Chromium Code Reviews| Index: src/gpu/GrAAConvexTessellator.cpp |
| diff --git a/src/gpu/GrAAConvexTessellator.cpp b/src/gpu/GrAAConvexTessellator.cpp |
| new file mode 100644 |
| index 0000000000000000000000000000000000000000..38ef10e43ad40c6f444c809fe2cd3bc1bdfa600b |
| --- /dev/null |
| +++ b/src/gpu/GrAAConvexTessellator.cpp |
| @@ -0,0 +1,875 @@ |
| +/* |
| + * Copyright 2015 Google Inc. |
| + * |
| + * Use of this source code is governed by a BSD-style license that can be |
| + * found in the LICENSE file. |
| + */ |
| + |
| +#include "GrAAConvexTessellator.h" |
| +#include "SkCanvas.h" |
| +#include "SkPath.h" |
| +#include "SkPoint.h" |
| +#include "SkString.h" |
| + |
| +// Next steps: |
| +// use in AAConvexPathRenderer |
| +// add an interactive sample app slide |
| +// add debug check that all points are suitably far apart |
| +// test more degenerate cases |
| + |
| +// The tolerance for fusing vertices and eliminating colinear lines (It is in device space). |
| +static const SkScalar kClose = (SK_Scalar1 / 16); |
| +static const SkScalar kCloseSqd = SkScalarMul(kClose, kClose); |
| + |
| +static SkScalar intersect(const SkPoint& p0, const SkPoint& n0, |
| + const SkPoint& p1, const SkPoint& n1) { |
| + const SkPoint v = p1 - p0; |
| + |
| + SkScalar perpDot = n0.fX * n1.fY - n0.fY * n1.fX; |
| + return (v.fX * n1.fY - v.fY * n1.fX) / perpDot; |
| +} |
| + |
| +// This is a special case version of intersect where we have the vector |
| +// perpendicular to the second line rather than the vector parallel to it. |
| +static SkScalar perp_intersect(const SkPoint& p0, const SkPoint& n0, |
| + const SkPoint& p1, const SkPoint& perp) { |
| + const SkPoint v = p1 - p0; |
| + SkScalar perpDot = n0.dot(perp); |
| + return v.dot(perp) / perpDot; |
| +} |
| + |
| +static bool duplicate_pt(const SkPoint& p0, const SkPoint& p1) { |
| + SkScalar distSq = p0.distanceToSqd(p1); |
| + return distSq < kCloseSqd; |
| +} |
| + |
| +static SkScalar abs_dist_from_line(const SkPoint& p0, const SkVector& v, const SkPoint& test) { |
| + SkPoint testV = test - p0; |
| + SkScalar dist = testV.fX * v.fY - testV.fY * v.fX; |
| + return SkScalarAbs(dist); |
| +} |
| + |
| +int GrAAConvexTessellator::addPt(const SkPoint& pt, |
| + SkScalar depth, |
| + bool movable) { |
| + this->validate(); |
| + |
| + int index = fPts.count(); |
| + *fPts.push() = pt; |
| + *fDepths.push() = depth; |
| + *fMovable.push() = movable; |
| + |
| + this->validate(); |
| + return index; |
| +} |
| + |
| +void GrAAConvexTessellator::popLastPt() { |
| + this->validate(); |
| + |
| + fPts.pop(); |
| + fDepths.pop(); |
| + fMovable.pop(); |
| + |
| + this->validate(); |
| +} |
| + |
| +void GrAAConvexTessellator::popFirstPtShuffle() { |
| + this->validate(); |
| + |
| + fPts.removeShuffle(0); |
| + fDepths.removeShuffle(0); |
| + fMovable.removeShuffle(0); |
| + |
| + this->validate(); |
| +} |
| + |
| +void GrAAConvexTessellator::updatePt(int index, |
| + const SkPoint& pt, |
| + SkScalar depth) { |
| + this->validate(); |
| + SkASSERT(fMovable[index]); |
| + |
| + fPts[index] = pt; |
| + fDepths[index] = depth; |
| +} |
| + |
| +void GrAAConvexTessellator::addTri(int i0, int i1, int i2) { |
| + if (i0 == i1 || i1 == i2 || i2 == i0) { |
| + return; |
| + } |
| + |
| + *fIndices.push() = i0; |
| + *fIndices.push() = i1; |
| + *fIndices.push() = i2; |
| +} |
| + |
| +void GrAAConvexTessellator::rewind() { |
| + fPts.rewind(); |
| + fDepths.rewind(); |
| + fMovable.rewind(); |
| + fIndices.rewind(); |
| + fNorms.rewind(); |
| + fInitialRing.rewind(); |
| + fCandidateVerts.rewind(); |
