Chromium Code Reviews| OLD | NEW |
|---|---|
| (Empty) | |
| 1 /* | |
| 2 * Copyright 2015 Google Inc. | |
| 3 * | |
| 4 * Use of this source code is governed by a BSD-style license that can be | |
| 5 * found in the LICENSE file. | |
| 6 */ | |
| 7 | |
| 8 #include "GrAAConvexTessellator.h" | |
| 9 #include "SkCanvas.h" | |
| 10 #include "SkPath.h" | |
| 11 #include "SkPoint.h" | |
| 12 #include "SkString.h" | |
| 13 | |
| 14 // Next steps: | |
| 15 // use in AAConvexPathRenderer | |
| 16 // add an interactive sample app slide | |
| 17 // add debug check that all points are suitably far apart | |
| 18 // test more degenerate cases | |
| 19 | |
| 20 // The tolerance for fusing vertices and eliminating colinear lines (It is in de vice space). | |
| 21 static const SkScalar kClose = (SK_Scalar1 / 16); | |
| 22 static const SkScalar kCloseSqd = SkScalarMul(kClose, kClose); | |
| 23 | |
| 24 static SkScalar intersect(const SkPoint& p0, const SkPoint& n0, | |
| 25 const SkPoint& p1, const SkPoint& n1) { | |
| 26 const SkPoint v = p1 - p0; | |
| 27 | |
| 28 SkScalar perpDot = n0.fX * n1.fY - n0.fY * n1.fX; | |
| 29 return (v.fX * n1.fY - v.fY * n1.fX) / perpDot; | |
| 30 } | |
| 31 | |
| 32 // This is a special case version of intersect where we have the vector | |
| 33 // perpendicular to the second line rather than the vector parallel to it. | |
| 34 static SkScalar perp_intersect(const SkPoint& p0, const SkPoint& n0, | |
| 35 const SkPoint& p1, const SkPoint& perp) { | |
| 36 const SkPoint v = p1 - p0; | |
| 37 SkScalar perpDot = n0.dot(perp); | |
| 38 return v.dot(perp) / perpDot; | |
| 39 } | |
| 40 | |
| 41 static bool duplicate_pt(const SkPoint& p0, const SkPoint& p1) { | |
| 42 SkScalar distSq = p0.distanceToSqd(p1); | |
| 43 return distSq < kCloseSqd; | |
| 44 } | |
| 45 | |
| 46 static SkScalar abs_dist_from_line(const SkPoint& p0, const SkVector& v, const S kPoint& test) { | |
| 47 SkPoint testV = test - p0; | |
| 48 SkScalar dist = testV.fX * v.fY - testV.fY * v.fX; | |
| 49 return SkScalarAbs(dist); | |
| 50 } | |
| 51 | |
| 52 int GrAAConvexTessellator::addPt(const SkPoint& pt, | |
| 53 SkScalar depth, | |
| 54 bool movable) { | |
| 55 this->validate(); | |
| 56 | |
| 57 int index = fPts.count(); | |
| 58 *fPts.push() = pt; | |
| 59 *fDepths.push() = depth; | |
| 60 *fMovable.push() = movable; | |
| 61 | |
| 62 this->validate(); | |
| 63 return index; | |
| 64 } | |
| 65 | |
| 66 void GrAAConvexTessellator::popLastPt() { | |
| 67 this->validate(); | |
| 68 | |
| 69 fPts.pop(); | |
| 70 fDepths.pop(); | |
| 71 fMovable.pop(); | |
| 72 | |
| 73 this->validate(); | |
| 74 } | |
| 75 | |
| 76 void GrAAConvexTessellator::popFirstPtShuffle() { | |
| 77 this->validate(); | |
| 78 | |
| 79 fPts.removeShuffle(0); | |
| 80 fDepths.removeShuffle(0); | |
| 81 fMovable.removeShuffle(0); | |
| 82 | |
| 83 this->validate(); | |
| 84 } | |
| 85 | |
| 86 void GrAAConvexTessellator::updatePt(int index, | |
| 87 const SkPoint& pt, | |
| 88 SkScalar depth) { | |
| 89 this->validate(); | |
| 90 SkASSERT(fMovable[index]); | |
| 91 | |
| 92 fPts[index] = pt; | |
| 93 fDepths[index] = depth; | |
| 94 } | |
| 95 | |
| 96 void GrAAConvexTessellator::addTri(int i0, int i1, int i2) { | |
| 97 if (i0 == i1 || i1 == i2 || i2 == i0) { | |
| 98 return; | |
| 99 } | |
| 100 | |
| 101 *fIndices.push() = i0; | |
| 102 *fIndices.push() = i1; | |
| 103 *fIndices.push() = i2; | |
| 104 } | |
| 105 | |
| 106 void GrAAConvexTessellator::rewind() { | |
| 107 fPts.rewind(); | |
| 108 fDepths.rewind(); | |
| 109 fMovable.rewind(); | |
| 110 fIndices.rewind(); | |
| 111 fNorms.rewind(); | |
| 112 fInitialRing.rewind(); | |
| 113 fCandidateVerts.rewind(); | |
| 114 #if GR_AA_CONVEX_TESSELLATOR_VIZ | |
| 115 fRings.rewind(); // TODO: leak in this case! | |
| 116 #else | |
| 117 fRings[0].rewind(); | |
| 118 fRings[1].rewind(); | |
| 119 #endif | |
| 120 } | |
| 121 | |
| 122 void GrAAConvexTessellator::computeBisectors() { | |
| 123 fBisectors.setCount(fNorms.count()); | |
