| Index: src/gpu/GrAAConvexTessellator.cpp | 
| diff --git a/src/gpu/GrAAConvexTessellator.cpp b/src/gpu/GrAAConvexTessellator.cpp | 
| new file mode 100644 | 
| index 0000000000000000000000000000000000000000..b2269c5afe17f6aac39c7da7026fc1b23ab1913a | 
| --- /dev/null | 
| +++ b/src/gpu/GrAAConvexTessellator.cpp | 
| @@ -0,0 +1,874 @@ | 
| +/* | 
| + * Copyright 2015 Google Inc. | 
| + * | 
| + * Use of this source code is governed by a BSD-style license that can be | 
| + * found in the LICENSE file. | 
| + */ | 
| + | 
| +#include "GrAAConvexTessellator.h" | 
| +#include "SkCanvas.h" | 
| +#include "SkPath.h" | 
| +#include "SkPoint.h" | 
| +#include "SkString.h" | 
| + | 
| +// Next steps: | 
| +//  use in AAConvexPathRenderer | 
| +//  add an interactive sample app slide | 
| +//  add debug check that all points are suitably far apart | 
| +//  test more degenerate cases | 
| + | 
| +// The tolerance for fusing vertices and eliminating colinear lines (It is in device space). | 
| +static const SkScalar kClose = (SK_Scalar1 / 16); | 
| +static const SkScalar kCloseSqd = SkScalarMul(kClose, kClose); | 
| + | 
| +static SkScalar intersect(const SkPoint& p0, const SkPoint& n0, | 
| +                          const SkPoint& p1, const SkPoint& n1) { | 
| +    const SkPoint v = p1 - p0; | 
| + | 
| +    SkScalar perpDot = n0.fX * n1.fY - n0.fY * n1.fX; | 
| +    return (v.fX * n1.fY - v.fY * n1.fX) / perpDot; | 
| +} | 
| + | 
| +// This is a special case version of intersect where we have the vector | 
| +// perpendicular to the second line rather than the vector parallel to it. | 
| +static SkScalar perp_intersect(const SkPoint& p0, const SkPoint& n0, | 
| +                               const SkPoint& p1, const SkPoint& perp) { | 
| +    const SkPoint v = p1 - p0; | 
| +    SkScalar perpDot = n0.dot(perp); | 
| +    return v.dot(perp) / perpDot; | 
| +} | 
| + | 
| +static bool duplicate_pt(const SkPoint& p0, const SkPoint& p1) { | 
| +    SkScalar distSq = p0.distanceToSqd(p1); | 
| +    return distSq < kCloseSqd; | 
| +} | 
| + | 
| +static SkScalar abs_dist_from_line(const SkPoint& p0, const SkVector& v, const SkPoint& test) { | 
| +    SkPoint testV = test - p0; | 
| +    SkScalar dist = testV.fX * v.fY - testV.fY * v.fX; | 
| +    return SkScalarAbs(dist); | 
| +} | 
| + | 
| +int GrAAConvexTessellator::addPt(const SkPoint& pt, | 
| +                                 SkScalar depth, | 
| +                                 bool movable) { | 
| +    this->validate(); | 
| + | 
| +    int index = fPts.count(); | 
| +    *fPts.push() = pt; | 
| +    *fDepths.push() = depth; | 
| +    *fMovable.push() = movable; | 
| + | 
| +    this->validate(); | 
| +    return index; | 
| +} | 
| + | 
| +void GrAAConvexTessellator::popLastPt() { | 
| +    this->validate(); | 
| + | 
| +    fPts.pop(); | 
| +    fDepths.pop(); | 
| +    fMovable.pop(); | 
| + | 
| +    this->validate(); | 
| +} | 
| + | 
| +void GrAAConvexTessellator::popFirstPtShuffle() { | 
| +    this->validate(); | 
| + | 
| +    fPts.removeShuffle(0); | 
| +    fDepths.removeShuffle(0); | 
| +    fMovable.removeShuffle(0); | 
| + | 
| +    this->validate(); | 
| +} | 
| + | 
| +void GrAAConvexTessellator::updatePt(int index, | 
| +                                     const SkPoint& pt, | 
| +                                     SkScalar depth) { | 
| +    this->validate(); | 
| +    SkASSERT(fMovable[index]); | 
| + | 
| +    fPts[index] = pt; | 
| +    fDepths[index] = depth; | 
| +} | 
| + | 
| +void GrAAConvexTessellator::addTri(int i0, int i1, int i2) { | 
| +    if (i0 == i1 || i1 == i2 || i2 == i0) { | 
| +        return; | 
| +    } | 
| + | 
| +    *fIndices.push() = i0; | 
| +    *fIndices.push() = i1; | 
| +    *fIndices.push() = i2; | 
| +} | 
| + | 
| +void GrAAConvexTessellator::rewind() { | 
| +    fPts.rewind(); | 
| +    fDepths.rewind(); | 
| +    fMovable.rewind(); | 
| +    fIndices.rewind(); | 
| +    fNorms.rewind(); | 
| +    fInitialRing.rewind(); | 
| +    fCandidateVerts.rewind(); | 
| +#if GR_AA_CONVEX_TESSELLATOR_VIZ | 
| +    fRings.rewind();        // TODO: leak in this case! | 
| +#else | 
| +    fRings[0].rewind(); | 
| +    fRings[1].rewind(); | 
| +#endif | 
| +} | 
| + | 
| +void GrAAConvexTessellator::computeBisectors() { | 
| +    fBisectors.setCount(fNorms.count()); | 
| + | 