| +#if GR_AA_CONVEX_TESSELLATOR_VIZ |
| + fRings.rewind(); // TODO: leak in this case! |
| +#else |
| + fRings[0].rewind(); |
| + fRings[1].rewind(); |
| +#endif |
| +} |
| + |
| +void GrAAConvexTessellator::computeBisectors() { |
| + fBisectors.setCount(fNorms.count()); |
| + |
| + int prev = fBisectors.count() - 1; |
| + for (int cur = 0; cur < fBisectors.count(); prev = cur, ++cur) { |
| + fBisectors[cur] = fNorms[cur] + fNorms[prev]; |
| + fBisectors[cur].normalize(); |
| + fBisectors[cur].negate(); // make the bisector face in |
| + |
| + SkASSERT(SkScalarNearlyEqual(1.0f, fBisectors[cur].length())); |
| + } |
| +} |
| + |
| +// The general idea here is to, conceptually, start with the original polygon and slide |
| +// the vertices along the bisectors until the first intersection. At that |
| +// point two of the edges collapse and the process repeats on the new polygon. |
| +// The polygon state is captured in the GrRing class while the GrAAConvexTessellator |
| +// controls the iteration. The GrCandidateVerts holds the formative points for the |
| +// next ring. |
| +bool GrAAConvexTessellator::tessellate(const SkMatrix& m, const SkPath& path) { |
| + static const int kMaxNumRings = 8; |
| + |
| + SkDEBUGCODE(fShouldCheckDepths = true;) |
| + |
| + if (!this->extractFromPath(m, path)) { |
| + return false; |
| + } |
| + |
| + this->createOuterRing(); |
| + |
| + // the bisectors are only needed for the computation of the outer ring |
| + fBisectors.rewind(); |
| + |
| + GrRing* lastRing = &fInitialRing; |
| + int i; |
| + for (i = 0; i < kMaxNumRings; ++i) { |
| + GrRing* nextRing = this->getNextRing(lastRing); |
| + |
| + if (this->createInsetRing(*lastRing, nextRing)) { |
| + break; |
| + } |
| + |
| + nextRing->init(*this); |
| + lastRing = nextRing; |
| + } |
| + |
| + if (kMaxNumRings == i) { |
| + // If we've exceeded the amount of time we want to throw at this, set |
| + // the depth of all points in the final ring to 'fTargetDepth' and |
| + // create a fan. |
| + this->terminate(*lastRing); |
| + SkDEBUGCODE(fShouldCheckDepths = false;) |
| + } |
| + |
| +#ifdef SK_DEBUG |
| + this->validate(); |
| + if (fShouldCheckDepths) { |
| + SkDEBUGCODE(this->checkAllDepths();) |
| + } |
| +#endif |
| + return true; |
| +} |
| + |
| +SkScalar GrAAConvexTessellator::computeDepthFromEdge(int edgeIdx, const SkPoint& p) const { |
| + SkASSERT(edgeIdx < fNorms.count()); |
| + |
| + SkPoint v = p - fPts[edgeIdx]; |
| + SkScalar depth = -fNorms[edgeIdx].dot(v); |
| + SkASSERT(depth >= 0.0f); |
| + return depth; |
| +} |
| + |
| +// Find a point that is 'desiredDepth' away from the 'edgeIdx'-th edge and lies |
| +// along the 'bisector' from the 'startIdx'-th point. |
| +bool GrAAConvexTessellator::computePtAlongBisector(int startIdx, |
| + const SkVector& bisector, |
| + int edgeIdx, |
| + SkScalar desiredDepth, |
| + SkPoint* result) const { |
| + const SkPoint& norm = fNorms[edgeIdx]; |
| + |
| + // First find the point where the edge and the bisector intersect |
| + SkPoint newP; |
| + SkScalar t = perp_intersect(fPts[startIdx], bisector, fPts[edgeIdx], norm); |
| + if (SkScalarNearlyEqual(t, 0.0f)) { |
| + // the start point was one of the original ring points |
| + SkASSERT(startIdx < fNorms.count()); |
| + newP = fPts[startIdx]; |
| + } else if (t > 0.0f) { |
| + SkASSERT(t < 0.0f); |
| + newP = bisector; |
| + newP.scale(t); |
| + newP += fPts[startIdx]; |
| + } else { |
| + return false; |
| + } |
| + |
| + // Then offset along the bisector from that point the correct distance |
| + t = -desiredDepth / bisector.dot(norm); |
| + SkASSERT(t > 0.0f); |