| 124 | |
| 125 int prev = fBisectors.count() - 1; | |
| 126 for (int cur = 0; cur < fBisectors.count(); prev = cur, ++cur) { | |
| 127 fBisectors[cur] = fNorms[cur] + fNorms[prev]; | |
| 128 fBisectors[cur].normalize(); | |
| 129 fBisectors[cur].negate(); // make the bisector face in | |
| 130 | |
| 131 SkASSERT(SkScalarNearlyEqual(1.0f, fBisectors[cur].length())); | |
| 132 } | |
| 133 } | |
| 134 | |
| 135 // The general idea here is to, conceptually, start with the original polygon an d slide | |
| 136 // the vertices along the bisectors until the first intersection. At that | |
| 137 // point two of the edges collapse and the process repeats on the new polygon. | |
| 138 // The polygon state is captured in the GrRing class while the GrAAConvexTessell ator | |
| 139 // controls the iteration. The GrCandidateVerts holds the formative points for t he | |
| 140 // next ring. | |
| 141 bool GrAAConvexTessellator::tessellate(const SkMatrix& m, const SkPath& path) { | |
| 142 static const int kMaxNumRings = 8; | |
| 143 | |
| 144 SkDEBUGCODE(fShouldCheckDepths = true;) | |
| 145 | |
| 146 if (!this->extractFromPath(m, path)) { | |
| 147 return false; | |
| 148 } | |
| 149 | |
| 150 this->createOuterRing(); | |
| 151 | |
| 152 // the bisectors are only needed for the computation of the outer ring | |
| 153 fBisectors.rewind(); | |
| 154 | |
| 155 GrRing* lastRing = &fInitialRing; | |
| 156 int i; | |
| 157 for (i = 0; i < kMaxNumRings; ++i) { | |
| 158 GrRing* nextRing = this->getNextRing(lastRing); | |
| 159 | |
| 160 if (this->createInsetRing(*lastRing, nextRing)) { | |
| 161 break; | |
| 162 } | |
| 163 | |
| 164 nextRing->init(*this); | |
| 165 lastRing = nextRing; | |
| 166 } | |
| 167 | |
| 168 if (kMaxNumRings == i) { | |
| 169 // If we've exceeded the amount of time we want to throw at this, set | |
| 170 // the depth of all points in the final ring to 'fTargetDepth' and | |
| 171 // create a fan. | |
| 172 this->terminate(*lastRing); | |
| 173 SkDEBUGCODE(fShouldCheckDepths = false;) | |
| 174 } | |
| 175 | |
| 176 #ifdef SK_DEBUG | |
| 177 this->validate(); | |
| 178 if (fShouldCheckDepths) { | |
| 179 SkDEBUGCODE(this->checkAllDepths();) | |
| 180 } | |
| 181 #endif | |
| 182 return true; | |
| 183 } | |
| 184 | |
| 185 SkScalar GrAAConvexTessellator::computeDepthFromEdge(int edgeIdx, const SkPoint& p) const { | |
| 186 SkASSERT(edgeIdx < fNorms.count()); | |
| 187 | |
| 188 SkPoint v = p - fPts[edgeIdx]; | |
| 189 SkScalar depth = -fNorms[edgeIdx].dot(v); | |
| 190 SkASSERT(depth >= 0.0f); | |
| 191 return depth; | |
| 192 } | |
| 193 | |
| 194 // Find a point that is 'desiredDepth' away from the 'edgeIdx'-th edge and lies | |
| 195 // along the 'bisector' from the 'startIdx'-th point. | |
| 196 bool GrAAConvexTessellator::computePtAlongBisector(int startIdx, | |
| 197 const SkVector& bisector, | |
| 198 int edgeIdx, | |
| 199 SkScalar desiredDepth, | |
| 200 SkPoint* result) const { | |
| 201 const SkPoint& norm = fNorms[edgeIdx]; | |
| 202 | |
| 203 // First find the point where the edge and the bisector intersect | |
| 204 SkPoint newP; | |
| 205 SkScalar t = perp_intersect(fPts[startIdx], bisector, fPts[edgeIdx], norm); | |
| 206 if (SkScalarNearlyEqual(t, 0.0f)) { | |
| 207 // the start point was one of the original ring points | |
| 208 SkASSERT(startIdx < fNorms.count()); | |
| 209 newP = fPts[startIdx]; | |
| 210 } else if (t > 0.0f) { | |
| 211 SkASSERT(t < 0.0f); | |
| 212 newP = bisector; | |
| 213 newP.scale(t); | |
| 214 newP += fPts[startIdx]; | |
| 215 } else { | |
| 216 return false; | |
| 217 } | |
| 218 | |
| 219 // Then offset along the bisector from that point the correct distance | |
| 220 t = -desiredDepth / bisector.dot(norm); | |
| 221 SkASSERT(t > 0.0f); | |
| 222 *result = bisector; | |
| 223 result->scale(t); | |
| 224 *result += newP; | |
| 225 | |
| 226 | |
| 227 return true; | |
| 228 } | |
| 229 | |
| 230 bool GrAAConvexTessellator::extractFromPath(const SkMatrix& m, const SkPath& pat h) { | |