| +    int prev = fBisectors.count() - 1; | 
| +    for (int cur = 0; cur < fBisectors.count(); prev = cur, ++cur) { | 
| +        fBisectors[cur] = fNorms[cur] + fNorms[prev]; | 
| +        fBisectors[cur].normalize(); | 
| +        fBisectors[cur].negate();      // make the bisector face in | 
| + | 
| +        SkASSERT(SkScalarNearlyEqual(1.0f, fBisectors[cur].length())); | 
| +    } | 
| +} | 
| + | 
| +// The general idea here is to, conceptually, start with the original polygon and slide | 
| +// the vertices along the bisectors until the first intersection. At that | 
| +// point two of the edges collapse and the process repeats on the new polygon. | 
| +// The polygon state is captured in the Ring class while the GrAAConvexTessellator | 
| +// controls the iteration. The CandidateVerts holds the formative points for the | 
| +// next ring. | 
| +bool GrAAConvexTessellator::tessellate(const SkMatrix& m, const SkPath& path) { | 
| +    static const int kMaxNumRings = 8; | 
| + | 
| +    SkDEBUGCODE(fShouldCheckDepths = true;) | 
| + | 
| +    if (!this->extractFromPath(m, path)) { | 
| +        return false; | 
| +    } | 
| + | 
| +    this->createOuterRing(); | 
| + | 
| +    // the bisectors are only needed for the computation of the outer ring | 
| +    fBisectors.rewind(); | 
| + | 
| +    Ring* lastRing = &fInitialRing; | 
| +    int i; | 
| +    for (i = 0; i < kMaxNumRings; ++i) { | 
| +        Ring* nextRing = this->getNextRing(lastRing); | 
| + | 
| +        if (this->createInsetRing(*lastRing, nextRing)) { | 
| +            break; | 
| +        } | 
| + | 
| +        nextRing->init(*this); | 
| +        lastRing = nextRing; | 
| +    } | 
| + | 
| +    if (kMaxNumRings == i) { | 
| +        // If we've exceeded the amount of time we want to throw at this, set | 
| +        // the depth of all points in the final ring to 'fTargetDepth' and | 
| +        // create a fan. | 
| +        this->terminate(*lastRing); | 
| +        SkDEBUGCODE(fShouldCheckDepths = false;) | 
| +    } | 
| + | 
| +#ifdef SK_DEBUG | 
| +    this->validate(); | 
| +    if (fShouldCheckDepths) { | 
| +        SkDEBUGCODE(this->checkAllDepths();) | 
| +    } | 
| +#endif | 
| +    return true; | 
| +} | 
| + | 
| +SkScalar GrAAConvexTessellator::computeDepthFromEdge(int edgeIdx, const SkPoint& p) const { | 
| +    SkASSERT(edgeIdx < fNorms.count()); | 
| + | 
| +    SkPoint v = p - fPts[edgeIdx]; | 
| +    SkScalar depth = -fNorms[edgeIdx].dot(v); | 
| +    SkASSERT(depth >= 0.0f); | 
| +    return depth; | 
| +} | 
| + | 
| +// Find a point that is 'desiredDepth' away from the 'edgeIdx'-th edge and lies | 
| +// along the 'bisector' from the 'startIdx'-th point. | 
| +bool GrAAConvexTessellator::computePtAlongBisector(int startIdx, | 
| +                                                   const SkVector& bisector, | 
| +                                                   int edgeIdx, | 
| +                                                   SkScalar desiredDepth, | 
| +                                                   SkPoint* result) const { | 
| +    const SkPoint& norm = fNorms[edgeIdx]; | 
| + | 
| +    // First find the point where the edge and the bisector intersect | 
| +    SkPoint newP; | 
| +    SkScalar t = perp_intersect(fPts[startIdx], bisector, fPts[edgeIdx], norm); | 
| +    if (SkScalarNearlyEqual(t, 0.0f)) { | 
| +        // the start point was one of the original ring points | 
| +        SkASSERT(startIdx < fNorms.count()); | 
| +        newP = fPts[startIdx]; | 
| +    } else if (t > 0.0f) { | 
| +        SkASSERT(t < 0.0f); | 
| +        newP = bisector; | 
| +        newP.scale(t); | 
| +        newP += fPts[startIdx]; | 
| +    } else { | 
| +        return false; | 
| +    } | 
| + | 
| +    // Then offset along the bisector from that point the correct distance | 
| +    t = -desiredDepth / bisector.dot(norm); | 
| +    SkASSERT(t > 0.0f); | 
| +    *result = bisector; | 
| +    result->scale(t); | 
| +    *result += newP; | 
| + | 
| + | 
| +    return true; | 
| +} | 
| + | 
| +bool GrAAConvexTessellator::extractFromPath(const SkMatrix& m, const SkPath& path) { | 
| +    SkASSERT(SkPath::kLine_SegmentMask == path.getSegmentMasks()); | 
| +    SkASSERT(SkPath::kConvex_Convexity == path.getConvexity()); | 
| + | 
| +    // Outer ring: 3*numPts | 
| +    // Middle ring: numPts | 