| + *result = bisector; |
| + result->scale(t); |
| + *result += newP; |
| + |
| + |
| + return true; |
| +} |
| + |
| +bool GrAAConvexTessellator::extractFromPath(const SkMatrix& m, const SkPath& path) { |
| + SkASSERT(SkPath::kLine_SegmentMask == path.getSegmentMasks()); |
| + SkASSERT(SkPath::kConvex_Convexity == path.getConvexity()); |
| + |
| + // Outer ring: 3*numPts |
| + // Middle ring: numPts |
| + // Presumptive inner ring: numPts |
| + this->reservePts(5*path.countPoints()); |
| + // Outer ring: 12*numPts |
| + // Middle ring: 0 |
| + // Presumptive inner ring: 6*numPts + 6 |
| + fIndices.setReserve(18*path.countPoints() + 6); |
| + |
| + fNorms.setReserve(path.countPoints()); |
| + |
| + SkScalar minCross = SK_ScalarMax, maxCross = -SK_ScalarMax; |
| + |
| + // TODO: is there a faster way to extract the points from the path? Perhaps |
| + // get all the points via a new entry point, transform them all in bulk |
| + // and then walk them to find duplicates? |
| + SkPath::Iter iter(path, true); |
| + SkPoint pts[4]; |
| + SkPath::Verb verb; |
| + while ((verb = iter.next(pts)) != SkPath::kDone_Verb) { |
| + switch (verb) { |
| + case SkPath::kLine_Verb: |
| + m.mapPoints(&pts[1], 1); |
| + if (this->numPts() > 0 && duplicate_pt(pts[1], this->lastPoint())) { |
| + continue; |
| + } |
| + |
| + SkASSERT(fPts.count() <= 1 || fPts.count() == fNorms.count()+1); |
| + if (this->numPts() >= 2 && |
| + abs_dist_from_line(fPts.top(), fNorms.top(), pts[1]) < kClose) { |
| + // The old last point is on the line from the second to last to the new point |
| + this->popLastPt(); |
| + fNorms.pop(); |
| + } |
| + |
| + this->addPt(pts[1], 0.0f, false); |
| + if (this->numPts() > 1) { |
| + *fNorms.push() = fPts.top() - fPts[fPts.count()-2]; |
| + SkDEBUGCODE(SkScalar len =) SkPoint::Normalize(&fNorms.top()); |
| + SkASSERT(len > 0.0f); |
| + SkASSERT(SkScalarNearlyEqual(1.0f, fNorms.top().length())); |
| + } |
| + |
| + if (this->numPts() >= 3) { |
| + int cur = this->numPts()-1; |
| + SkScalar cross = SkPoint::CrossProduct(fNorms[cur-1], fNorms[cur-2]); |
| + maxCross = SkTMax(maxCross, cross); |
| + minCross = SkTMin(minCross, cross); |
| + } |
| + break; |
| + case SkPath::kQuad_Verb: |
| + case SkPath::kConic_Verb: |
| + case SkPath::kCubic_Verb: |
| + SkASSERT(false); |
| + break; |
| + case SkPath::kMove_Verb: |
| + case SkPath::kClose_Verb: |
| + case SkPath::kDone_Verb: |
| + break; |
| + } |
| + } |
| + |
| + if (this->numPts() < 3) { |
| + return false; |
| + } |
| + |
| + // check if last point is a duplicate of the first point. If so, remove it. |
| + if (duplicate_pt(fPts[this->numPts()-1], fPts[0])) { |
| + this->popLastPt(); |
| + fNorms.pop(); |
| + } |
| + |
| + SkASSERT(fPts.count() == fNorms.count()+1); |
| + if (this->numPts() >= 3 && |
| + abs_dist_from_line(fPts.top(), fNorms.top(), fPts[0]) < kClose) { |
| + // The last point is on the line from the second to last to the first point. |
| + this->popLastPt(); |
| + fNorms.pop(); |
| + } |
| + |
| + if (this->numPts() < 3) { |
| + return false; |
| + } |
| + |
| + *fNorms.push() = fPts[0] - fPts.top(); |
| + SkDEBUGCODE(SkScalar len =) SkPoint::Normalize(&fNorms.top()); |
| + SkASSERT(len > 0.0f); |
| + SkASSERT(fPts.count() == fNorms.count()); |
| + |
| + if (abs_dist_from_line(fPts[0], fNorms.top(), fPts[1]) < kClose) { |
| + // The first point is on the line from the last to the second. |
| + this->popFirstPtShuffle(); |
| + fNorms.removeShuffle(0); |
| + fNorms[0] = fPts[1] - fPts[0]; |
| + SkDEBUGCODE(SkScalar len =) SkPoint::Normalize(&fNorms[0]); |
| + SkASSERT(len > 0.0f); |