| 231 SkASSERT(SkPath::kLine_SegmentMask == path.getSegmentMasks()); | |
| 232 SkASSERT(SkPath::kConvex_Convexity == path.getConvexity()); | |
| 233 | |
| 234 // Outer ring: 3*numPts | |
| 235 // Middle ring: numPts | |
| 236 // Presumptive inner ring: numPts | |
| 237 this->reservePts(5*path.countPoints()); | |
| 238 // Outer ring: 12*numPts | |
| 239 // Middle ring: 0 | |
| 240 // Presumptive inner ring: 6*numPts + 6 | |
| 241 fIndices.setReserve(18*path.countPoints() + 6); | |
| 242 | |
| 243 fNorms.setReserve(path.countPoints()); | |
| 244 | |
| 245 SkScalar minCross = SK_ScalarMax, maxCross = -SK_ScalarMax; | |
| 246 | |
| 247 // TODO: is there a faster way to extract the points from the path? Perhaps | |
| 248 // get all the points via a new entry point, transform them all in bulk | |
| 249 // and then walk them to find duplicates? | |
| 250 SkPath::Iter iter(path, true); | |
| 251 SkPoint pts[4]; | |
| 252 SkPath::Verb verb; | |
| 253 while ((verb = iter.next(pts)) != SkPath::kDone_Verb) { | |
| 254 switch (verb) { | |
| 255 case SkPath::kLine_Verb: | |
| 256 m.mapPoints(&pts[1], 1); | |
| 257 if (this->numPts() > 0 && duplicate_pt(pts[1], this->lastPoint() )) { | |
| 258 continue; | |
| 259 } | |
| 260 | |
| 261 SkASSERT(fPts.count() <= 1 || fPts.count() == fNorms.count()+1); | |
| 262 if (this->numPts() >= 2 && | |
| 263 abs_dist_from_line(fPts.top(), fNorms.top(), pts[1]) < kClos e) { | |
| 264 // The old last point is on the line from the second to last to the new point | |
| 265 this->popLastPt(); | |
| 266 fNorms.pop(); | |
| 267 } | |
| 268 | |
| 269 this->addPt(pts[1], 0.0f, false); | |
| 270 if (this->numPts() > 1) { | |
| 271 *fNorms.push() = fPts.top() - fPts[fPts.count()-2]; | |
| 272 SkDEBUGCODE(SkScalar len =) SkPoint::Normalize(&fNorms.top() ); | |
| 273 SkASSERT(len > 0.0f); | |
| 274 SkASSERT(SkScalarNearlyEqual(1.0f, fNorms.top().length())); | |
| 275 } | |
| 276 | |
| 277 if (this->numPts() >= 3) { | |
| 278 int cur = this->numPts()-1; | |
| 279 SkScalar cross = SkPoint::CrossProduct(fNorms[cur-1], fNorms [cur-2]); | |
| 280 maxCross = SkTMax(maxCross, cross); | |
| 281 minCross = SkTMin(minCross, cross); | |
| 282 } | |
| 283 break; | |
| 284 case SkPath::kQuad_Verb: | |
| 285 case SkPath::kConic_Verb: | |
| 286 case SkPath::kCubic_Verb: | |
| 287 SkASSERT(false); | |
| 288 break; | |
| 289 case SkPath::kMove_Verb: | |
| 290 case SkPath::kClose_Verb: | |
| 291 case SkPath::kDone_Verb: | |
| 292 break; | |
| 293 } | |
| 294 } | |
| 295 | |
| 296 if (this->numPts() < 3) { | |
| 297 return false; | |
| 298 } | |
| 299 | |
| 300 // check if last point is a duplicate of the first point. If so, remove it. | |
| 301 if (duplicate_pt(fPts[this->numPts()-1], fPts[0])) { | |
| 302 this->popLastPt(); | |
| 303 fNorms.pop(); | |
| 304 } | |
| 305 | |
| 306 SkASSERT(fPts.count() == fNorms.count()+1); | |
| 307 if (this->numPts() >= 3 && | |
| 308 abs_dist_from_line(fPts.top(), fNorms.top(), fPts[0]) < kClose) { | |
| 309 // The last point is on the line from the second to last to the first po int. | |
| 310 this->popLastPt(); | |
| 311 fNorms.pop(); | |
| 312 } | |
| 313 | |
| 314 if (this->numPts() < 3) { | |
| 315 return false; | |
| 316 } | |
| 317 | |
| 318 *fNorms.push() = fPts[0] - fPts.top(); | |
| 319 SkDEBUGCODE(SkScalar len =) SkPoint::Normalize(&fNorms.top()); | |
| 320 SkASSERT(len > 0.0f); | |
| 321 SkASSERT(fPts.count() == fNorms.count()); | |
| 322 | |
| 323 if (abs_dist_from_line(fPts[0], fNorms.top(), fPts[1]) < kClose) { | |
| 324 // The first point is on the line from the last to the second. | |
| 325 this->popFirstPtShuffle(); | |
| 326 fNorms.removeShuffle(0); | |
| 327 fNorms[0] = fPts[1] - fPts[0]; | |
| 328 SkDEBUGCODE(SkScalar len =) SkPoint::Normalize(&fNorms[0]); | |
| 329 SkASSERT(len > 0.0f); | |
| 330 SkASSERT(SkScalarNearlyEqual(1.0f, fNorms[0].length())); | |
| 331 } | |
| 332 | |
| 333 if (this->numPts() < 3) { | |
| 334 return false; | |
