OLD | NEW |
(Empty) | |
| 1 /* |
| 2 * Copyright 2015 Google Inc. |
| 3 * |
| 4 * Use of this source code is governed by a BSD-style license that can be |
| 5 * found in the LICENSE file. |
| 6 */ |
| 7 |
| 8 #include "GrAAConvexTessellator.h" |
| 9 #include "SkCanvas.h" |
| 10 #include "SkPath.h" |
| 11 #include "SkPoint.h" |
| 12 #include "SkString.h" |
| 13 |
| 14 // Next steps: |
| 15 // use in AAConvexPathRenderer |
| 16 // add an interactive sample app slide |
| 17 // add debug check that all points are suitably far apart |
| 18 // test more degenerate cases |
| 19 |
| 20 // The tolerance for fusing vertices and eliminating colinear lines (It is in de
vice space). |
| 21 static const SkScalar kClose = (SK_Scalar1 / 16); |
| 22 static const SkScalar kCloseSqd = SkScalarMul(kClose, kClose); |
| 23 |
| 24 static SkScalar intersect(const SkPoint& p0, const SkPoint& n0, |
| 25 const SkPoint& p1, const SkPoint& n1) { |
| 26 const SkPoint v = p1 - p0; |
| 27 |
| 28 SkScalar perpDot = n0.fX * n1.fY - n0.fY * n1.fX; |
| 29 return (v.fX * n1.fY - v.fY * n1.fX) / perpDot; |
| 30 } |
| 31 |
| 32 // This is a special case version of intersect where we have the vector |
| 33 // perpendicular to the second line rather than the vector parallel to it. |
| 34 static SkScalar perp_intersect(const SkPoint& p0, const SkPoint& n0, |
| 35 const SkPoint& p1, const SkPoint& perp) { |
| 36 const SkPoint v = p1 - p0; |
| 37 SkScalar perpDot = n0.dot(perp); |
| 38 return v.dot(perp) / perpDot; |
| 39 } |
| 40 |
| 41 static bool duplicate_pt(const SkPoint& p0, const SkPoint& p1) { |
| 42 SkScalar distSq = p0.distanceToSqd(p1); |
| 43 return distSq < kCloseSqd; |
| 44 } |
| 45 |
| 46 static SkScalar abs_dist_from_line(const SkPoint& p0, const SkVector& v, const S
kPoint& test) { |
| 47 SkPoint testV = test - p0; |
| 48 SkScalar dist = testV.fX * v.fY - testV.fY * v.fX; |
| 49 return SkScalarAbs(dist); |
| 50 } |
| 51 |
| 52 int GrAAConvexTessellator::addPt(const SkPoint& pt, |
| 53 SkScalar depth, |
| 54 bool movable) { |
| 55 this->validate(); |
| 56 |
| 57 int index = fPts.count(); |
| 58 *fPts.push() = pt; |
| 59 *fDepths.push() = depth; |
| 60 *fMovable.push() = movable; |
| 61 |
| 62 this->validate(); |
| 63 return index; |
| 64 } |
| 65 |
| 66 void GrAAConvexTessellator::popLastPt() { |
| 67 this->validate(); |
| 68 |
| 69 fPts.pop(); |
| 70 fDepths.pop(); |
| 71 fMovable.pop(); |
| 72 |
| 73 this->validate(); |
| 74 } |
| 75 |
| 76 void GrAAConvexTessellator::popFirstPtShuffle() { |
| 77 this->validate(); |
| 78 |
| 79 fPts.removeShuffle(0); |
| 80 fDepths.removeShuffle(0); |
| 81 fMovable.removeShuffle(0); |
| 82 |
| 83 this->validate(); |
| 84 } |
| 85 |
| 86 void GrAAConvexTessellator::updatePt(int index, |
| 87 const SkPoint& pt, |
| 88 SkScalar depth) { |
| 89 this->validate(); |
| 90 SkASSERT(fMovable[index]); |
| 91 |
| 92 fPts[index] = pt; |
| 93 fDepths[index] = depth; |
| 94 } |
| 95 |
| 96 void GrAAConvexTessellator::addTri(int i0, int i1, int i2) { |
| 97 if (i0 == i1 || i1 == i2 || i2 == i0) { |
| 98 return; |
| 99 } |
| 100 |