| +    // Presumptive inner ring: numPts | 
| +    this->reservePts(5*path.countPoints()); | 
| +    // Outer ring: 12*numPts | 
| +    // Middle ring: 0 | 
| +    // Presumptive inner ring: 6*numPts + 6 | 
| +    fIndices.setReserve(18*path.countPoints() + 6); | 
| + | 
| +    fNorms.setReserve(path.countPoints()); | 
| + | 
| +    SkScalar minCross = SK_ScalarMax, maxCross = -SK_ScalarMax; | 
| + | 
| +    // TODO: is there a faster way to extract the points from the path? Perhaps | 
| +    // get all the points via a new entry point, transform them all in bulk | 
| +    // and then walk them to find duplicates? | 
| +    SkPath::Iter iter(path, true); | 
| +    SkPoint pts[4]; | 
| +    SkPath::Verb verb; | 
| +    while ((verb = iter.next(pts)) != SkPath::kDone_Verb) { | 
| +        switch (verb) { | 
| +            case SkPath::kLine_Verb: | 
| +                m.mapPoints(&pts[1], 1); | 
| +                if (this->numPts() > 0 && duplicate_pt(pts[1], this->lastPoint())) { | 
| +                    continue; | 
| +                } | 
| + | 
| +                SkASSERT(fPts.count() <= 1 || fPts.count() == fNorms.count()+1); | 
| +                if (this->numPts() >= 2 && | 
| +                    abs_dist_from_line(fPts.top(), fNorms.top(), pts[1]) < kClose) { | 
| +                    // The old last point is on the line from the second to last to the new point | 
| +                    this->popLastPt(); | 
| +                    fNorms.pop(); | 
| +                } | 
| + | 
| +                this->addPt(pts[1], 0.0f, false); | 
| +                if (this->numPts() > 1) { | 
| +                    *fNorms.push() = fPts.top() - fPts[fPts.count()-2]; | 
| +                    SkDEBUGCODE(SkScalar len =) SkPoint::Normalize(&fNorms.top()); | 
| +                    SkASSERT(len > 0.0f); | 
| +                    SkASSERT(SkScalarNearlyEqual(1.0f, fNorms.top().length())); | 
| +                } | 
| + | 
| +                if (this->numPts() >= 3) { | 
| +                    int cur = this->numPts()-1; | 
| +                    SkScalar cross = SkPoint::CrossProduct(fNorms[cur-1], fNorms[cur-2]); | 
| +                    maxCross = SkTMax(maxCross, cross); | 
| +                    minCross = SkTMin(minCross, cross); | 
| +                } | 
| +                break; | 
| +            case SkPath::kQuad_Verb: | 
| +            case SkPath::kConic_Verb: | 
| +            case SkPath::kCubic_Verb: | 
| +                SkASSERT(false); | 
| +                break; | 
| +            case SkPath::kMove_Verb: | 
| +            case SkPath::kClose_Verb: | 
| +            case SkPath::kDone_Verb: | 
| +                break; | 
| +        } | 
| +    } | 
| + | 
| +    if (this->numPts() < 3) { | 
| +        return false; | 
| +    } | 
| + | 
| +    // check if last point is a duplicate of the first point. If so, remove it. | 
| +    if (duplicate_pt(fPts[this->numPts()-1], fPts[0])) { | 
| +        this->popLastPt(); | 
| +        fNorms.pop(); | 
| +    } | 
| + | 
| +    SkASSERT(fPts.count() == fNorms.count()+1); | 
| +    if (this->numPts() >= 3 && | 
| +        abs_dist_from_line(fPts.top(), fNorms.top(), fPts[0]) < kClose) { | 
| +        // The last point is on the line from the second to last to the first point. | 
| +        this->popLastPt(); | 
| +        fNorms.pop(); | 
| +    } | 
| + | 
| +    if (this->numPts() < 3) { | 
| +        return false; | 
| +    } | 
| + | 
| +    *fNorms.push() = fPts[0] - fPts.top(); | 
| +    SkDEBUGCODE(SkScalar len =) SkPoint::Normalize(&fNorms.top()); | 
| +    SkASSERT(len > 0.0f); | 
| +    SkASSERT(fPts.count() == fNorms.count()); | 
| + | 
| +    if (abs_dist_from_line(fPts[0], fNorms.top(), fPts[1]) < kClose) { | 
| +        // The first point is on the line from the last to the second. | 
| +        this->popFirstPtShuffle(); | 
| +        fNorms.removeShuffle(0); | 
| +        fNorms[0] = fPts[1] - fPts[0]; | 
| +        SkDEBUGCODE(SkScalar len =) SkPoint::Normalize(&fNorms[0]); | 
| +        SkASSERT(len > 0.0f); | 
| +        SkASSERT(SkScalarNearlyEqual(1.0f, fNorms[0].length())); | 
| +    } | 
| + | 
| +    if (this->numPts() < 3) { | 
| +        return false; | 
| +    } | 
| + | 
| +    // Check the cross produce of the final trio | 
| +    SkScalar cross = SkPoint::CrossProduct(fNorms[0], fNorms.top()); | 
| +    maxCross = SkTMax(maxCross, cross); | 