| 335 } | |
| 336 | |
| 337 // Check the cross produce of the final trio | |
| 338 SkScalar cross = SkPoint::CrossProduct(fNorms[0], fNorms.top()); | |
| 339 maxCross = SkTMax(maxCross, cross); | |
| 340 minCross = SkTMin(minCross, cross); | |
| 341 | |
| 342 if (maxCross > 0.0f) { | |
| 343 SkASSERT(minCross >= 0.0f); | |
| 344 fSide = SkPoint::kRight_Side; | |
| 345 } else { | |
| 346 SkASSERT(minCross <= 0.0f); | |
| 347 fSide = SkPoint::kLeft_Side; | |
| 348 } | |
| 349 | |
| 350 // Make all the normals face outwards rather than along the edge | |
| 351 for (int cur = 0; cur < fNorms.count(); ++cur) { | |
| 352 fNorms[cur].setOrthog(fNorms[cur], fSide); | |
| 353 SkASSERT(SkScalarNearlyEqual(1.0f, fNorms[cur].length())); | |
| 354 } | |
| 355 | |
| 356 this->computeBisectors(); | |
| 357 | |
| 358 fCandidateVerts.setReserve(this->numPts()); | |
| 359 fInitialRing.setReserve(this->numPts()); | |
| 360 for (int i = 0; i < this->numPts(); ++i) { | |
| 361 fInitialRing.addIdx(i, i); | |
| 362 } | |
| 363 fInitialRing.init(fNorms, fBisectors); | |
| 364 | |
| 365 this->validate(); | |
| 366 return true; | |
| 367 } | |
| 368 | |
| 369 GrAAConvexTessellator::GrRing* GrAAConvexTessellator::getNextRing(GrRing* lastRi ng) { | |
| 370 #if GR_AA_CONVEX_TESSELLATOR_VIZ | |
| 371 GrRing* ring = *fRings.push() = SkNEW(GrRing); | |
| 372 ring->setReserve(fInitialRing.numPts()); | |
| 373 ring->rewind(); | |
| 374 return ring; | |
| 375 #else | |
| 376 // Flip flop back and forth between fRings[0] & fRings[1] | |
| 377 int nextRing = (lastRing == &fRings[0]) ? 1 : 0; | |
| 378 fRings[nextRing].setReserve1(fInitialRing.numPts()); | |
| 379 fRings[nextRing].rewind1(); | |
| 380 return &fRings[nextRing]; | |
| 381 #endif | |
| 382 } | |
| 383 | |
| 384 void GrAAConvexTessellator::fanRing(const GrRing& ring) { | |
| 385 // fan out from point 0 | |
| 386 for (int cur = 1; cur < ring.numPts()-1; ++cur) { | |
| 387 this->addTri(ring.index(0), ring.index(cur), ring.index(cur+1)); | |
| 388 } | |
| 389 } | |
| 390 | |
| 391 void GrAAConvexTessellator::createOuterRing() { | |
| 392 // For now, we're only generating one outer ring (at the start). This | |
| 393 // could be relaxed for stroking use cases. | |
| 394 SkASSERT(0 == fIndices.count()); | |
| 395 SkASSERT(fPts.count() == fNorms.count()); | |
| 396 | |
| 397 const int numPts = fPts.count(); | |
| 398 | |
| 399 // For each vertex of the original polygon we add three points to the | |
| 400 // outset polygon - one extending perpendicular to each impinging edge | |
| 401 // and one along the bisector. Two triangles are added for each corner | |
| 402 // and two are added along each edge. | |
| 403 int prev = numPts - 1; | |
| 404 int lastPerpIdx = -1, firstPerpIdx, newIdx0, newIdx1, newIdx2; | |
| 405 for (int cur = 0; cur < numPts; ++cur) { | |
| 406 // The perpendicular point for the last edge | |
| 407 SkPoint temp = fNorms[prev]; | |
| 408 temp.scale(fTargetDepth); | |
| 409 temp += fPts[cur]; | |
| 410 | |
| 411 // We know it isn't a duplicate of the prior point (since it and this | |
| 412 // one are just perpendicular offsets from the non-merged polygon points ) | |
| 413 newIdx0 = this->addPt(temp, -fTargetDepth, false); | |
| 414 | |
| 415 // The bisector outset point | |
| 416 temp = fBisectors[cur]; | |
| 417 temp.scale(-fTargetDepth); // the bisectors point in | |
| 418 temp += fPts[cur]; | |
| 419 | |
| 420 // For very shallow angles all the corner points could fuse | |
| 421 if (duplicate_pt(temp, this->point(newIdx0))) { | |
| 422 newIdx1 = newIdx0; | |
| 423 } else { | |
| 424 newIdx1 = this->addPt(temp, -fTargetDepth, false); | |
| 425 } | |
| 426 | |
| 427 // The perpendicular point for the next edge. | |
| 428 temp = fNorms[cur]; | |
| 429 temp.scale(fTargetDepth); | |
| 430 temp += fPts[cur]; | |
| 431 | |
| 432 // For very shallow angles all the corner points could fuse. | |
| 433 if (duplicate_pt(temp, this->point(newIdx1))) { | |
| 434 newIdx2 = newIdx1; | |