| 101 *fIndices.push() = i0; |
| 102 *fIndices.push() = i1; |
| 103 *fIndices.push() = i2; |
| 104 } |
| 105 |
| 106 void GrAAConvexTessellator::rewind() { |
| 107 fPts.rewind(); |
| 108 fDepths.rewind(); |
| 109 fMovable.rewind(); |
| 110 fIndices.rewind(); |
| 111 fNorms.rewind(); |
| 112 fInitialRing.rewind(); |
| 113 fCandidateVerts.rewind(); |
| 114 #if GR_AA_CONVEX_TESSELLATOR_VIZ |
| 115 fRings.rewind(); // TODO: leak in this case! |
| 116 #else |
| 117 fRings[0].rewind(); |
| 118 fRings[1].rewind(); |
| 119 #endif |
| 120 } |
| 121 |
| 122 void GrAAConvexTessellator::computeBisectors() { |
| 123 fBisectors.setCount(fNorms.count()); |
| 124 |
| 125 int prev = fBisectors.count() - 1; |
| 126 for (int cur = 0; cur < fBisectors.count(); prev = cur, ++cur) { |
| 127 fBisectors[cur] = fNorms[cur] + fNorms[prev]; |
| 128 fBisectors[cur].normalize(); |
| 129 fBisectors[cur].negate(); // make the bisector face in |
| 130 |
| 131 SkASSERT(SkScalarNearlyEqual(1.0f, fBisectors[cur].length())); |
| 132 } |
| 133 } |
| 134 |
| 135 // The general idea here is to, conceptually, start with the original polygon an
d slide |
| 136 // the vertices along the bisectors until the first intersection. At that |
| 137 // point two of the edges collapse and the process repeats on the new polygon. |
| 138 // The polygon state is captured in the Ring class while the GrAAConvexTessellat
or |
| 139 // controls the iteration. The CandidateVerts holds the formative points for the |
| 140 // next ring. |
| 141 bool GrAAConvexTessellator::tessellate(const SkMatrix& m, const SkPath& path) { |
| 142 static const int kMaxNumRings = 8; |
| 143 |
| 144 SkDEBUGCODE(fShouldCheckDepths = true;) |
| 145 |
| 146 if (!this->extractFromPath(m, path)) { |
| 147 return false; |
| 148 } |
| 149 |
| 150 this->createOuterRing(); |
| 151 |
| 152 // the bisectors are only needed for the computation of the outer ring |
| 153 fBisectors.rewind(); |
| 154 |
| 155 Ring* lastRing = &fInitialRing; |
| 156 int i; |
| 157 for (i = 0; i < kMaxNumRings; ++i) { |
| 158 Ring* nextRing = this->getNextRing(lastRing); |
| 159 |
| 160 if (this->createInsetRing(*lastRing, nextRing)) { |
| 161 break; |
| 162 } |
| 163 |
| 164 nextRing->init(*this); |
| 165 lastRing = nextRing; |
| 166 } |
| 167 |
| 168 if (kMaxNumRings == i) { |
| 169 // If we've exceeded the amount of time we want to throw at this, set |
| 170 // the depth of all points in the final ring to 'fTargetDepth' and |
| 171 // create a fan. |
| 172 this->terminate(*lastRing); |
| 173 SkDEBUGCODE(fShouldCheckDepths = false;) |
| 174 } |
| 175 |
| 176 #ifdef SK_DEBUG |
| 177 this->validate(); |
| 178 if (fShouldCheckDepths) { |
| 179 SkDEBUGCODE(this->checkAllDepths();) |
| 180 } |
| 181 #endif |
| 182 return true; |
| 183 } |
| 184 |
| 185 SkScalar GrAAConvexTessellator::computeDepthFromEdge(int edgeIdx, const SkPoint&
p) const { |
| 186 SkASSERT(edgeIdx < fNorms.count()); |
| 187 |
| 188 SkPoint v = p - fPts[edgeIdx]; |
| 189 SkScalar depth = -fNorms[edgeIdx].dot(v); |
| 190 SkASSERT(depth >= 0.0f); |
| 191 return depth; |
| 192 } |