| + SkASSERT(SkScalarNearlyEqual(1.0f, fNorms[0].length())); |
| + } |
| + |
| + if (this->numPts() < 3) { |
| + return false; |
| + } |
| + |
| + // Check the cross produce of the final trio |
| + SkScalar cross = SkPoint::CrossProduct(fNorms[0], fNorms.top()); |
| + maxCross = SkTMax(maxCross, cross); |
| + minCross = SkTMin(minCross, cross); |
| + |
| + if (maxCross > 0.0f) { |
| + SkASSERT(minCross >= 0.0f); |
| + fSide = SkPoint::kRight_Side; |
| + } else { |
| + SkASSERT(minCross <= 0.0f); |
| + fSide = SkPoint::kLeft_Side; |
| + } |
| + |
| + // Make all the normals face outwards rather than along the edge |
| + for (int cur = 0; cur < fNorms.count(); ++cur) { |
| + fNorms[cur].setOrthog(fNorms[cur], fSide); |
| + SkASSERT(SkScalarNearlyEqual(1.0f, fNorms[cur].length())); |
| + } |
| + |
| + this->computeBisectors(); |
| + |
| + fCandidateVerts.setReserve(this->numPts()); |
| + fInitialRing.setReserve(this->numPts()); |
| + for (int i = 0; i < this->numPts(); ++i) { |
| + fInitialRing.addIdx(i, i); |
| + } |
| + fInitialRing.init(fNorms, fBisectors); |
| + |
| + this->validate(); |
| + return true; |
| +} |
| + |
| +GrAAConvexTessellator::GrRing* GrAAConvexTessellator::getNextRing(GrRing* lastRing) { |
| +#if GR_AA_CONVEX_TESSELLATOR_VIZ |
| + GrRing* ring = *fRings.push() = SkNEW(GrRing); |
| + ring->setReserve(fInitialRing.numPts()); |
| + ring->rewind(); |
| + return ring; |
| +#else |
| + // Flip flop back and forth between fRings[0] & fRings[1] |
| + int nextRing = (lastRing == &fRings[0]) ? 1 : 0; |
| + fRings[nextRing].setReserve1(fInitialRing.numPts()); |
| + fRings[nextRing].rewind1(); |
| + return &fRings[nextRing]; |
| +#endif |
| +} |
| + |
| +void GrAAConvexTessellator::fanRing(const GrRing& ring) { |
| + // fan out from point 0 |
| + for (int cur = 1; cur < ring.numPts()-1; ++cur) { |
| + this->addTri(ring.index(0), ring.index(cur), ring.index(cur+1)); |
| + } |
| +} |
| + |
| +void GrAAConvexTessellator::createOuterRing() { |
| + // For now, we're only generating one outer ring (at the start). This |
| + // could be relaxed for stroking use cases. |
| + SkASSERT(0 == fIndices.count()); |
| + SkASSERT(fPts.count() == fNorms.count()); |
| + |
| + const int numPts = fPts.count(); |
| + |
| + // For each vertex of the original polygon we add three points to the |
| + // outset polygon - one extending perpendicular to each impinging edge |
| + // and one along the bisector. Two triangles are added for each corner |
| + // and two are added along each edge. |
| + int prev = numPts - 1; |
| + int lastPerpIdx = -1, firstPerpIdx, newIdx0, newIdx1, newIdx2; |
| + for (int cur = 0; cur < numPts; ++cur) { |
| + // The perpendicular point for the last edge |
| + SkPoint temp = fNorms[prev]; |
| + temp.scale(fTargetDepth); |
| + temp += fPts[cur]; |
| + |
| + // We know it isn't a duplicate of the prior point (since it and this |
| + // one are just perpendicular offsets from the non-merged polygon points) |
| + newIdx0 = this->addPt(temp, -fTargetDepth, false); |
| + |
| + // The bisector outset point |
| + temp = fBisectors[cur]; |
| + temp.scale(-fTargetDepth); // the bisectors point in |
| + temp += fPts[cur]; |
| + |
| + // For very shallow angles all the corner points could fuse |
| + if (duplicate_pt(temp, this->point(newIdx0))) { |
| + newIdx1 = newIdx0; |
| + } else { |
| + newIdx1 = this->addPt(temp, -fTargetDepth, false); |
| + } |
| + |
| + // The perpendicular point for the next edge. |
| + temp = fNorms[cur]; |
| + temp.scale(fTargetDepth); |
| + temp += fPts[cur]; |
| + |
| + // For very shallow angles all the corner points could fuse. |
