Index: ui/gfx/matrix3_f.cc |
diff --git a/ui/gfx/matrix3_f.cc b/ui/gfx/matrix3_f.cc |
deleted file mode 100644 |
index 562fdb3a96470aeb50a516e72c08a2fd0e43f8f4..0000000000000000000000000000000000000000 |
--- a/ui/gfx/matrix3_f.cc |
+++ /dev/null |
@@ -1,237 +0,0 @@ |
-// Copyright (c) 2013 The Chromium Authors. All rights reserved. |
-// Use of this source code is governed by a BSD-style license that can be |
-// found in the LICENSE file. |
- |
-#include "ui/gfx/matrix3_f.h" |
- |
-#include <algorithm> |
-#include <cmath> |
-#include <limits> |
- |
-#ifndef M_PI |
-#define M_PI 3.14159265358979323846 |
-#endif |
- |
-namespace { |
- |
-// This is only to make accessing indices self-explanatory. |
-enum MatrixCoordinates { |
- M00, |
- M01, |
- M02, |
- M10, |
- M11, |
- M12, |
- M20, |
- M21, |
- M22, |
- M_END |
-}; |
- |
-template<typename T> |
-double Determinant3x3(T data[M_END]) { |
- // This routine is separated from the Matrix3F::Determinant because in |
- // computing inverse we do want higher precision afforded by the explicit |
- // use of 'double'. |
- return |
- static_cast<double>(data[M00]) * ( |
- static_cast<double>(data[M11]) * data[M22] - |
- static_cast<double>(data[M12]) * data[M21]) + |
- static_cast<double>(data[M01]) * ( |
- static_cast<double>(data[M12]) * data[M20] - |
- static_cast<double>(data[M10]) * data[M22]) + |
- static_cast<double>(data[M02]) * ( |
- static_cast<double>(data[M10]) * data[M21] - |
- static_cast<double>(data[M11]) * data[M20]); |
-} |
- |
-} // namespace |
- |
-namespace gfx { |
- |
-Matrix3F::Matrix3F() { |
-} |
- |
-Matrix3F::~Matrix3F() { |
-} |
- |
-// static |
-Matrix3F Matrix3F::Zeros() { |
- Matrix3F matrix; |
- matrix.set(0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f); |
- return matrix; |
-} |
- |
-// static |
-Matrix3F Matrix3F::Ones() { |
- Matrix3F matrix; |
- matrix.set(1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f); |
- return matrix; |
-} |
- |
-// static |
-Matrix3F Matrix3F::Identity() { |
- Matrix3F matrix; |
- matrix.set(1.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 1.0f); |
- return matrix; |
-} |
- |
-// static |
-Matrix3F Matrix3F::FromOuterProduct(const Vector3dF& a, const Vector3dF& bt) { |
- Matrix3F matrix; |
- matrix.set(a.x() * bt.x(), a.x() * bt.y(), a.x() * bt.z(), |
- a.y() * bt.x(), a.y() * bt.y(), a.y() * bt.z(), |
- a.z() * bt.x(), a.z() * bt.y(), a.z() * bt.z()); |
- return matrix; |
-} |
- |
-bool Matrix3F::IsEqual(const Matrix3F& rhs) const { |
- return 0 == memcmp(data_, rhs.data_, sizeof(data_)); |
-} |
- |
-bool Matrix3F::IsNear(const Matrix3F& rhs, float precision) const { |
- DCHECK(precision >= 0); |
- for (int i = 0; i < M_END; ++i) { |
- if (std::abs(data_[i] - rhs.data_[i]) > precision) |
- return false; |
- } |
- return true; |
-} |
- |
-Matrix3F Matrix3F::Inverse() const { |
- Matrix3F inverse = Matrix3F::Zeros(); |
- double determinant = Determinant3x3(data_); |
- if (std::numeric_limits<float>::epsilon() > std::abs(determinant)) |
- return inverse; // Singular matrix. Return Zeros(). |
- |
- inverse.set( |
- (data_[M11] * data_[M22] - data_[M12] * data_[M21]) / determinant, |
- (data_[M02] * data_[M21] - data_[M01] * data_[M22]) / determinant, |
- (data_[M01] * data_[M12] - data_[M02] * data_[M11]) / determinant, |
- (data_[M12] * data_[M20] - data_[M10] * data_[M22]) / determinant, |
- (data_[M00] * data_[M22] - data_[M02] * data_[M20]) / determinant, |
- (data_[M02] * data_[M10] - data_[M00] * data_[M12]) / determinant, |
- (data_[M10] * data_[M21] - data_[M11] * data_[M20]) / determinant, |
- (data_[M01] * data_[M20] - data_[M00] * data_[M21]) / determinant, |
- (data_[M00] * data_[M11] - data_[M01] * data_[M10]) / determinant); |