| 435 } else { | |
| 436 newIdx2 = this->addPt(temp, -fTargetDepth, false); | |
| 437 } | |
| 438 | |
| 439 if (0 == cur) { | |
| 440 // Store the index of the first perpendicular point to finish up | |
| 441 firstPerpIdx = newIdx0; | |
| 442 SkASSERT(-1 == lastPerpIdx); | |
| 443 } else { | |
| 444 // The triangles for the previous edge | |
| 445 this->addTri(prev, newIdx0, cur); | |
| 446 this->addTri(prev, lastPerpIdx, newIdx0); | |
| 447 } | |
| 448 | |
| 449 // The two triangles for the corner | |
| 450 this->addTri(cur, newIdx0, newIdx1); | |
| 451 this->addTri(cur, newIdx1, newIdx2); | |
| 452 | |
| 453 prev = cur; | |
| 454 // Track the last perpendicular outset point so we can construct the | |
| 455 // trailing edge triangles. | |
| 456 lastPerpIdx = newIdx2; | |
| 457 } | |
| 458 | |
| 459 // pick up the final edge rect | |
| 460 this->addTri(numPts-1, firstPerpIdx, 0); | |
| 461 this->addTri(numPts-1, lastPerpIdx, firstPerpIdx); | |
| 462 | |
| 463 this->validate(); | |
| 464 } | |
| 465 | |
| 466 // Something went wrong in the creation of the next ring. Mark the last good | |
| 467 // ring as being at the desired depth and fan it. | |
| 468 void GrAAConvexTessellator::terminate(const GrRing& ring) { | |
| 469 for (int i = 0; i < ring.numPts(); ++i) { | |
| 470 fDepths[ring.index(i)] = fTargetDepth; | |
| 471 } | |
| 472 | |
| 473 this->fanRing(ring); | |
| 474 } | |
| 475 | |
| 476 // return true when processing is complete | |
| 477 bool GrAAConvexTessellator::createInsetRing(const GrRing& lastRing, GrRing* next Ring) { | |
| 478 bool done = false; | |
| 479 | |
| 480 fCandidateVerts.rewind(); | |
| 481 | |
| 482 // Loop through all the points in the ring and find the intersection with th e smallest depth | |
| 483 SkScalar minDist = SK_ScalarMax, minT; | |
| 484 int minEdgeIdx; | |
| 485 | |
| 486 for (int cur = 0; cur < lastRing.numPts(); ++cur) { | |
| 487 int next = (cur + 1) % lastRing.numPts(); | |
| 488 | |
| 489 SkScalar t = intersect(this->point(lastRing.index(cur)), lastRing.bisec tor(cur), | |
| 490 this->point(lastRing.index(next)), lastRing.bisec tor(next)); | |
| 491 SkScalar dist = -t * lastRing.norm(cur).dot(lastRing.bisector(cur)); | |
| 492 | |
| 493 if (minDist > dist) { | |
| 494 minDist = dist; | |
| 495 minT = t; | |
| 496 minEdgeIdx = cur; | |
| 497 } | |
| 498 } | |
| 499 | |
| 500 SkPoint newPt = lastRing.bisector(minEdgeIdx); | |
| 501 newPt.scale(minT); | |
| 502 newPt += this->point(lastRing.index(minEdgeIdx)); | |
| 503 | |
| 504 SkScalar depth = this->computeDepthFromEdge(lastRing.origEdgeID(minEdgeIdx), newPt); | |
| 505 if (depth >= fTargetDepth) { | |
| 506 // None of the bisectors intersect before reaching the desired depth. | |
| 507 // Just step them all to the desired depth | |
| 508 depth = fTargetDepth; | |
| 509 done = true; | |
| 510 } | |
| 511 | |
| 512 // 'dst' stores where each point in the last ring maps to/transforms into | |
| 513 // in the next ring. | |
| 514 SkTDArray<int> dst; | |
| 515 dst.setCount(lastRing.numPts()); | |
| 516 | |
| 517 // Create the first point (who compares with no one) | |
| 518 if (!this->computePtAlongBisector(lastRing.index(0), | |
| 519 lastRing.bisector(0), | |
| 520 lastRing.origEdgeID(0), | |
| 521 depth, &newPt)) { | |
| 522 this->terminate(lastRing); | |
| 523 SkDEBUGCODE(fShouldCheckDepths = false;) | |
| 524 return true; | |
| 525 } | |
| 526 dst[0] = fCandidateVerts.addNewPt(newPt, | |
| 527 lastRing.index(0), lastRing.origEdgeID(0), | |
| 528 !this->movable(lastRing.index(0))); | |
| 529 | |
| 530 // Handle the middle points (who only compare with the prior point) | |
| 531 for (int cur = 1; cur < lastRing.numPts()-1; ++cur) { | |
| 532 if (!this->computePtAlongBisector(lastRing.index(cur), | |
| 533 lastRing.bisector(cur), | |
| 534 lastRing.origEdgeID(cur), | |
| 535 depth, &newPt)) { | |
| 536 this->terminate(lastRing); | |
| 537 SkDEBUGCODE(fShouldCheckDepths = false;) | |
| 538 return true; | |
| 539 } | |