| + if (duplicate_pt(temp, this->point(newIdx1))) { |
| + newIdx2 = newIdx1; |
| + } else { |
| + newIdx2 = this->addPt(temp, -fTargetDepth, false); |
| + } |
| + |
| + if (0 == cur) { |
| + // Store the index of the first perpendicular point to finish up |
| + firstPerpIdx = newIdx0; |
| + SkASSERT(-1 == lastPerpIdx); |
| + } else { |
| + // The triangles for the previous edge |
| + this->addTri(prev, newIdx0, cur); |
| + this->addTri(prev, lastPerpIdx, newIdx0); |
| + } |
| + |
| + // The two triangles for the corner |
| + this->addTri(cur, newIdx0, newIdx1); |
| + this->addTri(cur, newIdx1, newIdx2); |
| + |
| + prev = cur; |
| + // Track the last perpendicular outset point so we can construct the |
| + // trailing edge triangles. |
| + lastPerpIdx = newIdx2; |
| + } |
| + |
| + // pick up the final edge rect |
| + this->addTri(numPts-1, firstPerpIdx, 0); |
| + this->addTri(numPts-1, lastPerpIdx, firstPerpIdx); |
| + |
| + this->validate(); |
| +} |
| + |
| +// Something went wrong in the creation of the next ring. Mark the last good |
| +// ring as being at the desired depth and fan it. |
| +void GrAAConvexTessellator::terminate(const GrRing& ring) { |
| + for (int i = 0; i < ring.numPts(); ++i) { |
| + fDepths[ring.index(i)] = fTargetDepth; |
| + } |
| + |
| + this->fanRing(ring); |
| +} |
| + |
| +// return true when processing is complete |
| +bool GrAAConvexTessellator::createInsetRing(const GrRing& lastRing, GrRing* nextRing) { |
| + bool done = false; |
| + |
| + fCandidateVerts.rewind(); |
| + |
| + // Loop through all the points in the ring and find the intersection with the smallest depth |
| + SkScalar minDist = SK_ScalarMax, minT; |
| + int minEdgeIdx; |
| + |
| + for (int cur = 0; cur < lastRing.numPts(); ++cur) { |
| + int next = (cur + 1) % lastRing.numPts(); |
| + |
| + SkScalar t = intersect(this->point(lastRing.index(cur)), lastRing.bisector(cur), |
| + this->point(lastRing.index(next)), lastRing.bisector(next)); |
| + SkScalar dist = -t * lastRing.norm(cur).dot(lastRing.bisector(cur)); |
| + |
| + if (minDist > dist) { |
| + minDist = dist; |
| + minT = t; |
| + minEdgeIdx = cur; |
| + } |
| + } |
| + |
| + SkPoint newPt = lastRing.bisector(minEdgeIdx); |
| + newPt.scale(minT); |
| + newPt += this->point(lastRing.index(minEdgeIdx)); |
| + |
| + SkScalar depth = this->computeDepthFromEdge(lastRing.origEdgeID(minEdgeIdx), newPt); |
| + if (depth >= fTargetDepth) { |
| + // None of the bisectors intersect before reaching the desired depth. |
| + // Just step them all to the desired depth |
| + depth = fTargetDepth; |
| + done = true; |
| + } |
| + |
| + // 'dst' stores where each point in the last ring maps to/transforms into |
| + // in the next ring. |
| + SkTDArray<int> dst; |
| + dst.setCount(lastRing.numPts()); |
| + |
| + // Create the first point (who compares with no one) |
| + if (!this->computePtAlongBisector(lastRing.index(0), |
| + lastRing.bisector(0), |
| + lastRing.origEdgeID(0), |
| + depth, &newPt)) { |
| + this->terminate(lastRing); |
| + SkDEBUGCODE(fShouldCheckDepths = false;) |
| + return true; |
| + } |
| + dst[0] = fCandidateVerts.addNewPt(newPt, |
| + lastRing.index(0), lastRing.origEdgeID(0), |
| + !this->movable(lastRing.index(0))); |
| + |
| + // Handle the middle points (who only compare with the prior point) |
| + for (int cur = 1; cur < lastRing.numPts()-1; ++cur) { |
| + if (!this->computePtAlongBisector(lastRing.index(cur), |
| + lastRing.bisector(cur), |
| + lastRing.origEdgeID(cur), |
| + depth, &newPt)) { |
| + this->terminate(lastRing); |
| + SkDEBUGCODE(fShouldCheckDepths = false;) |
| + return true; |
