| Index: source/libvpx/vp9/encoder/vp9_ratectrl.c
|
| ===================================================================
|
| --- source/libvpx/vp9/encoder/vp9_ratectrl.c (revision 240950)
|
| +++ source/libvpx/vp9/encoder/vp9_ratectrl.c (working copy)
|
| @@ -26,6 +26,8 @@
|
| #include "vp9/common/vp9_quant_common.h"
|
| #include "vp9/common/vp9_seg_common.h"
|
|
|
| +#define LIMIT_QRANGE_FOR_ALTREF_AND_KEY 1
|
| +
|
| #define MIN_BPB_FACTOR 0.005
|
| #define MAX_BPB_FACTOR 50
|
|
|
| @@ -35,6 +37,88 @@
|
| static const unsigned int prior_key_frame_weight[KEY_FRAME_CONTEXT] =
|
| { 1, 2, 3, 4, 5 };
|
|
|
| +// Tables relating active max Q to active min Q
|
| +static int kf_low_motion_minq[QINDEX_RANGE];
|
| +static int kf_high_motion_minq[QINDEX_RANGE];
|
| +static int gf_low_motion_minq[QINDEX_RANGE];
|
| +static int gf_high_motion_minq[QINDEX_RANGE];
|
| +static int inter_minq[QINDEX_RANGE];
|
| +static int afq_low_motion_minq[QINDEX_RANGE];
|
| +static int afq_high_motion_minq[QINDEX_RANGE];
|
| +static int gf_high = 2000;
|
| +static int gf_low = 400;
|
| +static int kf_high = 5000;
|
| +static int kf_low = 400;
|
| +
|
| +// Functions to compute the active minq lookup table entries based on a
|
| +// formulaic approach to facilitate easier adjustment of the Q tables.
|
| +// The formulae were derived from computing a 3rd order polynomial best
|
| +// fit to the original data (after plotting real maxq vs minq (not q index))
|
| +static int calculate_minq_index(double maxq,
|
| + double x3, double x2, double x1, double c) {
|
| + int i;
|
| + const double minqtarget = MIN(((x3 * maxq + x2) * maxq + x1) * maxq + c,
|
| + maxq);
|
| +
|
| + // Special case handling to deal with the step from q2.0
|
| + // down to lossless mode represented by q 1.0.
|
| + if (minqtarget <= 2.0)
|
| + return 0;
|
| +
|
| + for (i = 0; i < QINDEX_RANGE; i++) {
|
| + if (minqtarget <= vp9_convert_qindex_to_q(i))
|
| + return i;
|
| + }
|
| +
|
| + return QINDEX_RANGE - 1;
|
| +}
|
| +
|
| +void vp9_rc_init_minq_luts(void) {
|
| + int i;
|
| +
|
| + for (i = 0; i < QINDEX_RANGE; i++) {
|
| + const double maxq = vp9_convert_qindex_to_q(i);
|
| +
|
| +
|
| + kf_low_motion_minq[i] = calculate_minq_index(maxq,
|
| + 0.000001,
|
| + -0.0004,
|
| + 0.15,
|
| + 0.0);
|
| + kf_high_motion_minq[i] = calculate_minq_index(maxq,
|
| + 0.000002,
|
| + -0.0012,
|
| + 0.50,
|
| + 0.0);
|
| +
|
| + gf_low_motion_minq[i] = calculate_minq_index(maxq,
|
| + 0.0000015,
|
| + -0.0009,
|
| + 0.32,
|
| + 0.0);
|
| + gf_high_motion_minq[i] = calculate_minq_index(maxq,
|
| + 0.0000021,
|
| + -0.00125,
|
| + 0.50,
|
| + 0.0);
|
| + afq_low_motion_minq[i] = calculate_minq_index(maxq,
|
| + 0.0000015,
|
| + -0.0009,
|
| + 0.33,
|
| + 0.0);
|
| + afq_high_motion_minq[i] = calculate_minq_index(maxq,
|
| + 0.0000021,
|
| + -0.00125,
|
| + 0.55,
|
| + 0.0);
|
| + inter_minq[i] = calculate_minq_index(maxq,
|
| + 0.00000271,
|
| + -0.00113,
|
| + 0.75,
|
| + 0.0);
|
| + }
|
| +}
|
| +
|
| // These functions use formulaic calculations to make playing with the
|
| // quantizer tables easier. If necessary they can be replaced by lookup
|
| // tables if and when things settle down in the experimental bitstream
|
| @@ -43,23 +127,9 @@
|
| return vp9_ac_quant(qindex, 0) / 4.0;
|
| }
|
|
|
| -int vp9_gfboost_qadjust(int qindex) {
|
| +int vp9_rc_bits_per_mb(FRAME_TYPE frame_type, int qindex,
|
| + double correction_factor) {
|
| const double q = vp9_convert_qindex_to_q(qindex);
|
| - return (int)((0.00000828 * q * q * q) +
|
| - (-0.0055 * q * q) +
|
| - (1.32 * q) + 79.3);
|
| -}
|
| -
|
| -static int kfboost_qadjust(int qindex) {