| 540 if (!duplicate_pt(newPt, fCandidateVerts.lastPoint())) { | |
| 541 dst[cur] = fCandidateVerts.addNewPt(newPt, | |
| 542 lastRing.index(cur), lastRing.or igEdgeID(cur), | |
| 543 !this->movable(lastRing.index(cu r))); | |
| 544 } else { | |
| 545 dst[cur] = fCandidateVerts.fuseWithPrior(lastRing.origEdgeID(cur)); | |
| 546 } | |
| 547 } | |
| 548 | |
| 549 // Check on the last point (handling the wrap around) | |
| 550 int cur = lastRing.numPts()-1; | |
| 551 if (!this->computePtAlongBisector(lastRing.index(cur), | |
| 552 lastRing.bisector(cur), | |
| 553 lastRing.origEdgeID(cur), | |
| 554 depth, &newPt)) { | |
| 555 this->terminate(lastRing); | |
| 556 SkDEBUGCODE(fShouldCheckDepths = false;) | |
| 557 return true; | |
| 558 } | |
| 559 bool dupPrev = duplicate_pt(newPt, fCandidateVerts.lastPoint()); | |
| 560 bool dupNext = duplicate_pt(newPt, fCandidateVerts.firstPoint()); | |
| 561 | |
| 562 if (!dupPrev && !dupNext) { | |
| 563 dst[cur] = fCandidateVerts.addNewPt(newPt, | |
| 564 lastRing.index(cur), lastRing.origEd geID(cur), | |
| 565 !this->movable(lastRing.index(cur))) ; | |
| 566 } else if (dupPrev && !dupNext) { | |
| 567 dst[cur] = fCandidateVerts.fuseWithPrior(lastRing.origEdgeID(cur)); | |
| 568 } else if (!dupPrev && dupNext) { | |
| 569 dst[cur] = fCandidateVerts.fuseWithNext(); | |
| 570 } else { | |
| 571 bool dupPrevVsNext = duplicate_pt(fCandidateVerts.firstPoint(), fCandida teVerts.lastPoint()); | |
| 572 | |
| 573 if (!dupPrevVsNext) { | |
| 574 dst[cur] = fCandidateVerts.fuseWithPrior(lastRing.origEdgeID(cur)); | |
| 575 } else { | |
| 576 dst[cur] = dst[cur-1] = fCandidateVerts.fuseWithBoth(); | |
| 577 } | |
| 578 } | |
| 579 | |
| 580 // Fold the new ring's points into the global pool | |
| 581 for (int i = 0; i < fCandidateVerts.numPts(); ++i) { | |
| 582 int newIdx; | |
| 583 if (fCandidateVerts.needsToBeNew(i)) { | |
| 584 // if the originating index is still valid then this point wasn't | |
| 585 // fused (and is thus movable) | |
| 586 newIdx = this->addPt(fCandidateVerts.point(i), depth, | |
| 587 fCandidateVerts.originatingIdx(i) != -1); | |
| 588 } else { | |
| 589 SkASSERT(fCandidateVerts.originatingIdx(i) != -1); | |
| 590 this->updatePt(fCandidateVerts.originatingIdx(i), fCandidateVerts.po int(i), depth); | |
| 591 newIdx = fCandidateVerts.originatingIdx(i); | |
| 592 } | |
| 593 | |
| 594 nextRing->addIdx(newIdx, fCandidateVerts.origEdge(i)); | |
| 595 } | |
| 596 | |
| 597 // 'dst' currently has indices into the ring. Remap these to be indices | |
| 598 // into the global pool since the triangulation operates in that space. | |
| 599 for (int i = 0; i < dst.count(); ++i) { | |
| 600 dst[i] = nextRing->index(dst[i]); | |
| 601 } | |
| 602 | |
| 603 for (int cur = 0; cur < lastRing.numPts(); ++cur) { | |
| 604 int next = (cur + 1) % lastRing.numPts(); | |
| 605 | |
| 606 this->addTri(lastRing.index(cur), lastRing.index(next), dst[next]); | |
| 607 this->addTri(lastRing.index(cur), dst[next], dst[cur]); | |
| 608 } | |
| 609 | |
| 610 if (done) { | |
| 611 this->fanRing(*nextRing); | |
| 612 } | |
| 613 | |
| 614 if (nextRing->numPts() < 3) { | |
| 615 done = true; | |
| 616 } | |
| 617 | |
| 618 return done; | |
| 619 } | |
| 620 | |
| 621 void GrAAConvexTessellator::validate() const { | |
| 622 SkASSERT(fPts.count() == fDepths.count()); | |
| 623 SkASSERT(fPts.count() == fMovable.count()); | |
| 624 SkASSERT(0 == (fIndices.count() % 3)); | |
| 625 } | |
| 626 | |
| 627 ////////////////////////////////////////////////////////////////////////////// | |
| 628 void GrAAConvexTessellator::GrRing::init(const GrAAConvexTessellator& tess) { | |
| 629 this->computeNormals(tess); | |
| 630 this->computeBisectors(); | |
| 631 SkASSERT(this->isConvex(tess)); | |
| 632 } | |
| 633 | |
| 634 void GrAAConvexTessellator::GrRing::init(const SkTDArray<SkVector>& norms, | |
| 635 const SkTDArray<SkVector>& bisectors) { | |
|
bsalomon
2015/05/05 17:13:42
align?
robertphillips
2015/05/06 12:16:32
Done.