| 193 |
| 194 // Find a point that is 'desiredDepth' away from the 'edgeIdx'-th edge and lies |
| 195 // along the 'bisector' from the 'startIdx'-th point. |
| 196 bool GrAAConvexTessellator::computePtAlongBisector(int startIdx, |
| 197 const SkVector& bisector, |
| 198 int edgeIdx, |
| 199 SkScalar desiredDepth, |
| 200 SkPoint* result) const { |
| 201 const SkPoint& norm = fNorms[edgeIdx]; |
| 202 |
| 203 // First find the point where the edge and the bisector intersect |
| 204 SkPoint newP; |
| 205 SkScalar t = perp_intersect(fPts[startIdx], bisector, fPts[edgeIdx], norm); |
| 206 if (SkScalarNearlyEqual(t, 0.0f)) { |
| 207 // the start point was one of the original ring points |
| 208 SkASSERT(startIdx < fNorms.count()); |
| 209 newP = fPts[startIdx]; |
| 210 } else if (t > 0.0f) { |
| 211 SkASSERT(t < 0.0f); |
| 212 newP = bisector; |
| 213 newP.scale(t); |
| 214 newP += fPts[startIdx]; |
| 215 } else { |
| 216 return false; |
| 217 } |
| 218 |
| 219 // Then offset along the bisector from that point the correct distance |
| 220 t = -desiredDepth / bisector.dot(norm); |
| 221 SkASSERT(t > 0.0f); |
| 222 *result = bisector; |
| 223 result->scale(t); |
| 224 *result += newP; |
| 225 |
| 226 |
| 227 return true; |
| 228 } |
| 229 |
| 230 bool GrAAConvexTessellator::extractFromPath(const SkMatrix& m, const SkPath& pat
h) { |
| 231 SkASSERT(SkPath::kLine_SegmentMask == path.getSegmentMasks()); |
| 232 SkASSERT(SkPath::kConvex_Convexity == path.getConvexity()); |
| 233 |
| 234 // Outer ring: 3*numPts |
| 235 // Middle ring: numPts |
| 236 // Presumptive inner ring: numPts |
| 237 this->reservePts(5*path.countPoints()); |
| 238 // Outer ring: 12*numPts |
| 239 // Middle ring: 0 |
| 240 // Presumptive inner ring: 6*numPts + 6 |
| 241 fIndices.setReserve(18*path.countPoints() + 6); |
| 242 |
| 243 fNorms.setReserve(path.countPoints()); |
| 244 |
| 245 SkScalar minCross = SK_ScalarMax, maxCross = -SK_ScalarMax; |
| 246 |
| 247 // TODO: is there a faster way to extract the points from the path? Perhaps |
| 248 // get all the points via a new entry point, transform them all in bulk |
| 249 // and then walk them to find duplicates? |
| 250 SkPath::Iter iter(path, true); |
| 251 SkPoint pts[4]; |
| 252 SkPath::Verb verb; |
| 253 while ((verb = iter.next(pts)) != SkPath::kDone_Verb) { |
| 254 switch (verb) { |
| 255 case SkPath::kLine_Verb: |
| 256 m.mapPoints(&pts[1], 1); |
| 257 if (this->numPts() > 0 && duplicate_pt(pts[1], this->lastPoint()
)) { |
| 258 continue; |
| 259 } |
| 260 |
| 261 SkASSERT(fPts.count() <= 1 || fPts.count() == fNorms.count()+1); |
| 262 if (this->numPts() >= 2 && |
| 263 abs_dist_from_line(fPts.top(), fNorms.top(), pts[1]) < kClos
e) { |
| 264 // The old last point is on the line from the second to last
to the new point |
| 265 this->popLastPt(); |
| 266 fNorms.pop(); |
| 267 } |
| 268 |
| 269 this->addPt(pts[1], 0.0f, false); |
| 270 if (this->numPts() > 1) { |
| 271 *fNorms.push() = fPts.top() - fPts[fPts.count()-2]; |
| 272 SkDEBUGCODE(SkScalar len =) SkPoint::Normalize(&fNorms.top()
); |
| 273 SkASSERT(len > 0.0f); |