|
| - const double q = vp9_convert_qindex_to_q(qindex);
|
| - return (int)((0.00000973 * q * q * q) +
|
| - (-0.00613 * q * q) +
|
| - (1.316 * q) + 121.2);
|
| -}
|
| -
|
| -int vp9_bits_per_mb(FRAME_TYPE frame_type, int qindex,
|
| - double correction_factor) {
|
| - const double q = vp9_convert_qindex_to_q(qindex);
|
| int enumerator = frame_type == KEY_FRAME ? 3300000 : 2250000;
|
|
|
| // q based adjustment to baseline enumerator
|
| @@ -118,7 +188,7 @@
|
| vp9_setup_past_independence(cm);
|
|
|
| // interval before next GF
|
| - cpi->frames_till_gf_update_due = cpi->baseline_gf_interval;
|
| + cpi->rc.frames_till_gf_update_due = cpi->rc.baseline_gf_interval;
|
| /* All buffers are implicitly updated on key frames. */
|
| cpi->refresh_golden_frame = 1;
|
| cpi->refresh_alt_ref_frame = 1;
|
| @@ -129,13 +199,13 @@
|
| if (cm->error_resilient_mode || cm->intra_only)
|
| vp9_setup_past_independence(cm);
|
|
|
| - assert(cm->frame_context_idx < NUM_FRAME_CONTEXTS);
|
| + assert(cm->frame_context_idx < FRAME_CONTEXTS);
|
| cm->fc = cm->frame_contexts[cm->frame_context_idx];
|
| }
|
|
|
| static int estimate_bits_at_q(int frame_kind, int q, int mbs,
|
| double correction_factor) {
|
| - const int bpm = (int)(vp9_bits_per_mb(frame_kind, q, correction_factor));
|
| + const int bpm = (int)(vp9_rc_bits_per_mb(frame_kind, q, correction_factor));
|
|
|
| // Attempt to retain reasonable accuracy without overflow. The cutoff is
|
| // chosen such that the maximum product of Bpm and MBs fits 31 bits. The
|
| @@ -153,20 +223,18 @@
|
| vp9_clear_system_state(); // __asm emms;
|
|
|
| // New Two pass RC
|
| - target = cpi->per_frame_bandwidth;
|
| + target = cpi->rc.per_frame_bandwidth;
|
|
|
| if (cpi->oxcf.rc_max_intra_bitrate_pct) {
|
| - int max_rate = cpi->per_frame_bandwidth
|
| + int max_rate = cpi->rc.per_frame_bandwidth
|
| * cpi->oxcf.rc_max_intra_bitrate_pct / 100;
|
|
|
| if (target > max_rate)
|
| target = max_rate;
|
| }
|
| -
|
| - cpi->this_frame_target = target;
|
| + cpi->rc.this_frame_target = target;
|
| }
|
|
|
| -
|
| // Do the best we can to define the parameters for the next GF based
|
| // on what information we have available.
|
| //
|
| @@ -174,21 +242,21 @@
|
| // so we just use the interval determined in the two pass code.
|
| static void calc_gf_params(VP9_COMP *cpi) {
|
| // Set the gf interval
|
| - cpi->frames_till_gf_update_due = cpi->baseline_gf_interval;
|
| + cpi->rc.frames_till_gf_update_due = cpi->rc.baseline_gf_interval;
|
| }
|
|
|
|
|
| static void calc_pframe_target_size(VP9_COMP *cpi) {
|
| - const int min_frame_target = MAX(cpi->min_frame_bandwidth,
|
| - cpi->av_per_frame_bandwidth >> 5);
|
| + const int min_frame_target = MAX(cpi->rc.min_frame_bandwidth,
|
| + cpi->rc.av_per_frame_bandwidth >> 5);
|
| if (cpi->refresh_alt_ref_frame) {
|
| // Special alt reference frame case
|
| // Per frame bit target for the alt ref frame
|
| - cpi->per_frame_bandwidth = cpi->twopass.gf_bits;
|
| - cpi->this_frame_target = cpi->per_frame_bandwidth;
|
| + cpi->rc.per_frame_bandwidth = cpi->twopass.gf_bits;
|
| + cpi->rc.this_frame_target = cpi->rc.per_frame_bandwidth;
|
| } else {
|
| // Normal frames (gf,and inter)
|
| - cpi->this_frame_target = cpi->per_frame_bandwidth;
|
| + cpi->rc.this_frame_target = cpi->rc.per_frame_bandwidth;
|
| }
|
|
|
| // Check that the total sum of adjustments is not above the maximum allowed.
|
| @@ -197,47 +265,31 @@
|
| // not capable of recovering all the extra bits we have spent in the KF or GF,
|
| // then the remainder will have to be recovered over a longer time span via
|
| // other buffer / rate control mechanisms.
