special case. We have no
379 * frequency data. 657 * frequency data.
380 */ 658 */
381 if (cpi->key_frame_count == 1) { 659 if (cpi->rc.key_frame_count == 1) {
382 /* Assume a default of 1 kf every 2 seconds, or the max kf interval, 660 /* Assume a default of 1 kf every 2 seconds, or the max kf interval,
383 * whichever is smaller. 661 * whichever is smaller.
384 */ 662 */
385 int key_freq = cpi->oxcf.key_freq > 0 ? cpi->oxcf.key_freq : 1; 663 int key_freq = cpi->oxcf.key_freq > 0 ? cpi->oxcf.key_freq : 1;
386 av_key_frame_frequency = (int)cpi->output_framerate * 2; 664 av_key_frame_frequency = (int)cpi->output_framerate * 2;
387 665
388 if (cpi->oxcf.auto_key && av_key_frame_frequency > key_freq) 666 if (cpi->oxcf.auto_key && av_key_frame_frequency > key_freq)
389 av_key_frame_frequency = cpi->oxcf.key_freq; 667 av_key_frame_frequency = cpi->oxcf.key_freq;
390 668
391 cpi->prior_key_frame_distance[KEY_FRAME_CONTEXT - 1] 669 cpi->rc.prior_key_frame_distance[KEY_FRAME_CONTEXT - 1]
392 = av_key_frame_frequency; 670 = av_key_frame_frequency;
393 } else { 671 } else {
394 unsigned int total_weight = 0; 672 unsigned int total_weight = 0;
395 int last_kf_interval = 673 int last_kf_interval =
396 (cpi->frames_since_key > 0) ? cpi->frames_since_key : 1; 674 (cpi->frames_since_key > 0) ? cpi->frames_since_key : 1;
397 675
398 /* reset keyframe context and calculate weighted average of last 676 /* reset keyframe context and calculate weighted average of last
399 * KEY_FRAME_CONTEXT keyframes 677 * KEY_FRAME_CONTEXT keyframes
400 */ 678 */
401 for (i = 0; i < KEY_FRAME_CONTEXT; i++) { 679 for (i = 0; i < KEY_FRAME_CONTEXT; i++) {
402 if (i < KEY_FRAME_CONTEXT - 1) 680 if (i < KEY_FRAME_CONTEXT - 1)
403 cpi->prior_key_frame_distance[i] 681 cpi->rc.prior_key_frame_distance[i]
404 = cpi->prior_key_frame_distance[i + 1]; 682 = cpi->rc.prior_key_frame_distance[i + 1];
405 else 683 else
406 cpi->prior_key_frame_distance[i] = last_kf_interval; 684 cpi->rc.prior_key_frame_distance[i] = last_kf_interval;
407 685
408 av_key_frame_frequency += prior_key_frame_weight[i] 686 av_key_frame_frequency += prior_key_frame_weight[i]
409 * cpi->prior_key_frame_distance[i]; 687 * cpi->rc.prior_key_frame_distance[i];
410 total_weight += prior_key_frame_weight[i]; 688 total_weight += prior_key_frame_weight[i];
411 } 689 }
412 690
413 av_key_frame_frequency /= total_weight; 691 av_key_frame_frequency /= total_weight;
414 } 692 }
415 return av_key_frame_frequency; 693 return av_key_frame_frequency;
416 } 694 }
417 695
418 696
419 void vp9_adjust_key_frame_context(VP9_COMP *cpi) { 697 static void adjust_key_frame_context(VP9_COMP *cpi) {
420 // Clear down mmx registers to allow floating point in what follows 698 // Clear down mmx registers to allow floating point in what follows
421 vp9_clear_system_state(); 699 vp9_clear_system_state();
422 700
423 cpi->frames_since_key = 0; 701 cpi->frames_since_key = 0;
424 cpi->key_frame_count++; 702 cpi->rc.key_frame_count++;
425 } 703 }
426 704
427 705 void vp9_rc_compute_frame_size_bounds(const VP9_COMP *cpi,
428 void vp9_compute_frame_size_bounds(VP9_COMP *cpi, int *frame_under_shoot_limit, 706 int this_frame_target,
429 int *frame_over_shoot_limit) { 707 int *frame_under_shoot_limit,
708 int *frame_over_shoot_limit) {
430 // Set-up bounds on acceptable frame size: 709 // Set-up bounds on acceptable frame size:
431 if (cpi->oxcf.fixed_q >= 0) { 710 if (cpi->oxcf.end_usage == USAGE_CONSTANT_QUALITY) {
432 // Fixed Q scenario: frame size never outranges target (there is no target!)