| + } |
| + if (!duplicate_pt(newPt, fCandidateVerts.lastPoint())) { |
| + dst[cur] = fCandidateVerts.addNewPt(newPt, |
| + lastRing.index(cur), lastRing.origEdgeID(cur), |
| + !this->movable(lastRing.index(cur))); |
| + } else { |
| + dst[cur] = fCandidateVerts.fuseWithPrior(lastRing.origEdgeID(cur)); |
| + } |
| + } |
| + |
| + // Check on the last point (handling the wrap around) |
| + int cur = lastRing.numPts()-1; |
| + if (!this->computePtAlongBisector(lastRing.index(cur), |
| + lastRing.bisector(cur), |
| + lastRing.origEdgeID(cur), |
| + depth, &newPt)) { |
| + this->terminate(lastRing); |
| + SkDEBUGCODE(fShouldCheckDepths = false;) |
| + return true; |
| + } |
| + bool dupPrev = duplicate_pt(newPt, fCandidateVerts.lastPoint()); |
| + bool dupNext = duplicate_pt(newPt, fCandidateVerts.firstPoint()); |
| + |
| + if (!dupPrev && !dupNext) { |
| + dst[cur] = fCandidateVerts.addNewPt(newPt, |
| + lastRing.index(cur), lastRing.origEdgeID(cur), |
| + !this->movable(lastRing.index(cur))); |
| + } else if (dupPrev && !dupNext) { |
| + dst[cur] = fCandidateVerts.fuseWithPrior(lastRing.origEdgeID(cur)); |
| + } else if (!dupPrev && dupNext) { |
| + dst[cur] = fCandidateVerts.fuseWithNext(); |
| + } else { |
| + bool dupPrevVsNext = duplicate_pt(fCandidateVerts.firstPoint(), fCandidateVerts.lastPoint()); |
| + |
| + if (!dupPrevVsNext) { |
| + dst[cur] = fCandidateVerts.fuseWithPrior(lastRing.origEdgeID(cur)); |
| + } else { |
| + dst[cur] = dst[cur-1] = fCandidateVerts.fuseWithBoth(); |
| + } |
| + } |
| + |
| + // Fold the new ring's points into the global pool |
| + for (int i = 0; i < fCandidateVerts.numPts(); ++i) { |
| + int newIdx; |
| + if (fCandidateVerts.needsToBeNew(i)) { |
| + // if the originating index is still valid then this point wasn't |
| + // fused (and is thus movable) |
| + newIdx = this->addPt(fCandidateVerts.point(i), depth, |
| + fCandidateVerts.originatingIdx(i) != -1); |
| + } else { |
| + SkASSERT(fCandidateVerts.originatingIdx(i) != -1); |
| + this->updatePt(fCandidateVerts.originatingIdx(i), fCandidateVerts.point(i), depth); |
| + newIdx = fCandidateVerts.originatingIdx(i); |
| + } |
| + |
| + nextRing->addIdx(newIdx, fCandidateVerts.origEdge(i)); |
| + } |
| + |
| + // 'dst' currently has indices into the ring. Remap these to be indices |
| + // into the global pool since the triangulation operates in that space. |
| + for (int i = 0; i < dst.count(); ++i) { |
| + dst[i] = nextRing->index(dst[i]); |
| + } |
| + |
| + for (int cur = 0; cur < lastRing.numPts(); ++cur) { |
| + int next = (cur + 1) % lastRing.numPts(); |
| + |
| + this->addTri(lastRing.index(cur), lastRing.index(next), dst[next]); |
| + this->addTri(lastRing.index(cur), dst[next], dst[cur]); |
| + } |
| + |
| + if (done) { |
| + this->fanRing(*nextRing); |
| + } |
| + |
| + if (nextRing->numPts() < 3) { |
| + done = true; |
| + } |
| + |
| + return done; |
| +} |
| + |
| +void GrAAConvexTessellator::validate() const { |
| + SkASSERT(fPts.count() == fDepths.count()); |
| + SkASSERT(fPts.count() == fMovable.count()); |
| + SkASSERT(0 == (fIndices.count() % 3)); |
| +} |
| + |
| +////////////////////////////////////////////////////////////////////////////// |
| +void GrAAConvexTessellator::GrRing::init(const GrAAConvexTessellator& tess) { |
| + this->computeNormals(tess); |
| + this->computeBisectors(); |
| + SkASSERT(this->isConvex(tess)); |
| +} |
| + |
| +void GrAAConvexTessellator::GrRing::init(const SkTDArray<SkVector>& norms, |
| + const SkTDArray<SkVector>& bisectors) { |
|
bsalomon
2015/05/05 17:13:42
align?
robertphillips
2015/05/06 12:16:32
Done.