|
| - if (cpi->this_frame_target < min_frame_target)
|
| - cpi->this_frame_target = min_frame_target;
|
| + if (cpi->rc.this_frame_target < min_frame_target)
|
| + cpi->rc.this_frame_target = min_frame_target;
|
|
|
| - if (!cpi->refresh_alt_ref_frame)
|
| - // Note the baseline target data rate for this inter frame.
|
| - cpi->inter_frame_target = cpi->this_frame_target;
|
| -
|
| // Adjust target frame size for Golden Frames:
|
| - if (cpi->frames_till_gf_update_due == 0) {
|
| - const int q = (cpi->oxcf.fixed_q < 0) ? cpi->last_q[INTER_FRAME]
|
| - : cpi->oxcf.fixed_q;
|
| -
|
| + if (cpi->rc.frames_till_gf_update_due == 0) {
|
| cpi->refresh_golden_frame = 1;
|
| -
|
| calc_gf_params(cpi);
|
| -
|
| // If we are using alternate ref instead of gf then do not apply the boost
|
| // It will instead be applied to the altref update
|
| // Jims modified boost
|
| if (!cpi->source_alt_ref_active) {
|
| - if (cpi->oxcf.fixed_q < 0) {
|
| - // The spend on the GF is defined in the two pass code
|
| - // for two pass encodes
|
| - cpi->this_frame_target = cpi->per_frame_bandwidth;
|
| - } else {
|
| - cpi->this_frame_target =
|
| - (estimate_bits_at_q(1, q, cpi->common.MBs, 1.0)
|
| - * cpi->last_boost) / 100;
|
| - }
|
| + // The spend on the GF is defined in the two pass code
|
| + // for two pass encodes
|
| + cpi->rc.this_frame_target = cpi->rc.per_frame_bandwidth;
|
| } else {
|
| // If there is an active ARF at this location use the minimum
|
| // bits on this frame even if it is a constructed arf.
|
| // The active maximum quantizer insures that an appropriate
|
| // number of bits will be spent if needed for constructed ARFs.
|
| - cpi->this_frame_target = 0;
|
| + cpi->rc.this_frame_target = 0;
|
| }
|
| }
|
| }
|
|
|
| -
|
| -void vp9_update_rate_correction_factors(VP9_COMP *cpi, int damp_var) {
|
| +void vp9_rc_update_rate_correction_factors(VP9_COMP *cpi, int damp_var) {
|
| const int q = cpi->common.base_qindex;
|
| int correction_factor = 100;
|
| double rate_correction_factor;
|
| @@ -249,12 +301,12 @@
|
| vp9_clear_system_state(); // __asm emms;
|
|
|
| if (cpi->common.frame_type == KEY_FRAME) {
|
| - rate_correction_factor = cpi->key_frame_rate_correction_factor;
|
| + rate_correction_factor = cpi->rc.key_frame_rate_correction_factor;
|
| } else {
|
| if (cpi->refresh_alt_ref_frame || cpi->refresh_golden_frame)
|
| - rate_correction_factor = cpi->gf_rate_correction_factor;
|
| + rate_correction_factor = cpi->rc.gf_rate_correction_factor;
|
| else
|
| - rate_correction_factor = cpi->rate_correction_factor;
|
| + rate_correction_factor = cpi->rc.rate_correction_factor;
|
| }
|
|
|
| // Work out how big we would have expected the frame to be at this Q given
|
| @@ -267,7 +319,7 @@
|
| // Work out a size correction factor.
|
| if (projected_size_based_on_q > 0)
|
| correction_factor =
|
| - (100 * cpi->projected_frame_size) / projected_size_based_on_q;
|
| + (100 * cpi->rc.projected_frame_size) / projected_size_based_on_q;
|
|
|
| // More heavily damped adjustment used if we have been oscillating either side
|
| // of target.
|
| @@ -284,7 +336,6 @@
|
| break;
|
| }
|
|
|
| - // if ( (correction_factor > 102) && (Q < cpi->active_worst_quality) )
|
| if (correction_factor > 102) {
|
| // We are not already at the worst allowable quality
|
| correction_factor =
|
| @@ -308,18 +359,19 @@
|
| }
|
|
|
| if (cpi->common.frame_type == KEY_FRAME) {
|
| - cpi->key_frame_rate_correction_factor = rate_correction_factor;
|
| + cpi->rc.key_frame_rate_correction_factor = rate_correction_factor;
|
| } else {
|
| if (cpi->refresh_alt_ref_frame || cpi->refresh_golden_frame)
|
| - cpi->gf_rate_correction_factor = rate_correction_factor;
|
| + cpi->rc.gf_rate_correction_factor = rate_correction_factor;
|
| else
|
| - cpi->rate_correction_factor = rate_correction_factor;
|
| + cpi->rc.rate_correction_factor = rate_correction_factor;
|
| }
|
| }
|
|
|
|
|
| -int vp9_regulate_q(VP9_COMP *cpi, int target_bits_per_frame) {
|
| - int q = cpi->active_worst_quality;
|
| +int vp9_rc_regulate_q(const VP9_COMP *cpi, int target_bits_per_frame,
|
| + int active_best_quality, int active_worst_quality) {
|
| + int q = active_worst_quality;
|
|
|
| int i;
|
| int last_error = INT_MAX;
|
| @@ -329,12 +381,12 @@
|
|
|
| // Select the appropriate correction factor based upon type of frame.