433 *frame_under_shoot_limit = 0; 711 *frame_under_shoot_limit = 0;
434 *frame_over_shoot_limit = INT_MAX; 712 *frame_over_shoot_limit = INT_MAX;
435 } else { 713 } else {
436 if (cpi->common.frame_type == KEY_FRAME) { 714 if (cpi->common.frame_type == KEY_FRAME) {
437 *frame_over_shoot_limit = cpi->this_frame_target * 9 / 8; 715 *frame_over_shoot_limit = this_frame_target * 9 / 8;
438 *frame_under_shoot_limit = cpi->this_frame_target * 7 / 8; 716 *frame_under_shoot_limit = this_frame_target * 7 / 8;
439 } else { 717 } else {
440 if (cpi->refresh_alt_ref_frame || cpi->refresh_golden_frame) { 718 if (cpi->refresh_alt_ref_frame || cpi->refresh_golden_frame) {
441 *frame_over_shoot_limit = cpi->this_frame_target * 9 / 8; 719 *frame_over_shoot_limit = this_frame_target * 9 / 8;
442 *frame_under_shoot_limit = cpi->this_frame_target * 7 / 8; 720 *frame_under_shoot_limit = this_frame_target * 7 / 8;
443 } else { 721 } else {
444 // Stron overshoot limit for constrained quality 722 // Stron overshoot limit for constrained quality
445 if (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) { 723 if (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) {
446 *frame_over_shoot_limit = cpi->this_frame_target * 11 / 8; 724 *frame_over_shoot_limit = this_frame_target * 11 / 8;
447 *frame_under_shoot_limit = cpi->this_frame_target * 2 / 8; 725 *frame_under_shoot_limit = this_frame_target * 2 / 8;
448 } else { 726 } else {
449 *frame_over_shoot_limit = cpi->this_frame_target * 11 / 8; 727 *frame_over_shoot_limit = this_frame_target * 11 / 8;
450 *frame_under_shoot_limit = cpi->this_frame_target * 5 / 8; 728 *frame_under_shoot_limit = this_frame_target * 5 / 8;
451 } 729 }
452 } 730 }
453 } 731 }
454 732
455 // For very small rate targets where the fractional adjustment 733 // For very small rate targets where the fractional adjustment
456 // (eg * 7/8) may be tiny make sure there is at least a minimum 734 // (eg * 7/8) may be tiny make sure there is at least a minimum
457 // range. 735 // range.
458 *frame_over_shoot_limit += 200; 736 *frame_over_shoot_limit += 200;
459 *frame_under_shoot_limit -= 200; 737 *frame_under_shoot_limit -= 200;
460 if (*frame_under_shoot_limit < 0) 738 if (*frame_under_shoot_limit < 0)
461 *frame_under_shoot_limit = 0; 739 *frame_under_shoot_limit = 0;
462 } 740 }
463 } 741 }
464 742
465
466 // return of 0 means drop frame 743 // return of 0 means drop frame
467 int vp9_pick_frame_size(VP9_COMP *cpi) { 744 int vp9_rc_pick_frame_size_target(VP9_COMP *cpi) {
468 VP9_COMMON *cm = &cpi->common; 745 VP9_COMMON *cm = &cpi->common;
469 746
470 if (cm->frame_type == KEY_FRAME) 747 if (cm->frame_type == KEY_FRAME)
471 calc_iframe_target_size(cpi); 748 calc_iframe_target_size(cpi);
472 else 749 else
473 calc_pframe_target_size(cpi); 750 calc_pframe_target_size(cpi);
474 751
752 // Target rate per SB64 (including partial SB64s.
753 cpi->rc.sb64_target_rate = ((int64_t)cpi->rc.this_frame_target * 64 * 64) /
754 (cpi->common.width * cpi->common.height);
475 return 1; 755 return 1;
476 } 756 }
757
758 void vp9_rc_postencode_update(VP9_COMP *cpi, uint64_t bytes_used,
759 int worst_q) {
760 VP9_COMMON *const cm = &cpi->common;
761 // Update rate control heuristics
762 cpi->rc.projected_frame_size = (bytes_used << 3);
763
764 // Post encode loop adjustment of Q prediction.
765 vp9_rc_update_rate_correction_factors(
766 cpi, (cpi->sf.recode_loop ||
767 cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) ? 2 : 0);
768
769 cpi->rc.last_q[cm->frame_type] = cm->base_qindex;
770 cpi->rc.active_worst_quality = worst_q;
771
772 // Keep record of last boosted (KF/KF/ARF) Q value.