| +    minCross = SkTMin(minCross, cross); | 
| + | 
| +    if (maxCross > 0.0f) { | 
| +        SkASSERT(minCross >= 0.0f); | 
| +        fSide = SkPoint::kRight_Side; | 
| +    } else { | 
| +        SkASSERT(minCross <= 0.0f); | 
| +        fSide = SkPoint::kLeft_Side; | 
| +    } | 
| + | 
| +    // Make all the normals face outwards rather than along the edge | 
| +    for (int cur = 0; cur < fNorms.count(); ++cur) { | 
| +        fNorms[cur].setOrthog(fNorms[cur], fSide); | 
| +        SkASSERT(SkScalarNearlyEqual(1.0f, fNorms[cur].length())); | 
| +    } | 
| + | 
| +    this->computeBisectors(); | 
| + | 
| +    fCandidateVerts.setReserve(this->numPts()); | 
| +    fInitialRing.setReserve(this->numPts()); | 
| +    for (int i = 0; i < this->numPts(); ++i) { | 
| +        fInitialRing.addIdx(i, i); | 
| +    } | 
| +    fInitialRing.init(fNorms, fBisectors); | 
| + | 
| +    this->validate(); | 
| +    return true; | 
| +} | 
| + | 
| +GrAAConvexTessellator::Ring* GrAAConvexTessellator::getNextRing(Ring* lastRing) { | 
| +#if GR_AA_CONVEX_TESSELLATOR_VIZ | 
| +    Ring* ring = *fRings.push() = SkNEW(Ring); | 
| +    ring->setReserve(fInitialRing.numPts()); | 
| +    ring->rewind(); | 
| +    return ring; | 
| +#else | 
| +    // Flip flop back and forth between fRings[0] & fRings[1] | 
| +    int nextRing = (lastRing == &fRings[0]) ? 1 : 0; | 
| +    fRings[nextRing].setReserve(fInitialRing.numPts()); | 
| +    fRings[nextRing].rewind(); | 
| +    return &fRings[nextRing]; | 
| +#endif | 
| +} | 
| + | 
| +void GrAAConvexTessellator::fanRing(const Ring& ring) { | 
| +    // fan out from point 0 | 
| +    for (int cur = 1; cur < ring.numPts()-1; ++cur) { | 
| +        this->addTri(ring.index(0), ring.index(cur), ring.index(cur+1)); | 
| +    } | 
| +} | 
| + | 
| +void GrAAConvexTessellator::createOuterRing() { | 
| +    // For now, we're only generating one outer ring (at the start). This | 
| +    // could be relaxed for stroking use cases. | 
| +    SkASSERT(0 == fIndices.count()); | 
| +    SkASSERT(fPts.count() == fNorms.count()); | 
| + | 
| +    const int numPts = fPts.count(); | 
| + | 
| +    // For each vertex of the original polygon we add three points to the | 
| +    // outset polygon - one extending perpendicular to each impinging edge | 
| +    // and one along the bisector. Two triangles are added for each corner | 
| +    // and two are added along each edge. | 
| +    int prev = numPts - 1; | 
| +    int lastPerpIdx = -1, firstPerpIdx = -1, newIdx0, newIdx1, newIdx2; | 
| +    for (int cur = 0; cur < numPts; ++cur) { | 
| +        // The perpendicular point for the last edge | 
| +        SkPoint temp = fNorms[prev]; | 
| +        temp.scale(fTargetDepth); | 
| +        temp += fPts[cur]; | 
| + | 
| +        // We know it isn't a duplicate of the prior point (since it and this | 
| +        // one are just perpendicular offsets from the non-merged polygon points) | 
| +        newIdx0 = this->addPt(temp, -fTargetDepth, false); | 
| + | 
| +        // The bisector outset point | 
| +        temp = fBisectors[cur]; | 
| +        temp.scale(-fTargetDepth);  // the bisectors point in | 
| +        temp += fPts[cur]; | 
| + | 
| +        // For very shallow angles all the corner points could fuse | 
| +        if (duplicate_pt(temp, this->point(newIdx0))) { | 
| +            newIdx1 = newIdx0; | 
| +        } else { | 
| +            newIdx1 = this->addPt(temp, -fTargetDepth, false); | 
| +        } | 
| + | 
| +        // The perpendicular point for the next edge. | 
| +        temp = fNorms[cur]; | 
| +        temp.scale(fTargetDepth); | 
| +        temp += fPts[cur]; | 
| + | 
| +        // For very shallow angles all the corner points could fuse. | 
| +        if (duplicate_pt(temp, this->point(newIdx1))) { | 
| +            newIdx2 = newIdx1; | 
| +        } else { | 
| +            newIdx2 = this->addPt(temp, -fTargetDepth, false); | 
| +        } | 
| + | 
| +        if (0 == cur) { | 
| +            // Store the index of the first perpendicular point to finish up | 
| +            firstPerpIdx = newIdx0; | 
| +            SkASSERT(-1 == lastPerpIdx); | 
| +        } else { | 
| +            // The triangles for the previous edge | 
| +            this->addTri(prev, newIdx0, cur); | 
| +            this->addTri(prev, lastPerpIdx, newIdx0); | 