|
| if (cpi->common.frame_type == KEY_FRAME) {
|
| - correction_factor = cpi->key_frame_rate_correction_factor;
|
| + correction_factor = cpi->rc.key_frame_rate_correction_factor;
|
| } else {
|
| if (cpi->refresh_alt_ref_frame || cpi->refresh_golden_frame)
|
| - correction_factor = cpi->gf_rate_correction_factor;
|
| + correction_factor = cpi->rc.gf_rate_correction_factor;
|
| else
|
| - correction_factor = cpi->rate_correction_factor;
|
| + correction_factor = cpi->rc.rate_correction_factor;
|
| }
|
|
|
| // Calculate required scaling factor based on target frame size and size of
|
| @@ -347,11 +399,11 @@
|
| target_bits_per_mb =
|
| (target_bits_per_frame << BPER_MB_NORMBITS) / cpi->common.MBs;
|
|
|
| - i = cpi->active_best_quality;
|
| + i = active_best_quality;
|
|
|
| do {
|
| - bits_per_mb_at_this_q = (int)vp9_bits_per_mb(cpi->common.frame_type, i,
|
| - correction_factor);
|
| + bits_per_mb_at_this_q = (int)vp9_rc_bits_per_mb(cpi->common.frame_type, i,
|
| + correction_factor);
|
|
|
| if (bits_per_mb_at_this_q <= target_bits_per_mb) {
|
| if ((target_bits_per_mb - bits_per_mb_at_this_q) <= last_error)
|
| @@ -363,12 +415,238 @@
|
| } else {
|
| last_error = bits_per_mb_at_this_q - target_bits_per_mb;
|
| }
|
| - } while (++i <= cpi->active_worst_quality);
|
| + } while (++i <= active_worst_quality);
|
|
|
| return q;
|
| }
|
|
|
| +static int get_active_quality(int q,
|
| + int gfu_boost,
|
| + int low,
|
| + int high,
|
| + int *low_motion_minq,
|
| + int *high_motion_minq) {
|
| + int active_best_quality;
|
| + if (gfu_boost > high) {
|
| + active_best_quality = low_motion_minq[q];
|
| + } else if (gfu_boost < low) {
|
| + active_best_quality = high_motion_minq[q];
|
| + } else {
|
| + const int gap = high - low;
|
| + const int offset = high - gfu_boost;
|
| + const int qdiff = high_motion_minq[q] - low_motion_minq[q];
|
| + const int adjustment = ((offset * qdiff) + (gap >> 1)) / gap;
|
| + active_best_quality = low_motion_minq[q] + adjustment;
|
| + }
|
| + return active_best_quality;
|
| +}
|
|
|
| +int vp9_rc_pick_q_and_adjust_q_bounds(const VP9_COMP *cpi,
|
| + int *bottom_index,
|
| + int *top_index,
|
| + int *top_index_prop) {
|
| + const VP9_COMMON *const cm = &cpi->common;
|
| + int active_best_quality;
|
| + int active_worst_quality = cpi->rc.active_worst_quality;
|
| + int q;
|
| +
|
| + if (frame_is_intra_only(cm)) {
|
| + active_best_quality = cpi->rc.best_quality;
|
| +#if !CONFIG_MULTIPLE_ARF
|
| + // Handle the special case for key frames forced when we have75 reached
|
| + // the maximum key frame interval. Here force the Q to a range
|
| + // based on the ambient Q to reduce the risk of popping.
|
| + if (cpi->this_key_frame_forced) {
|
| + int delta_qindex;
|
| + int qindex = cpi->rc.last_boosted_qindex;
|
| + double last_boosted_q = vp9_convert_qindex_to_q(qindex);
|
| +
|
| + delta_qindex = vp9_compute_qdelta(cpi, last_boosted_q,
|
| + (last_boosted_q * 0.75));
|
| + active_best_quality = MAX(qindex + delta_qindex,
|
| + cpi->rc.best_quality);
|
| + } else if (!(cpi->pass == 0 && cpi->common.current_video_frame == 0)) {
|
| + // not first frame of one pass
|
| + double q_adj_factor = 1.0;
|
| + double q_val;
|
| +
|
| + // Baseline value derived from cpi->active_worst_quality and kf boost
|
| + active_best_quality = get_active_quality(active_worst_quality,
|
| + cpi->rc.kf_boost,
|
| + kf_low, kf_high,
|
| + kf_low_motion_minq,
|
| + kf_high_motion_minq);
|
| +
|
| + // Allow somewhat lower kf minq with small image formats.