| |
| 636 for (int i = 0; i < fPts.count(); ++i) { | |
| 637 fPts[i].fNorm = norms[i]; | |
| 638 fPts[i].fBisector = bisectors[i]; | |
| 639 } | |
| 640 } | |
| 641 | |
| 642 // Compute the outward facing normal at each vertex. | |
| 643 void GrAAConvexTessellator::GrRing::computeNormals(const GrAAConvexTessellator& tess) { | |
| 644 for (int cur = 0; cur < fPts.count(); ++cur) { | |
| 645 int next = (cur + 1) % fPts.count(); | |
| 646 | |
| 647 fPts[cur].fNorm = tess.point(fPts[next].fIndex) - tess.point(fPts[cur].f Index); | |
| 648 SkDEBUGCODE(SkScalar len =) SkPoint::Normalize(&fPts[cur].fNorm); | |
| 649 SkASSERT(len > 0.0f); | |
| 650 fPts[cur].fNorm.setOrthog(fPts[cur].fNorm, tess.side()); | |
| 651 | |
| 652 SkASSERT(SkScalarNearlyEqual(1.0f, fPts[cur].fNorm.length())); | |
| 653 } | |
| 654 } | |
| 655 | |
| 656 void GrAAConvexTessellator::GrRing::computeBisectors() { | |
| 657 int prev = fPts.count() - 1; | |
| 658 for (int cur = 0; cur < fPts.count(); prev = cur, ++cur) { | |
| 659 fPts[cur].fBisector = fPts[cur].fNorm + fPts[prev].fNorm; | |
| 660 fPts[cur].fBisector.normalize(); | |
| 661 fPts[cur].fBisector.negate(); // make the bisector face in | |
| 662 | |
| 663 SkASSERT(SkScalarNearlyEqual(1.0f, fPts[cur].fBisector.length())); | |
| 664 } | |
| 665 } | |
| 666 | |
| 667 ////////////////////////////////////////////////////////////////////////////// | |
| 668 #ifdef SK_DEBUG | |
| 669 // Is this ring convex? | |
| 670 bool GrAAConvexTessellator::GrRing::isConvex(const GrAAConvexTessellator& tess) const { | |
| 671 if (fPts.count() < 3) { | |
| 672 return false; | |
| 673 } | |
| 674 | |
| 675 SkPoint prev = tess.point(fPts[0].fIndex) - tess.point(fPts.top().fIndex); | |
| 676 SkPoint cur = tess.point(fPts[1].fIndex) - tess.point(fPts[0].fIndex); | |
| 677 SkScalar minDot = prev.fX * cur.fY - prev.fY * cur.fX; | |
| 678 SkScalar maxDot = minDot; | |
| 679 | |
| 680 prev = cur; | |
| 681 for (int i = 1; i < fPts.count(); ++i) { | |
| 682 int next = (i + 1) % fPts.count(); | |
| 683 | |
| 684 cur = tess.point(fPts[next].fIndex) - tess.point(fPts[i].fIndex); | |
| 685 SkScalar dot = prev.fX * cur.fY - prev.fY * cur.fX; | |
| 686 | |
| 687 minDot = SkMinScalar(minDot, dot); | |
| 688 maxDot = SkMaxScalar(maxDot, dot); | |
| 689 | |
| 690 prev = cur; | |
| 691 } | |
| 692 | |
| 693 return (maxDot > 0.0f) == (minDot >= 0.0f); | |
| 694 } | |
| 695 | |
| 696 static SkScalar capsule_depth(const SkPoint& p0, const SkPoint& p1, | |
| 697 const SkPoint& test, SkPoint::Side side, | |
| 698 int* sign) { | |
| 699 *sign = -1; | |
| 700 SkPoint edge = p1 - p0; | |
| 701 SkScalar len = SkPoint::Normalize(&edge); | |
| 702 | |
| 703 SkPoint testVec = test - p0; | |
| 704 | |
| 705 SkScalar d0 = edge.dot(testVec); | |
| 706 if (d0 < 0.0f) { | |
| 707 return SkPoint::Distance(p0, test); | |
| 708 } | |
| 709 if (d0 > len) { | |
| 710 return SkPoint::Distance(p1, test); | |
| 711 } | |
| 712 | |
| 713 SkScalar perpDist = testVec.fY * edge.fX - testVec.fX * edge.fY; | |
| 714 if (SkPoint::kRight_Side == side) { | |
| 715 perpDist = -perpDist; | |
| 716 } | |
| 717 | |
| 718 if (perpDist < 0.0f) { | |
| 719 perpDist = -perpDist; | |
| 720 } else { | |
| 721 *sign = 1; | |
| 722 } | |
| 723 return perpDist; | |
| 724 } | |
| 725 | |
| 726 SkScalar GrAAConvexTessellator::computeRealDepth(const SkPoint& p) const { | |
| 727 SkScalar minDist = SK_ScalarMax; | |
| 728 int closestEdge, closestSign, sign; | |
| 729 | |
| 730 for (int edge = 0; edge < fNorms.count(); ++edge) { | |
| 731 SkScalar dist = capsule_depth(this->point(edge), | |
| 732 this->point((edge+1) % fNorms.count()), | |
| 733 p, fSide, &sign); | |
| 734 SkASSERT(dist >= 0.0f); | |
| 735 | |
| 736 if (minDist > dist) { | |
| 737 minDist = dist; | |
| 738 closestEdge = edge; | |
| 739 closestSign = sign; | |
| 740 } | |
| 741 } | |
| 742 | |
| 743 return closestSign * minDist; | |
| 744 } | |
| 745 | |
| 746 // Verify that the incrementally computed depths are close to the actual depths. | |
| 747 void GrAAConvexTessellator::checkAllDepths() const { | |
| 748 for (int cur = 0; cur < this->numPts(); ++cur) { | |
| 749 SkScalar realDepth = this->computeRealDepth(this->point(cur)); | |
| 750 SkScalar computedDepth = this->depth(cur); | |
| 751 SkASSERT(SkScalarNearlyEqual(realDepth, computedDepth, 0.01f)); | |
| 752 } | |
| 753 } | |
| 754 #endif | |
| 755 | |