| +        } | 
| + | 
| +        // The two triangles for the corner | 
| +        this->addTri(cur, newIdx0, newIdx1); | 
| +        this->addTri(cur, newIdx1, newIdx2); | 
| + | 
| +        prev = cur; | 
| +        // Track the last perpendicular outset point so we can construct the | 
| +        // trailing edge triangles. | 
| +        lastPerpIdx = newIdx2; | 
| +    } | 
| + | 
| +    // pick up the final edge rect | 
| +    this->addTri(numPts-1, firstPerpIdx, 0); | 
| +    this->addTri(numPts-1, lastPerpIdx, firstPerpIdx); | 
| + | 
| +    this->validate(); | 
| +} | 
| + | 
| +// Something went wrong in the creation of the next ring. Mark the last good | 
| +// ring as being at the desired depth and fan it. | 
| +void GrAAConvexTessellator::terminate(const Ring& ring) { | 
| +    for (int i = 0; i < ring.numPts(); ++i) { | 
| +        fDepths[ring.index(i)] = fTargetDepth; | 
| +    } | 
| + | 
| +    this->fanRing(ring); | 
| +} | 
| + | 
| +// return true when processing is complete | 
| +bool GrAAConvexTessellator::createInsetRing(const Ring& lastRing, Ring* nextRing) { | 
| +    bool done = false; | 
| + | 
| +    fCandidateVerts.rewind(); | 
| + | 
| +    // Loop through all the points in the ring and find the intersection with the smallest depth | 
| +    SkScalar minDist = SK_ScalarMax, minT = 0.0f; | 
| +    int minEdgeIdx = -1; | 
| + | 
| +    for (int cur = 0; cur < lastRing.numPts(); ++cur) { | 
| +        int next = (cur + 1) % lastRing.numPts(); | 
| + | 
| +        SkScalar t = intersect(this->point(lastRing.index(cur)),  lastRing.bisector(cur), | 
| +                               this->point(lastRing.index(next)), lastRing.bisector(next)); | 
| +        SkScalar dist = -t * lastRing.norm(cur).dot(lastRing.bisector(cur)); | 
| + | 
| +        if (minDist > dist) { | 
| +            minDist = dist; | 
| +            minT = t; | 
| +            minEdgeIdx = cur; | 
| +        } | 
| +    } | 
| + | 
| +    SkPoint newPt = lastRing.bisector(minEdgeIdx); | 
| +    newPt.scale(minT); | 
| +    newPt += this->point(lastRing.index(minEdgeIdx)); | 
| + | 
| +    SkScalar depth = this->computeDepthFromEdge(lastRing.origEdgeID(minEdgeIdx), newPt); | 
| +    if (depth >= fTargetDepth) { | 
| +        // None of the bisectors intersect before reaching the desired depth. | 
| +        // Just step them all to the desired depth | 
| +        depth = fTargetDepth; | 
| +        done = true; | 
| +    } | 
| + | 
| +    // 'dst' stores where each point in the last ring maps to/transforms into | 
| +    // in the next ring. | 
| +    SkTDArray<int> dst; | 
| +    dst.setCount(lastRing.numPts()); | 
| + | 
| +    // Create the first point (who compares with no one) | 
| +    if (!this->computePtAlongBisector(lastRing.index(0), | 
| +                                      lastRing.bisector(0), | 
| +                                      lastRing.origEdgeID(0), | 
| +                                      depth, &newPt)) { | 
| +        this->terminate(lastRing); | 
| +        SkDEBUGCODE(fShouldCheckDepths = false;) | 
| +        return true; | 
| +    } | 
| +    dst[0] = fCandidateVerts.addNewPt(newPt, | 
| +                                      lastRing.index(0), lastRing.origEdgeID(0), | 
| +                                      !this->movable(lastRing.index(0))); | 
| + | 
| +    // Handle the middle points (who only compare with the prior point) | 
| +    for (int cur = 1; cur < lastRing.numPts()-1; ++cur) { | 
| +        if (!this->computePtAlongBisector(lastRing.index(cur), | 
| +                                          lastRing.bisector(cur), | 
| +                                          lastRing.origEdgeID(cur), | 
| +                                          depth, &newPt)) { | 
| +            this->terminate(lastRing); | 
| +            SkDEBUGCODE(fShouldCheckDepths = false;) | 
| +            return true; | 
| +        } | 
| +        if (!duplicate_pt(newPt, fCandidateVerts.lastPoint())) { | 
| +            dst[cur] = fCandidateVerts.addNewPt(newPt, | 
| +                                                lastRing.index(cur), lastRing.origEdgeID(cur), | 
| +                                                !this->movable(lastRing.index(cur))); | 
| +        } else { | 
| +            dst[cur] = fCandidateVerts.fuseWithPrior(lastRing.origEdgeID(cur)); | 
| +        } | 