|
| + for (int i = 0; i < fPts.count(); ++i) { |
| + fPts[i].fNorm = norms[i]; |
| + fPts[i].fBisector = bisectors[i]; |
| + } |
| +} |
| + |
| +// Compute the outward facing normal at each vertex. |
| +void GrAAConvexTessellator::GrRing::computeNormals(const GrAAConvexTessellator& tess) { |
| + for (int cur = 0; cur < fPts.count(); ++cur) { |
| + int next = (cur + 1) % fPts.count(); |
| + |
| + fPts[cur].fNorm = tess.point(fPts[next].fIndex) - tess.point(fPts[cur].fIndex); |
| + SkDEBUGCODE(SkScalar len =) SkPoint::Normalize(&fPts[cur].fNorm); |
| + SkASSERT(len > 0.0f); |
| + fPts[cur].fNorm.setOrthog(fPts[cur].fNorm, tess.side()); |
| + |
| + SkASSERT(SkScalarNearlyEqual(1.0f, fPts[cur].fNorm.length())); |
| + } |
| +} |
| + |
| +void GrAAConvexTessellator::GrRing::computeBisectors() { |
| + int prev = fPts.count() - 1; |
| + for (int cur = 0; cur < fPts.count(); prev = cur, ++cur) { |
| + fPts[cur].fBisector = fPts[cur].fNorm + fPts[prev].fNorm; |
| + fPts[cur].fBisector.normalize(); |
| + fPts[cur].fBisector.negate(); // make the bisector face in |
| + |
| + SkASSERT(SkScalarNearlyEqual(1.0f, fPts[cur].fBisector.length())); |
| + } |
| +} |
| + |
| +////////////////////////////////////////////////////////////////////////////// |
| +#ifdef SK_DEBUG |
| +// Is this ring convex? |
| +bool GrAAConvexTessellator::GrRing::isConvex(const GrAAConvexTessellator& tess) const { |
| + if (fPts.count() < 3) { |
| + return false; |
| + } |
| + |
| + SkPoint prev = tess.point(fPts[0].fIndex) - tess.point(fPts.top().fIndex); |
| + SkPoint cur = tess.point(fPts[1].fIndex) - tess.point(fPts[0].fIndex); |
| + SkScalar minDot = prev.fX * cur.fY - prev.fY * cur.fX; |
| + SkScalar maxDot = minDot; |
| + |
| + prev = cur; |
| + for (int i = 1; i < fPts.count(); ++i) { |
| + int next = (i + 1) % fPts.count(); |
| + |
| + cur = tess.point(fPts[next].fIndex) - tess.point(fPts[i].fIndex); |
| + SkScalar dot = prev.fX * cur.fY - prev.fY * cur.fX; |
| + |
| + minDot = SkMinScalar(minDot, dot); |
| + maxDot = SkMaxScalar(maxDot, dot); |
| + |
| + prev = cur; |
| + } |
| + |
| + return (maxDot > 0.0f) == (minDot >= 0.0f); |
| +} |
| + |
| +static SkScalar capsule_depth(const SkPoint& p0, const SkPoint& p1, |
| + const SkPoint& test, SkPoint::Side side, |
| + int* sign) { |
| + *sign = -1; |
| + SkPoint edge = p1 - p0; |
| + SkScalar len = SkPoint::Normalize(&edge); |
| + |
| + SkPoint testVec = test - p0; |
| + |
| + SkScalar d0 = edge.dot(testVec); |
| + if (d0 < 0.0f) { |
| + return SkPoint::Distance(p0, test); |
| + } |
| + if (d0 > len) { |
| + return SkPoint::Distance(p1, test); |
| + } |
| + |
| + SkScalar perpDist = testVec.fY * edge.fX - testVec.fX * edge.fY; |
| + if (SkPoint::kRight_Side == side) { |
| + perpDist = -perpDist; |
| + } |
| + |
| + if (perpDist < 0.0f) { |
| + perpDist = -perpDist; |
| + } else { |
| + *sign = 1; |
| + } |
| + return perpDist; |
| +} |
| + |
| +SkScalar GrAAConvexTessellator::computeRealDepth(const SkPoint& p) const { |
| + SkScalar minDist = SK_ScalarMax; |
| + int closestEdge, closestSign, sign; |
| + |
| + for (int edge = 0; edge < fNorms.count(); ++edge) { |
| + SkScalar dist = capsule_depth(this->point(edge), |
| + this->point((edge+1) % fNorms.count()), |
| + p, fSide, &sign); |
| + SkASSERT(dist >= 0.0f); |
| + |
| + if (minDist > dist) { |
| + minDist = dist; |
| + closestEdge = edge; |
| + closestSign = sign; |
| + } |
| + } |
| + |
| + return closestSign * minDist; |
| +} |
| + |
| +// Verify that the incrementally computed depths are close to the actual depths. |
| +void GrAAConvexTessellator::checkAllDepths() const { |
| + for (int cur = 0; cur < this->numPts(); ++cur) { |
| + SkScalar realDepth = this->computeRealDepth(this->point(cur)); |
| + SkScalar computedDepth = this->depth(cur); |
| + SkASSERT(SkScalarNearlyEqual(realDepth, computedDepth, 0.01f)); |
| + } |
| +} |
| +#endif |
| + |