- return inverse; |
-} |
- |
-float Matrix3F::Determinant() const { |
- return static_cast<float>(Determinant3x3(data_)); |
-} |
- |
-Vector3dF Matrix3F::SolveEigenproblem(Matrix3F* eigenvectors) const { |
- // The matrix must be symmetric. |
- const float epsilon = std::numeric_limits<float>::epsilon(); |
- if (std::abs(data_[M01] - data_[M10]) > epsilon || |
- std::abs(data_[M02] - data_[M20]) > epsilon || |
- std::abs(data_[M12] - data_[M21]) > epsilon) { |
- NOTREACHED(); |
- return Vector3dF(); |
- } |
- |
- float eigenvalues[3]; |
- float p = |
- data_[M01] * data_[M01] + |
- data_[M02] * data_[M02] + |
- data_[M12] * data_[M12]; |
- |
- bool diagonal = std::abs(p) < epsilon; |
- if (diagonal) { |
- eigenvalues[0] = data_[M00]; |
- eigenvalues[1] = data_[M11]; |
- eigenvalues[2] = data_[M22]; |
- } else { |
- float q = Trace() / 3.0f; |
- p = (data_[M00] - q) * (data_[M00] - q) + |
- (data_[M11] - q) * (data_[M11] - q) + |
- (data_[M22] - q) * (data_[M22] - q) + |
- 2 * p; |
- p = std::sqrt(p / 6); |
- |
- // The computation below puts B as (A - qI) / p, where A is *this. |
- Matrix3F matrix_b(*this); |
- matrix_b.data_[M00] -= q; |
- matrix_b.data_[M11] -= q; |
- matrix_b.data_[M22] -= q; |
- for (int i = 0; i < M_END; ++i) |
- matrix_b.data_[i] /= p; |
- |
- double half_det_b = Determinant3x3(matrix_b.data_) / 2.0; |
- // half_det_b should be in <-1, 1>, but beware of rounding error. |
- double phi = 0.0f; |
- if (half_det_b <= -1.0) |
- phi = M_PI / 3; |
- else if (half_det_b < 1.0) |
- phi = acos(half_det_b) / 3; |
- |
- eigenvalues[0] = q + 2 * p * static_cast<float>(cos(phi)); |
- eigenvalues[2] = q + 2 * p * |
- static_cast<float>(cos(phi + 2.0 * M_PI / 3.0)); |
- eigenvalues[1] = 3 * q - eigenvalues[0] - eigenvalues[2]; |
- } |
- |
- // Put eigenvalues in the descending order. |
- int indices[3] = {0, 1, 2}; |
- if (eigenvalues[2] > eigenvalues[1]) { |
- std::swap(eigenvalues[2], eigenvalues[1]); |
- std::swap(indices[2], indices[1]); |
- } |
- |
- if (eigenvalues[1] > eigenvalues[0]) { |
- std::swap(eigenvalues[1], eigenvalues[0]); |
- std::swap(indices[1], indices[0]); |
- } |
- |
- if (eigenvalues[2] > eigenvalues[1]) { |
- std::swap(eigenvalues[2], eigenvalues[1]); |
- std::swap(indices[2], indices[1]); |
- } |
- |
- if (eigenvectors != NULL && diagonal) { |
- // Eigenvectors are e-vectors, just need to be sorted accordingly. |
- *eigenvectors = Zeros(); |
- for (int i = 0; i < 3; ++i) |
- eigenvectors->set(indices[i], i, 1.0f); |
- } else if (eigenvectors != NULL) { |
- // Consult the following for a detailed discussion: |
- // Joachim Kopp |
- // Numerical diagonalization of hermitian 3x3 matrices |
- // arXiv.org preprint: physics/0610206 |
- // Int. J. Mod. Phys. C19 (2008) 523-548 |
- |
- // TODO(motek): expand to handle correctly negative and multiple |
- // eigenvalues. |
- for (int i = 0; i < 3; ++i) { |
- float l = eigenvalues[i]; |
- // B = A - l * I |
- Matrix3F matrix_b(*this); |
- matrix_b.data_[M00] -= l; |
- matrix_b.data_[M11] -= l; |
- matrix_b.data_[M22] -= l; |
- Vector3dF e1 = CrossProduct(matrix_b.get_column(0), |
- matrix_b.get_column(1)); |
- Vector3dF e2 = CrossProduct(matrix_b.get_column(1), |
- matrix_b.get_column(2)); |
- Vector3dF e3 = CrossProduct(matrix_b.get_column(2), |
- matrix_b.get_column(0)); |
- |
- // e1, e2 and e3 should point in the same direction. |
- if (DotProduct(e1, e2) < 0) |
- e2 = -e2; |
- |
- if (DotProduct(e1, e3) < 0) |
- e3 = -e3; |
- |
- Vector3dF eigvec = e1 + e2 + e3; |
- // Normalize. |
- eigvec.Scale(1.0f / eigvec.Length()); |
- eigenvectors->set_column(i, eigvec); |
- } |
- } |
- |
- return Vector3dF(eigenvalues[0], eigenvalues[1], eigenvalues[2]); |
-} |
- |
-} // namespace gfx |