| +    } | 
| + | 
| +    // Check on the last point (handling the wrap around) | 
| +    int cur = lastRing.numPts()-1; | 
| +    if  (!this->computePtAlongBisector(lastRing.index(cur), | 
| +                                       lastRing.bisector(cur), | 
| +                                       lastRing.origEdgeID(cur), | 
| +                                       depth, &newPt)) { | 
| +        this->terminate(lastRing); | 
| +        SkDEBUGCODE(fShouldCheckDepths = false;) | 
| +        return true; | 
| +    } | 
| +    bool dupPrev = duplicate_pt(newPt, fCandidateVerts.lastPoint()); | 
| +    bool dupNext = duplicate_pt(newPt, fCandidateVerts.firstPoint()); | 
| + | 
| +    if (!dupPrev && !dupNext) { | 
| +        dst[cur] = fCandidateVerts.addNewPt(newPt, | 
| +                                            lastRing.index(cur), lastRing.origEdgeID(cur), | 
| +                                            !this->movable(lastRing.index(cur))); | 
| +    } else if (dupPrev && !dupNext) { | 
| +        dst[cur] = fCandidateVerts.fuseWithPrior(lastRing.origEdgeID(cur)); | 
| +    } else if (!dupPrev && dupNext) { | 
| +        dst[cur] = fCandidateVerts.fuseWithNext(); | 
| +    } else { | 
| +        bool dupPrevVsNext = duplicate_pt(fCandidateVerts.firstPoint(), fCandidateVerts.lastPoint()); | 
| + | 
| +        if (!dupPrevVsNext) { | 
| +            dst[cur] = fCandidateVerts.fuseWithPrior(lastRing.origEdgeID(cur)); | 
| +        } else { | 
| +            dst[cur] = dst[cur-1] = fCandidateVerts.fuseWithBoth(); | 
| +        } | 
| +    } | 
| + | 
| +    // Fold the new ring's points into the global pool | 
| +    for (int i = 0; i < fCandidateVerts.numPts(); ++i) { | 
| +        int newIdx; | 
| +        if (fCandidateVerts.needsToBeNew(i)) { | 
| +            // if the originating index is still valid then this point wasn't | 
| +            // fused (and is thus movable) | 
| +            newIdx = this->addPt(fCandidateVerts.point(i), depth, | 
| +                                 fCandidateVerts.originatingIdx(i) != -1); | 
| +        } else { | 
| +            SkASSERT(fCandidateVerts.originatingIdx(i) != -1); | 
| +            this->updatePt(fCandidateVerts.originatingIdx(i), fCandidateVerts.point(i), depth); | 
| +            newIdx = fCandidateVerts.originatingIdx(i); | 
| +        } | 
| + | 
| +        nextRing->addIdx(newIdx, fCandidateVerts.origEdge(i)); | 
| +    } | 
| + | 
| +    // 'dst' currently has indices into the ring. Remap these to be indices | 
| +    // into the global pool since the triangulation operates in that space. | 
| +    for (int i = 0; i < dst.count(); ++i) { | 
| +        dst[i] = nextRing->index(dst[i]); | 
| +    } | 
| + | 
| +    for (int cur = 0; cur < lastRing.numPts(); ++cur) { | 
| +        int next = (cur + 1) % lastRing.numPts(); | 
| + | 
| +        this->addTri(lastRing.index(cur), lastRing.index(next), dst[next]); | 
| +        this->addTri(lastRing.index(cur), dst[next], dst[cur]); | 
| +    } | 
| + | 
| +    if (done) { | 
| +        this->fanRing(*nextRing); | 
| +    } | 
| + | 
| +    if (nextRing->numPts() < 3) { | 
| +        done = true; | 
| +    } | 
| + | 
| +    return done; | 
| +} | 
| + | 
| +void GrAAConvexTessellator::validate() const { | 
| +    SkASSERT(fPts.count() == fDepths.count()); | 
| +    SkASSERT(fPts.count() == fMovable.count()); | 
| +    SkASSERT(0 == (fIndices.count() % 3)); | 
| +} | 
| + | 
| +////////////////////////////////////////////////////////////////////////////// | 
| +void GrAAConvexTessellator::Ring::init(const GrAAConvexTessellator& tess) { | 
| +    this->computeNormals(tess); | 
| +    this->computeBisectors(); | 
| +    SkASSERT(this->isConvex(tess)); | 
| +} | 
| + | 
| +void GrAAConvexTessellator::Ring::init(const SkTDArray<SkVector>& norms, | 
| +                                       const SkTDArray<SkVector>& bisectors) { | 
| +    for (int i = 0; i < fPts.count(); ++i) { | 
| +        fPts[i].fNorm = norms[i]; | 
| +        fPts[i].fBisector = bisectors[i]; | 
| +    } | 
| +} | 
| + | 
| +// Compute the outward facing normal at each vertex. | 
| +void GrAAConvexTessellator::Ring::computeNormals(const GrAAConvexTessellator& tess) { | 
| +    for (int cur = 0; cur < fPts.count(); ++cur) { | 
| +        int next = (cur + 1) % fPts.count(); | 
| + | 