| +////////////////////////////////////////////////////////////////////////////// |
| +#if GR_AA_CONVEX_TESSELLATOR_VIZ |
| +static const SkScalar kPointRadius = 0.02f; |
| +static const SkScalar kArrowStrokeWidth = 0.0f; |
| +static const SkScalar kArrowLength = 0.2f; |
| +static const SkScalar kEdgeTextSize = 0.1f; |
| +static const SkScalar kPointTextSize = 0.02f; |
| + |
| +static void draw_point(SkCanvas* canvas, const SkPoint& p, SkScalar paramValue, bool stroke) { |
| + SkPaint paint; |
| + SkASSERT(paramValue <= 1.0f); |
| + int gs = int(255*paramValue); |
| + paint.setARGB(255, gs, gs, gs); |
| + |
| + canvas->drawCircle(p.fX, p.fY, kPointRadius, paint); |
| + |
| + if (stroke) { |
| + SkPaint stroke; |
| + stroke.setColor(SK_ColorYELLOW); |
| + stroke.setStyle(SkPaint::kStroke_Style); |
| + stroke.setStrokeWidth(kPointRadius/3.0f); |
| + canvas->drawCircle(p.fX, p.fY, kPointRadius, stroke); |
| + } |
| +} |
| + |
| +static void draw_line(SkCanvas* canvas, const SkPoint& p0, const SkPoint& p1, SkColor color) { |
| + SkPaint p; |
| + p.setColor(color); |
| + |
| + canvas->drawLine(p0.fX, p0.fY, p1.fX, p1.fY, p); |
| +} |
| + |
| +static void draw_arrow(SkCanvas*canvas, const SkPoint& p, const SkPoint &n, |
| + SkScalar len, SkColor color) { |
| + SkPaint paint; |
| + paint.setColor(color); |
| + paint.setStrokeWidth(kArrowStrokeWidth); |
| + paint.setStyle(SkPaint::kStroke_Style); |
| + |
| + canvas->drawLine(p.fX, p.fY, |
| + p.fX + len * n.fX, p.fY + len * n.fY, |
| + paint); |
| +} |
| + |
| +void GrAAConvexTessellator::GrRing::draw(SkCanvas* canvas, const GrAAConvexTessellator& tess) const { |
| + SkPaint paint; |
| + paint.setTextSize(kEdgeTextSize); |
| + |
| + for (int cur = 0; cur < fPts.count(); ++cur) { |
| + int next = (cur + 1) % fPts.count(); |
| + |
| + draw_line(canvas, |
| + tess.point(fPts[cur].fIndex), |
| + tess.point(fPts[next].fIndex), |
| + SK_ColorGREEN); |
| + |
| + SkPoint mid = tess.point(fPts[cur].fIndex) + tess.point(fPts[next].fIndex); |
| + mid.scale(0.5f); |
| + |
| + if (fPts.count()) { |
| + draw_arrow(canvas, mid, fPts[cur].fNorm, kArrowLength, SK_ColorRED); |
| + mid.fX += (kArrowLength/2) * fPts[cur].fNorm.fX; |
| + mid.fY += (kArrowLength/2) * fPts[cur].fNorm.fY; |
| + } |
| + |
| + SkString num; |
| + num.printf("%d", this->origEdgeID(cur)); |
| + canvas->drawText(num.c_str(), num.size(), mid.fX, mid.fY, paint); |
| + |
| + if (fPts.count()) { |
| + draw_arrow(canvas, tess.point(fPts[cur].fIndex), fPts[cur].fBisector, |
| + kArrowLength, SK_ColorBLUE); |
| + } |
| + } |
| +} |
| + |
| +void GrAAConvexTessellator::draw(SkCanvas* canvas) const { |
| + for (int i = 0; i < fIndices.count(); i += 3) { |
| + SkASSERT(fIndices[i] < this->numPts()) ; |
| + SkASSERT(fIndices[i+1] < this->numPts()) ; |
| + SkASSERT(fIndices[i+2] < this->numPts()) ; |
| + |
| + draw_line(canvas, |
| + this->point(this->fIndices[i]), this->point(this->fIndices[i+1]), |
| + SK_ColorBLACK); |
| + draw_line(canvas, |
| + this->point(this->fIndices[i+1]), this->point(this->fIndices[i+2]), |
| + SK_ColorBLACK); |
| + draw_line(canvas, |
| + this->point(this->fIndices[i+2]), this->point(this->fIndices[i]), |
| + SK_ColorBLACK); |
| + } |
| + |
| + fInitialRing.draw(canvas, *this); |
| + for (int i = 0; i < fRings.count(); ++i) { |
| + fRings[i]->draw(canvas, *this); |
| + } |
| + |
| + for (int i = 0; i < this->numPts(); ++i) { |
| + draw_point(canvas, |
| + this->point(i), 0.5f + (this->depth(i)/(2*fTargetDepth)), |
| + !this->movable(i)); |
| + |
| + SkPaint paint; |
| + paint.setTextSize(kPointTextSize); |
| + paint.setTextAlign(SkPaint::kCenter_Align); |
| + if (this->depth(i) <= -fTargetDepth) { |
| + paint.setColor(SK_ColorWHITE); |
| + } |
| + |
| + SkString num; |
| + num.printf("%d", i); |
| + canvas->drawText(num.c_str(), num.size(), |
| + this->point(i).fX, this->point(i).fY+(kPointRadius/2.0f), |
| + paint); |
| + } |
| +} |
| + |
| +#endif |
| + |