|
| + if ((cm->width * cm->height) <= (352 * 288)) {
|
| + q_adj_factor -= 0.25;
|
| + }
|
| +
|
| + // Make a further adjustment based on the kf zero motion measure.
|
| + q_adj_factor += 0.05 - (0.001 * (double)cpi->kf_zeromotion_pct);
|
| +
|
| + // Convert the adjustment factor to a qindex delta
|
| + // on active_best_quality.
|
| + q_val = vp9_convert_qindex_to_q(active_best_quality);
|
| + active_best_quality +=
|
| + vp9_compute_qdelta(cpi, q_val, (q_val * q_adj_factor));
|
| + }
|
| +#else
|
| + double current_q;
|
| + // Force the KF quantizer to be 30% of the active_worst_quality.
|
| + current_q = vp9_convert_qindex_to_q(active_worst_quality);
|
| + active_best_quality = active_worst_quality
|
| + + vp9_compute_qdelta(cpi, current_q, current_q * 0.3);
|
| +#endif
|
| + } else if (!cpi->is_src_frame_alt_ref &&
|
| + (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) {
|
| +
|
| + // Use the lower of active_worst_quality and recent
|
| + // average Q as basis for GF/ARF best Q limit unless last frame was
|
| + // a key frame.
|
| + if (cpi->frames_since_key > 1 &&
|
| + cpi->rc.avg_frame_qindex < active_worst_quality) {
|
| + q = cpi->rc.avg_frame_qindex;
|
| + } else {
|
| + q = active_worst_quality;
|
| + }
|
| + // For constrained quality dont allow Q less than the cq level
|
| + if (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) {
|
| + if (q < cpi->cq_target_quality)
|
| + q = cpi->cq_target_quality;
|
| + if (cpi->frames_since_key > 1) {
|
| + active_best_quality = get_active_quality(q, cpi->rc.gfu_boost,
|
| + gf_low, gf_high,
|
| + afq_low_motion_minq,
|
| + afq_high_motion_minq);
|
| + } else {
|
| + active_best_quality = get_active_quality(q, cpi->rc.gfu_boost,
|
| + gf_low, gf_high,
|
| + gf_low_motion_minq,
|
| + gf_high_motion_minq);
|
| + }
|
| + // Constrained quality use slightly lower active best.
|
| + active_best_quality = active_best_quality * 15 / 16;
|
| +
|
| + } else if (cpi->oxcf.end_usage == USAGE_CONSTANT_QUALITY) {
|
| + if (!cpi->refresh_alt_ref_frame) {
|
| + active_best_quality = cpi->cq_target_quality;
|
| + } else {
|
| + if (cpi->frames_since_key > 1) {
|
| + active_best_quality = get_active_quality(
|
| + q, cpi->rc.gfu_boost, gf_low, gf_high,
|
| + afq_low_motion_minq, afq_high_motion_minq);
|
| + } else {
|
| + active_best_quality = get_active_quality(
|
| + q, cpi->rc.gfu_boost, gf_low, gf_high,
|
| + gf_low_motion_minq, gf_high_motion_minq);
|
| + }
|
| + }
|
| + } else {
|
| + active_best_quality = get_active_quality(
|
| + q, cpi->rc.gfu_boost, gf_low, gf_high,
|
| + gf_low_motion_minq, gf_high_motion_minq);
|
| + }
|
| + } else {
|
| + if (cpi->oxcf.end_usage == USAGE_CONSTANT_QUALITY) {
|
| + active_best_quality = cpi->cq_target_quality;
|
| + } else {
|
| + if (cpi->pass == 0 &&
|
| + cpi->rc.avg_frame_qindex < active_worst_quality)
|
| + // 1-pass: for now, use the average Q for the active_best, if its lower
|
| + // than active_worst.
|
| + active_best_quality = inter_minq[cpi->rc.avg_frame_qindex];
|
| + else
|
| + active_best_quality = inter_minq[active_worst_quality];
|
| +
|
| + // For the constrained quality mode we don't want
|
| + // q to fall below the cq level.
|
| + if ((cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) &&
|
| + (active_best_quality < cpi->cq_target_quality)) {
|
| + // If we are strongly undershooting the target rate in the last
|
| + // frames then use the user passed in cq value not the auto
|
| + // cq value.
|
| + if (cpi->rc.rolling_actual_bits < cpi->rc.min_frame_bandwidth)
|
| + active_best_quality = cpi->oxcf.cq_level;
|
| + else
|
| + active_best_quality = cpi->cq_target_quality;
|
| + }
|
| + }
|
| + }
|
| +
|
| + // Clip the active best and worst quality values to limits
|
| + if (active_worst_quality > cpi->rc.worst_quality)
|
| + active_worst_quality = cpi->rc.worst_quality;
|
| +
|
| + if (active_best_quality < cpi->rc.best_quality)
|
| + active_best_quality = cpi->rc.best_quality;
|
| +
|
| + if (active_best_quality > cpi->rc.worst_quality)
|
| + active_best_quality = cpi->rc.worst_quality;
|
| +
|
| + if (active_worst_quality < active_best_quality)
|
| + active_worst_quality = active_best_quality;
|
| +
|
| + *top_index_prop = active_worst_quality;
|
| + *top_index = active_worst_quality;
|
| + *bottom_index = active_best_quality;
|
| +
|
| +#if LIMIT_QRANGE_FOR_ALTREF_AND_KEY
|
| + // Limit Q range for the adaptive loop.