773 // If the current frame is coded at a lower Q then we also update it.
774 // If all mbs in this group are skipped only update if the Q value is
775 // better than that already stored.
776 // This is used to help set quality in forced key frames to reduce popping
777 if ((cm->base_qindex < cpi->rc.last_boosted_qindex) ||
778 ((cpi->static_mb_pct < 100) &&
779 ((cm->frame_type == KEY_FRAME) || cpi->refresh_alt_ref_frame ||
780 (cpi->refresh_golden_frame && !cpi->is_src_frame_alt_ref)))) {
781 cpi->rc.last_boosted_qindex = cm->base_qindex;
782 }
783
784 if (cm->frame_type == KEY_FRAME) {
785 adjust_key_frame_context(cpi);
786 }
787
788 // Keep a record of ambient average Q.
789 if (cm->frame_type != KEY_FRAME)
790 cpi->rc.avg_frame_qindex = (2 + 3 * cpi->rc.avg_frame_qindex +
791 cm->base_qindex) >> 2;
792
793 // Keep a record from which we can calculate the average Q excluding GF
794 // updates and key frames.
795 if (cm->frame_type != KEY_FRAME &&
796 !cpi->refresh_golden_frame && !cpi->refresh_alt_ref_frame) {
797 cpi->rc.ni_frames++;
798 cpi->rc.tot_q += vp9_convert_qindex_to_q(cm->base_qindex);
799 cpi->rc.avg_q = cpi->rc.tot_q / (double)cpi->rc.ni_frames;
800
801 // Calculate the average Q for normal inter frames (not key or GFU frames).
802 cpi->rc.ni_tot_qi += cm->base_qindex;
803 cpi->rc.ni_av_qi = cpi->rc.ni_tot_qi / cpi->rc.ni_frames;
804 }
805
806 // Update the buffer level variable.
807 // Non-viewable frames are a special case and are treated as pure overhead.
808 if (!cm->show_frame)
809 cpi->rc.bits_off_target -= cpi->rc.projected_frame_size;
810 else
811 cpi->rc.bits_off_target += cpi->rc.av_per_frame_bandwidth -
812 cpi->rc.projected_frame_size;
813
814 // Clip the buffer level at the maximum buffer size
815 if (cpi->rc.bits_off_target > cpi->oxcf.maximum_buffer_size)
816 cpi->rc.bits_off_target = cpi->oxcf.maximum_buffer_size;
817
818 // Rolling monitors of whether we are over or underspending used to help
819 // regulate min and Max Q in two pass.
820 if (cm->frame_type != KEY_FRAME) {
821 cpi->rc.rolling_target_bits =
822 ((cpi->rc.rolling_target_bits * 3) +
823 cpi->rc.this_frame_target + 2) / 4;
824 cpi->rc.rolling_actual_bits =
825 ((cpi->rc.rolling_actual_bits * 3) +
826 cpi->rc.projected_frame_size + 2) / 4;
827 cpi->rc.long_rolling_target_bits =
828 ((cpi->rc.long_rolling_target_bits * 31) +
829 cpi->rc.this_frame_target + 16) / 32;
830 cpi->rc.long_rolling_actual_bits =
831 ((cpi->rc.long_rolling_actual_bits * 31) +
832 cpi->rc.projected_frame_size + 16) / 32;
833 }
834
835 // Actual bits spent
836 cpi->rc.total_actual_bits += cpi->rc.projected_frame_size;
837
838 // Debug stats
839 cpi->rc.total_target_vs_actual += (cpi->rc.this_frame_target -
840 cpi->rc.projected_frame_size);
841
842 cpi->rc.buffer_level = cpi->rc.bits_off_target;
843
844 #ifndef DISABLE_RC_LONG_TERM_MEM
845 // Update bits left to the kf and gf groups to account for overshoot or
846 // undershoot on these frames
847 if (cm->frame_type == KEY_FRAME) {
848 cpi->twopass.kf_group_bits += cpi->rc.this_frame_target -
849 cpi->rc.projected_frame_size;
850
851 cpi->twopass.kf_group_bits = MAX(cpi->twopass.kf_group_bits, 0);
852 } else if (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame) {
853 cpi->twopass.gf_group_bits += cpi->rc.this_frame_target -
854 cpi->rc.projected_frame_size;
855
856 cpi->twopass.gf_group_bits = MAX(cpi->twopass.gf_group_bits, 0);
857 }
858 #endif
859 }
OLDNEW
« no previous file with comments | « source/libvpx/vp9/encoder/vp9_ratectrl.h ('k') | source/libvpx/vp9/encoder/vp9_rdopt.h » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698