| +        fPts[cur].fNorm = tess.point(fPts[next].fIndex) - tess.point(fPts[cur].fIndex); | 
| +        SkDEBUGCODE(SkScalar len =) SkPoint::Normalize(&fPts[cur].fNorm); | 
| +        SkASSERT(len > 0.0f); | 
| +        fPts[cur].fNorm.setOrthog(fPts[cur].fNorm, tess.side()); | 
| + | 
| +        SkASSERT(SkScalarNearlyEqual(1.0f, fPts[cur].fNorm.length())); | 
| +    } | 
| +} | 
| + | 
| +void GrAAConvexTessellator::Ring::computeBisectors() { | 
| +    int prev = fPts.count() - 1; | 
| +    for (int cur = 0; cur < fPts.count(); prev = cur, ++cur) { | 
| +        fPts[cur].fBisector = fPts[cur].fNorm + fPts[prev].fNorm; | 
| +        fPts[cur].fBisector.normalize(); | 
| +        fPts[cur].fBisector.negate();      // make the bisector face in | 
| + | 
| +        SkASSERT(SkScalarNearlyEqual(1.0f, fPts[cur].fBisector.length())); | 
| +    } | 
| +} | 
| + | 
| +////////////////////////////////////////////////////////////////////////////// | 
| +#ifdef SK_DEBUG | 
| +// Is this ring convex? | 
| +bool GrAAConvexTessellator::Ring::isConvex(const GrAAConvexTessellator& tess) const { | 
| +    if (fPts.count() < 3) { | 
| +        return false; | 
| +    } | 
| + | 
| +    SkPoint prev = tess.point(fPts[0].fIndex) - tess.point(fPts.top().fIndex); | 
| +    SkPoint cur  = tess.point(fPts[1].fIndex) - tess.point(fPts[0].fIndex); | 
| +    SkScalar minDot = prev.fX * cur.fY - prev.fY * cur.fX; | 
| +    SkScalar maxDot = minDot; | 
| + | 
| +    prev = cur; | 
| +    for (int i = 1; i < fPts.count(); ++i) { | 
| +        int next = (i + 1) % fPts.count(); | 
| + | 
| +        cur  = tess.point(fPts[next].fIndex) - tess.point(fPts[i].fIndex); | 
| +        SkScalar dot = prev.fX * cur.fY - prev.fY * cur.fX; | 
| + | 
| +        minDot = SkMinScalar(minDot, dot); | 
| +        maxDot = SkMaxScalar(maxDot, dot); | 
| + | 
| +        prev = cur; | 
| +    } | 
| + | 
| +    return (maxDot > 0.0f) == (minDot >= 0.0f); | 
| +} | 
| + | 
| +static SkScalar capsule_depth(const SkPoint& p0, const SkPoint& p1, | 
| +                              const SkPoint& test, SkPoint::Side side, | 
| +                              int* sign) { | 
| +    *sign = -1; | 
| +    SkPoint edge = p1 - p0; | 
| +    SkScalar len = SkPoint::Normalize(&edge); | 
| + | 
| +    SkPoint testVec = test - p0; | 
| + | 
| +    SkScalar d0 = edge.dot(testVec); | 
| +    if (d0 < 0.0f) { | 
| +        return SkPoint::Distance(p0, test); | 
| +    } | 
| +    if (d0 > len) { | 
| +        return SkPoint::Distance(p1, test); | 
| +    } | 
| + | 
| +    SkScalar perpDist = testVec.fY * edge.fX - testVec.fX * edge.fY; | 
| +    if (SkPoint::kRight_Side == side) { | 
| +        perpDist = -perpDist; | 
| +    } | 
| + | 
| +    if (perpDist < 0.0f) { | 
| +        perpDist = -perpDist; | 
| +    } else { | 
| +        *sign = 1; | 
| +    } | 
| +    return perpDist; | 
| +} | 
| + | 
| +SkScalar GrAAConvexTessellator::computeRealDepth(const SkPoint& p) const { | 
| +    SkScalar minDist = SK_ScalarMax; | 
| +    int closestSign, sign; | 
| + | 
| +    for (int edge = 0; edge < fNorms.count(); ++edge) { | 
| +        SkScalar dist = capsule_depth(this->point(edge), | 
| +                                      this->point((edge+1) % fNorms.count()), | 
| +                                      p, fSide, &sign); | 
| +        SkASSERT(dist >= 0.0f); | 
| + | 
| +        if (minDist > dist) { | 
| +            minDist = dist; | 
| +            closestSign = sign; | 
| +        } | 
| +    } | 
| + | 
| +    return closestSign * minDist; | 
| +} | 
| + | 
| +// Verify that the incrementally computed depths are close to the actual depths. | 
| +void GrAAConvexTessellator::checkAllDepths() const { | 
| +    for (int cur = 0; cur < this->numPts(); ++cur) { | 
| +        SkScalar realDepth = this->computeRealDepth(this->point(cur)); | 
| +        SkScalar computedDepth = this->depth(cur); | 
| +        SkASSERT(SkScalarNearlyEqual(realDepth, computedDepth, 0.01f)); | 
| +    } | 
| +} | 
| +#endif | 
| + | 
| +////////////////////////////////////////////////////////////////////////////// | 
| +#if GR_AA_CONVEX_TESSELLATOR_VIZ | 
| +static const SkScalar kPointRadius = 0.02f; | 
| +static const SkScalar kArrowStrokeWidth = 0.0f; | 
| +static const SkScalar kArrowLength = 0.2f; | 
| +static const SkScalar kEdgeTextSize = 0.1f; | 
| +static const SkScalar kPointTextSize = 0.02f; | 