|
| + if (cm->frame_type == KEY_FRAME && !cpi->this_key_frame_forced) {
|
| + if (!(cpi->pass == 0 && cpi->common.current_video_frame == 0)) {
|
| + *top_index = active_worst_quality;
|
| + *top_index =
|
| + (active_worst_quality + active_best_quality * 3) / 4;
|
| + }
|
| + } else if (!cpi->is_src_frame_alt_ref &&
|
| + (cpi->oxcf.end_usage != USAGE_STREAM_FROM_SERVER) &&
|
| + (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) {
|
| + *top_index =
|
| + (active_worst_quality + active_best_quality) / 2;
|
| + }
|
| +#endif
|
| +
|
| + if (cpi->oxcf.end_usage == USAGE_CONSTANT_QUALITY) {
|
| + q = active_best_quality;
|
| + // Special case code to try and match quality with forced key frames
|
| + } else if ((cm->frame_type == KEY_FRAME) && cpi->this_key_frame_forced) {
|
| + q = cpi->rc.last_boosted_qindex;
|
| + } else {
|
| + // Determine initial Q to try.
|
| + if (cpi->pass == 0) {
|
| + // 1-pass: for now, use per-frame-bw for target size of frame, scaled
|
| + // by |x| for key frame.
|
| + int scale = (cm->frame_type == KEY_FRAME) ? 5 : 1;
|
| + q = vp9_rc_regulate_q(cpi, scale * cpi->rc.av_per_frame_bandwidth,
|
| + active_best_quality, active_worst_quality);
|
| + } else {
|
| + q = vp9_rc_regulate_q(cpi, cpi->rc.this_frame_target,
|
| + active_best_quality, active_worst_quality);
|
| + }
|
| + if (q > *top_index)
|
| + q = *top_index;
|
| + }
|
| +#if CONFIG_MULTIPLE_ARF
|
| + // Force the quantizer determined by the coding order pattern.
|
| + if (cpi->multi_arf_enabled && (cm->frame_type != KEY_FRAME) &&
|
| + cpi->oxcf.end_usage != USAGE_CONSTANT_QUALITY) {
|
| + double new_q;
|
| + double current_q = vp9_convert_qindex_to_q(active_worst_quality);
|
| + int level = cpi->this_frame_weight;
|
| + assert(level >= 0);
|
| + new_q = current_q * (1.0 - (0.2 * (cpi->max_arf_level - level)));
|
| + q = active_worst_quality +
|
| + vp9_compute_qdelta(cpi, current_q, new_q);
|
| +
|
| + *bottom_index = q;
|
| + *top_index = q;
|
| + printf("frame:%d q:%d\n", cm->current_video_frame, q);
|
| + }
|
| +#endif
|
| + return q;
|
| +}
|
| +
|
| static int estimate_keyframe_frequency(VP9_COMP *cpi) {
|
| int i;
|
|
|
| @@ -378,7 +656,7 @@
|
| /* First key frame at start of sequence is a special case. We have no
|
| * frequency data.
|
| */
|
| - if (cpi->key_frame_count == 1) {
|
| + if (cpi->rc.key_frame_count == 1) {
|
| /* Assume a default of 1 kf every 2 seconds, or the max kf interval,
|
| * whichever is smaller.