| 756 ////////////////////////////////////////////////////////////////////////////// | |
| 757 #if GR_AA_CONVEX_TESSELLATOR_VIZ | |
| 758 static const SkScalar kPointRadius = 0.02f; | |
| 759 static const SkScalar kArrowStrokeWidth = 0.0f; | |
| 760 static const SkScalar kArrowLength = 0.2f; | |
| 761 static const SkScalar kEdgeTextSize = 0.1f; | |
| 762 static const SkScalar kPointTextSize = 0.02f; | |
| 763 | |
| 764 static void draw_point(SkCanvas* canvas, const SkPoint& p, SkScalar paramValue, bool stroke) { | |
| 765 SkPaint paint; | |
| 766 SkASSERT(paramValue <= 1.0f); | |
| 767 int gs = int(255*paramValue); | |
| 768 paint.setARGB(255, gs, gs, gs); | |
| 769 | |
| 770 canvas->drawCircle(p.fX, p.fY, kPointRadius, paint); | |
| 771 | |
| 772 if (stroke) { | |
| 773 SkPaint stroke; | |
| 774 stroke.setColor(SK_ColorYELLOW); | |
| 775 stroke.setStyle(SkPaint::kStroke_Style); | |
| 776 stroke.setStrokeWidth(kPointRadius/3.0f); | |
| 777 canvas->drawCircle(p.fX, p.fY, kPointRadius, stroke); | |
| 778 } | |
| 779 } | |
| 780 | |
| 781 static void draw_line(SkCanvas* canvas, const SkPoint& p0, const SkPoint& p1, Sk Color color) { | |
| 782 SkPaint p; | |
| 783 p.setColor(color); | |
| 784 | |
| 785 canvas->drawLine(p0.fX, p0.fY, p1.fX, p1.fY, p); | |
| 786 } | |
| 787 | |
| 788 static void draw_arrow(SkCanvas*canvas, const SkPoint& p, const SkPoint &n, | |
| 789 SkScalar len, SkColor color) { | |
| 790 SkPaint paint; | |
| 791 paint.setColor(color); | |
| 792 paint.setStrokeWidth(kArrowStrokeWidth); | |
| 793 paint.setStyle(SkPaint::kStroke_Style); | |
| 794 | |
| 795 canvas->drawLine(p.fX, p.fY, | |
| 796 p.fX + len * n.fX, p.fY + len * n.fY, | |
| 797 paint); | |
| 798 } | |
| 799 | |
| 800 void GrAAConvexTessellator::GrRing::draw(SkCanvas* canvas, const GrAAConvexTesse llator& tess) const { | |
| 801 SkPaint paint; | |
| 802 paint.setTextSize(kEdgeTextSize); | |
| 803 | |
| 804 for (int cur = 0; cur < fPts.count(); ++cur) { | |
| 805 int next = (cur + 1) % fPts.count(); | |
| 806 | |
| 807 draw_line(canvas, | |
| 808 tess.point(fPts[cur].fIndex), | |
| 809 tess.point(fPts[next].fIndex), | |
| 810 SK_ColorGREEN); | |
| 811 | |
| 812 SkPoint mid = tess.point(fPts[cur].fIndex) + tess.point(fPts[next].fInde x); | |
| 813 mid.scale(0.5f); | |
| 814 | |
| 815 if (fPts.count()) { | |
| 816 draw_arrow(canvas, mid, fPts[cur].fNorm, kArrowLength, SK_ColorRED); | |
| 817 mid.fX += (kArrowLength/2) * fPts[cur].fNorm.fX; | |
| 818 mid.fY += (kArrowLength/2) * fPts[cur].fNorm.fY; | |
| 819 } | |
| 820 | |
| 821 SkString num; | |
| 822 num.printf("%d", this->origEdgeID(cur)); | |
| 823 canvas->drawText(num.c_str(), num.size(), mid.fX, mid.fY, paint); | |
| 824 | |
| 825 if (fPts.count()) { | |
| 826 draw_arrow(canvas, tess.point(fPts[cur].fIndex), fPts[cur].fBisector , | |
| 827 kArrowLength, SK_ColorBLUE); | |
| 828 } | |
| 829 } | |
| 830 } | |
| 831 | |
| 832 void GrAAConvexTessellator::draw(SkCanvas* canvas) const { | |
| 833 for (int i = 0; i < fIndices.count(); i += 3) { | |
| 834 SkASSERT(fIndices[i] < this->numPts()) ; | |
| 835 SkASSERT(fIndices[i+1] < this->numPts()) ; | |
| 836 SkASSERT(fIndices[i+2] < this->numPts()) ; | |
| 837 | |
| 838 draw_line(canvas, | |
| 839 this->point(this->fIndices[i]), this->point(this->fIndices[i+1 ]), | |
| 840 SK_ColorBLACK); | |
| 841 draw_line(canvas, | |
| 842 this->point(this->fIndices[i+1]), this->point(this->fIndices[i +2]), | |
| 843 SK_ColorBLACK); | |
| 844 draw_line(canvas, | |
| 845 this->point(this->fIndices[i+2]), this->point(this->fIndices[i ]), | |
| 846 SK_ColorBLACK); | |
| 847 } | |
| 848 | |
| 849 fInitialRing.draw(canvas, *this); | |
| 850 for (int i = 0; i < fRings.count(); ++i) { | |
| 851 fRings[i]->draw(canvas, *this); | |
| 852 } | |
| 853 | |
| 854 for (int i = 0; i < this->numPts(); ++i) { | |
| 855 draw_point(canvas, | |
| 856 this->point(i), 0.5f + (this->depth(i)/(2*fTargetDepth)), | |
| 857 !this->movable(i)); | |
| 858 | |
| 859 SkPaint paint; | |
| 860 paint.setTextSize(kPointTextSize); | |
| 861 paint.setTextAlign(SkPaint::kCenter_Align); | |
| 862 if (this->depth(i) <= -fTargetDepth) { | |
| 863 paint.setColor(SK_ColorWHITE); | |
| 864 } | |
| 865 | |
| 866 SkString num; | |
| 867 num.printf("%d", i); | |
| 868 canvas->drawText(num.c_str(), num.size(), | |
| 869 this->point(i).fX, this->point(i).fY+(kPointRadius/2.0f ), | |
| 870 paint); | |
| 871 } | |
| 872 } | |
| 873 | |
| 874 #endif | |
| 875 | |
| OLD | NEW |