| + | 
| +static void draw_point(SkCanvas* canvas, const SkPoint& p, SkScalar paramValue, bool stroke) { | 
| +    SkPaint paint; | 
| +    SkASSERT(paramValue <= 1.0f); | 
| +    int gs = int(255*paramValue); | 
| +    paint.setARGB(255, gs, gs, gs); | 
| + | 
| +    canvas->drawCircle(p.fX, p.fY, kPointRadius, paint); | 
| + | 
| +    if (stroke) { | 
| +        SkPaint stroke; | 
| +        stroke.setColor(SK_ColorYELLOW); | 
| +        stroke.setStyle(SkPaint::kStroke_Style); | 
| +        stroke.setStrokeWidth(kPointRadius/3.0f); | 
| +        canvas->drawCircle(p.fX, p.fY, kPointRadius, stroke); | 
| +    } | 
| +} | 
| + | 
| +static void draw_line(SkCanvas* canvas, const SkPoint& p0, const SkPoint& p1, SkColor color) { | 
| +    SkPaint p; | 
| +    p.setColor(color); | 
| + | 
| +    canvas->drawLine(p0.fX, p0.fY, p1.fX, p1.fY, p); | 
| +} | 
| + | 
| +static void draw_arrow(SkCanvas*canvas, const SkPoint& p, const SkPoint &n, | 
| +                       SkScalar len, SkColor color) { | 
| +    SkPaint paint; | 
| +    paint.setColor(color); | 
| +    paint.setStrokeWidth(kArrowStrokeWidth); | 
| +    paint.setStyle(SkPaint::kStroke_Style); | 
| + | 
| +    canvas->drawLine(p.fX, p.fY, | 
| +                     p.fX + len * n.fX, p.fY + len * n.fY, | 
| +                     paint); | 
| +} | 
| + | 
| +void GrAAConvexTessellator::Ring::draw(SkCanvas* canvas, const GrAAConvexTessellator& tess) const { | 
| +    SkPaint paint; | 
| +    paint.setTextSize(kEdgeTextSize); | 
| + | 
| +    for (int cur = 0; cur < fPts.count(); ++cur) { | 
| +        int next = (cur + 1) % fPts.count(); | 
| + | 
| +        draw_line(canvas, | 
| +                  tess.point(fPts[cur].fIndex), | 
| +                  tess.point(fPts[next].fIndex), | 
| +                  SK_ColorGREEN); | 
| + | 
| +        SkPoint mid = tess.point(fPts[cur].fIndex) + tess.point(fPts[next].fIndex); | 
| +        mid.scale(0.5f); | 
| + | 
| +        if (fPts.count()) { | 
| +            draw_arrow(canvas, mid, fPts[cur].fNorm, kArrowLength, SK_ColorRED); | 
| +            mid.fX += (kArrowLength/2) * fPts[cur].fNorm.fX; | 
| +            mid.fY += (kArrowLength/2) * fPts[cur].fNorm.fY; | 
| +        } | 
| + | 
| +        SkString num; | 
| +        num.printf("%d", this->origEdgeID(cur)); | 
| +        canvas->drawText(num.c_str(), num.size(), mid.fX, mid.fY, paint); | 
| + | 
| +        if (fPts.count()) { | 
| +            draw_arrow(canvas, tess.point(fPts[cur].fIndex), fPts[cur].fBisector, | 
| +                       kArrowLength, SK_ColorBLUE); | 
| +        } | 
| +    } | 
| +} | 
| + | 
| +void GrAAConvexTessellator::draw(SkCanvas* canvas) const { | 
| +    for (int i = 0; i < fIndices.count(); i += 3) { | 
| +        SkASSERT(fIndices[i] < this->numPts()) ; | 
| +        SkASSERT(fIndices[i+1] < this->numPts()) ; | 
| +        SkASSERT(fIndices[i+2] < this->numPts()) ; | 
| + | 
| +        draw_line(canvas, | 
| +                  this->point(this->fIndices[i]), this->point(this->fIndices[i+1]), | 
| +                  SK_ColorBLACK); | 
| +        draw_line(canvas, | 
| +                  this->point(this->fIndices[i+1]), this->point(this->fIndices[i+2]), | 
| +                  SK_ColorBLACK); | 
| +        draw_line(canvas, | 
| +                  this->point(this->fIndices[i+2]), this->point(this->fIndices[i]), | 
| +                  SK_ColorBLACK); | 
| +    } | 
| + | 
| +    fInitialRing.draw(canvas, *this); | 
| +    for (int i = 0; i < fRings.count(); ++i) { | 
| +        fRings[i]->draw(canvas, *this); | 
| +    } | 
| + | 
| +    for (int i = 0; i < this->numPts(); ++i) { | 
| +        draw_point(canvas, | 
| +                   this->point(i), 0.5f + (this->depth(i)/(2*fTargetDepth)), | 
| +                   !this->movable(i)); | 
| + | 
| +        SkPaint paint; | 
| +        paint.setTextSize(kPointTextSize); | 
| +        paint.setTextAlign(SkPaint::kCenter_Align); | 
| +        if (this->depth(i) <= -fTargetDepth) { | 
| +            paint.setColor(SK_ColorWHITE); | 
| +        } | 
| + | 
| +        SkString num; | 
| +        num.printf("%d", i); | 
| +        canvas->drawText(num.c_str(), num.size(), | 
| +                         this->point(i).fX, this->point(i).fY+(kPointRadius/2.0f), | 
| +                         paint); | 
| +    } | 
| +} | 
| + | 
| +#endif | 
| + | 
|  |