|
| */
|
| @@ -388,7 +666,7 @@
|
| if (cpi->oxcf.auto_key && av_key_frame_frequency > key_freq)
|
| av_key_frame_frequency = cpi->oxcf.key_freq;
|
|
|
| - cpi->prior_key_frame_distance[KEY_FRAME_CONTEXT - 1]
|
| + cpi->rc.prior_key_frame_distance[KEY_FRAME_CONTEXT - 1]
|
| = av_key_frame_frequency;
|
| } else {
|
| unsigned int total_weight = 0;
|
| @@ -400,13 +678,13 @@
|
| */
|
| for (i = 0; i < KEY_FRAME_CONTEXT; i++) {
|
| if (i < KEY_FRAME_CONTEXT - 1)
|
| - cpi->prior_key_frame_distance[i]
|
| - = cpi->prior_key_frame_distance[i + 1];
|
| + cpi->rc.prior_key_frame_distance[i]
|
| + = cpi->rc.prior_key_frame_distance[i + 1];
|
| else
|
| - cpi->prior_key_frame_distance[i] = last_kf_interval;
|
| + cpi->rc.prior_key_frame_distance[i] = last_kf_interval;
|
|
|
| av_key_frame_frequency += prior_key_frame_weight[i]
|
| - * cpi->prior_key_frame_distance[i];
|
| + * cpi->rc.prior_key_frame_distance[i];
|
| total_weight += prior_key_frame_weight[i];
|
| }
|
|
|
| @@ -416,38 +694,38 @@
|
| }
|
|
|
|
|
| -void vp9_adjust_key_frame_context(VP9_COMP *cpi) {
|
| +static void adjust_key_frame_context(VP9_COMP *cpi) {
|
| // Clear down mmx registers to allow floating point in what follows
|
| vp9_clear_system_state();
|
|
|
| cpi->frames_since_key = 0;
|
| - cpi->key_frame_count++;
|
| + cpi->rc.key_frame_count++;
|
| }
|
|
|
| -
|
| -void vp9_compute_frame_size_bounds(VP9_COMP *cpi, int *frame_under_shoot_limit,
|
| - int *frame_over_shoot_limit) {
|
| +void vp9_rc_compute_frame_size_bounds(const VP9_COMP *cpi,
|
| + int this_frame_target,
|
| + int *frame_under_shoot_limit,
|
| + int *frame_over_shoot_limit) {
|
| // Set-up bounds on acceptable frame size:
|
| - if (cpi->oxcf.fixed_q >= 0) {
|
| - // Fixed Q scenario: frame size never outranges target (there is no target!)
|
| + if (cpi->oxcf.end_usage == USAGE_CONSTANT_QUALITY) {
|
| *frame_under_shoot_limit = 0;
|
| *frame_over_shoot_limit = INT_MAX;
|
| } else {
|
| if (cpi->common.frame_type == KEY_FRAME) {
|
| - *frame_over_shoot_limit = cpi->this_frame_target * 9 / 8;
|
| - *frame_under_shoot_limit = cpi->this_frame_target * 7 / 8;
|
| + *frame_over_shoot_limit = this_frame_target * 9 / 8;
|
| + *frame_under_shoot_limit = this_frame_target * 7 / 8;
|
| } else {
|
| if (cpi->refresh_alt_ref_frame || cpi->refresh_golden_frame) {
|
| - *frame_over_shoot_limit = cpi->this_frame_target * 9 / 8;
|
| - *frame_under_shoot_limit = cpi->this_frame_target * 7 / 8;
|
| + *frame_over_shoot_limit = this_frame_target * 9 / 8;
|
| + *frame_under_shoot_limit = this_frame_target * 7 / 8;
|
| } else {
|
| // Stron overshoot limit for constrained quality
|
| if (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) {
|
| - *frame_over_shoot_limit = cpi->this_frame_target * 11 / 8;
|
| - *frame_under_shoot_limit = cpi->this_frame_target * 2 / 8;
|
| + *frame_over_shoot_limit = this_frame_target * 11 / 8;
|
| + *frame_under_shoot_limit = this_frame_target * 2 / 8;
|
| } else {
|
| - *frame_over_shoot_limit = cpi->this_frame_target * 11 / 8;
|
| - *frame_under_shoot_limit = cpi->this_frame_target * 5 / 8;
|
| + *frame_over_shoot_limit = this_frame_target * 11 / 8;
|
| + *frame_under_shoot_limit = this_frame_target * 5 / 8;
|
| }
|
| }
|
| }
|
| @@ -462,9 +740,8 @@
|
| }
|
| }
|
|
|
| -
|
| // return of 0 means drop frame
|
| -int vp9_pick_frame_size(VP9_COMP *cpi) {
|
| +int vp9_rc_pick_frame_size_target(VP9_COMP *cpi) {
|
| VP9_COMMON *cm = &cpi->common;
|
|
|
| if (cm->frame_type == KEY_FRAME)
|
| @@ -472,5 +749,111 @@
|
| else
|
| calc_pframe_target_size(cpi);
|
|
|
| + // Target rate per SB64 (including partial SB64s.
|
| + cpi->rc.sb64_target_rate = ((int64_t)cpi->rc.this_frame_target * 64 * 64) /
|
| + (cpi->common.width * cpi->common.height);
|
| return 1;
|
| }
|
| +
|
| +void vp9_rc_postencode_update(VP9_COMP *cpi, uint64_t bytes_used,
|
| + int worst_q) {
|
| + VP9_COMMON *const cm = &cpi->common;
|
| + // Update rate control heuristics
|
| + cpi->rc.projected_frame_size = (bytes_used << 3);
|
| +
|
| + // Post encode loop adjustment of Q prediction.
|
| + vp9_rc_update_rate_correction_factors(
|
| + cpi, (cpi->sf.recode_loop ||
|
| + cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) ? 2 : 0);
|
| +
|
| + cpi->rc.last_q[cm->frame_type] = cm->base_qindex;
|
| + cpi->rc.active_worst_quality = worst_q;
|
| +
|
| + // Keep record of last boosted (KF/KF/ARF) Q value.
|
| + // If the current frame is coded at a lower Q then we also update it.
|
| + // If all mbs in this group are skipped only update if the Q value is
|
| + // better than that already stored.
|
| + // This is used to help set quality in forced key frames to reduce popping
|
| + if ((cm->base_qindex < cpi->rc.last_boosted_qindex) ||
|
| + ((cpi->static_mb_pct < 100) &&
|
| + ((cm->frame_type == KEY_FRAME) || cpi->refresh_alt_ref_frame ||
|
| + (cpi->refresh_golden_frame && !cpi->is_src_frame_alt_ref)))) {
|
| + cpi->rc.last_boosted_qindex = cm->base_qindex;
|
| + }
|
| +
|
| + if (cm->frame_type == KEY_FRAME) {
|
| + adjust_key_frame_context(cpi);
|
| + }
|
| +
|
| + // Keep a record of ambient average Q.
|
| + if (cm->frame_type != KEY_FRAME)
|
| + cpi->rc.avg_frame_qindex = (2 + 3 * cpi->rc.avg_frame_qindex +
|
| + cm->base_qindex) >> 2;
|
| +
|
| + // Keep a record from which we can calculate the average Q excluding GF
|
| + // updates and key frames.
|
| + if (cm->frame_type != KEY_FRAME &&
|
| + !cpi->refresh_golden_frame && !cpi->refresh_alt_ref_frame) {
|
| + cpi->rc.ni_frames++;
|
| + cpi->rc.tot_q += vp9_convert_qindex_to_q(cm->base_qindex);
|
| + cpi->rc.avg_q = cpi->rc.tot_q / (double)cpi->rc.ni_frames;
|
| +
|
| + // Calculate the average Q for normal inter frames (not key or GFU frames).
|
| + cpi->rc.ni_tot_qi += cm->base_qindex;
|
| + cpi->rc.ni_av_qi = cpi->rc.ni_tot_qi / cpi->rc.ni_frames;
|
| + }
|
| +
|
| + // Update the buffer level variable.
|
| + // Non-viewable frames are a special case and are treated as pure overhead.
|
| + if (!cm->show_frame)
|
| + cpi->rc.bits_off_target -= cpi->rc.projected_frame_size;
|
| + else
|
| + cpi->rc.bits_off_target += cpi->rc.av_per_frame_bandwidth -
|
| + cpi->rc.projected_frame_size;
|
| +
|
| + // Clip the buffer level at the maximum buffer size
|
| + if (cpi->rc.bits_off_target > cpi->oxcf.maximum_buffer_size)
|
| + cpi->rc.bits_off_target = cpi->oxcf.maximum_buffer_size;
|
| +
|
| + // Rolling monitors of whether we are over or underspending used to help
|
| + // regulate min and Max Q in two pass.
|
| + if (cm->frame_type != KEY_FRAME) {
|
| + cpi->rc.rolling_target_bits =
|
| + ((cpi->rc.rolling_target_bits * 3) +
|
| + cpi->rc.this_frame_target + 2) / 4;
|
| + cpi->rc.rolling_actual_bits =
|
| + ((cpi->rc.rolling_actual_bits * 3) +
|
| + cpi->rc.projected_frame_size + 2) / 4;
|
| + cpi->rc.long_rolling_target_bits =
|
| + ((cpi->rc.long_rolling_target_bits * 31) +
|
| + cpi->rc.this_frame_target + 16) / 32;
|
| + cpi->rc.long_rolling_actual_bits =
|
| + ((cpi->rc.long_rolling_actual_bits * 31) +
|
| + cpi->rc.projected_frame_size + 16) / 32;
|
| + }
|
| +
|
| + // Actual bits spent
|
| + cpi->rc.total_actual_bits += cpi->rc.projected_frame_size;
|
| +
|
| + // Debug stats
|
| + cpi->rc.total_target_vs_actual += (cpi->rc.this_frame_target -
|
| + cpi->rc.projected_frame_size);
|
| +
|
| + cpi->rc.buffer_level = cpi->rc.bits_off_target;
|
| +
|
| +#ifndef DISABLE_RC_LONG_TERM_MEM
|
| + // Update bits left to the kf and gf groups to account for overshoot or
|
| + // undershoot on these frames
|
| + if (cm->frame_type == KEY_FRAME) {
|
| + cpi->twopass.kf_group_bits += cpi->rc.this_frame_target -
|
| + cpi->rc.projected_frame_size;
|
| +
|
| + cpi->twopass.kf_group_bits = MAX(cpi->twopass.kf_group_bits, 0);
|
| + } else if (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame) {
|
| + cpi->twopass.gf_group_bits += cpi->rc.this_frame_target -
|
| + cpi->rc.projected_frame_size;
|
| +
|
| + cpi->twopass.gf_group_bits = MAX(cpi->twopass.gf_group_bits, 0);
|
| + }
|
| +#endif
|
| +}
|
|
|