| 274 SkASSERT(SkScalarNearlyEqual(1.0f, fNorms.top().length())); |
| 275 } |
| 276 |
| 277 if (this->numPts() >= 3) { |
| 278 int cur = this->numPts()-1; |
| 279 SkScalar cross = SkPoint::CrossProduct(fNorms[cur-1], fNorms
[cur-2]); |
| 280 maxCross = SkTMax(maxCross, cross); |
| 281 minCross = SkTMin(minCross, cross); |
| 282 } |
| 283 break; |
| 284 case SkPath::kQuad_Verb: |
| 285 case SkPath::kConic_Verb: |
| 286 case SkPath::kCubic_Verb: |
| 287 SkASSERT(false); |
| 288 break; |
| 289 case SkPath::kMove_Verb: |
| 290 case SkPath::kClose_Verb: |
| 291 case SkPath::kDone_Verb: |
| 292 break; |
| 293 } |
| 294 } |
| 295 |
| 296 if (this->numPts() < 3) { |
| 297 return false; |
| 298 } |
| 299 |
| 300 // check if last point is a duplicate of the first point. If so, remove it. |
| 301 if (duplicate_pt(fPts[this->numPts()-1], fPts[0])) { |
| 302 this->popLastPt(); |
| 303 fNorms.pop(); |
| 304 } |
| 305 |
| 306 SkASSERT(fPts.count() == fNorms.count()+1); |
| 307 if (this->numPts() >= 3 && |
| 308 abs_dist_from_line(fPts.top(), fNorms.top(), fPts[0]) < kClose) { |
| 309 // The last point is on the line from the second to last to the first po
int. |
| 310 this->popLastPt(); |
| 311 fNorms.pop(); |
| 312 } |
| 313 |
| 314 if (this->numPts() < 3) { |
| 315 return false; |
| 316 } |
| 317 |
| 318 *fNorms.push() = fPts[0] - fPts.top(); |
| 319 SkDEBUGCODE(SkScalar len =) SkPoint::Normalize(&fNorms.top()); |
| 320 SkASSERT(len > 0.0f); |
| 321 SkASSERT(fPts.count() == fNorms.count()); |
| 322 |
| 323 if (abs_dist_from_line(fPts[0], fNorms.top(), fPts[1]) < kClose) { |
| 324 // The first point is on the line from the last to the second. |
| 325 this->popFirstPtShuffle(); |
| 326 fNorms.removeShuffle(0); |
| 327 fNorms[0] = fPts[1] - fPts[0]; |
| 328 SkDEBUGCODE(SkScalar len =) SkPoint::Normalize(&fNorms[0]); |
| 329 SkASSERT(len > 0.0f); |
| 330 SkASSERT(SkScalarNearlyEqual(1.0f, fNorms[0].length())); |
| 331 } |
| 332 |
| 333 if (this->numPts() < 3) { |
| 334 return false; |
| 335 } |
| 336 |
| 337 // Check the cross produce of the final trio |
| 338 SkScalar cross = SkPoint::CrossProduct(fNorms[0], fNorms.top()); |
| 339 maxCross = SkTMax(maxCross, cross); |
| 340 minCross = SkTMin(minCross, cross); |
| 341 |
| 342 if (maxCross > 0.0f) { |
| 343 SkASSERT(minCross >= 0.0f); |
| 344 fSide = SkPoint::kRight_Side; |
| 345 } else { |
| 346 SkASSERT(minCross <= 0.0f); |
| 347 fSide = SkPoint::kLeft_Side; |
| 348 } |
| 349 |
| 350 // Make all the normals face outwards rather than along the edge |
| 351 for (int cur = 0; cur < fNorms.count(); ++cur) { |
| 352 fNorms[cur].setOrthog(fNorms[cur], fSide); |
| 353 SkASSERT(SkScalarNearlyEqual(1.0f, fNorms[cur].length())); |
| 354 } |
| 355 |
| 356 this->computeBisectors(); |
| 357 |
| 358 fCandidateVerts.setReserve(this->numPts()); |
| 359 fInitialRing.setReserve(this->numPts()); |
| 360 for (int i = 0; i < this->numPts(); ++i) { |
| 361 fInitialRing.addIdx(i, i); |
| 362 } |
| 363 fInitialRing.init(fNorms, fBisectors); |
| 364 |
| 365 this->validate(); |
| 366 return true; |
| 367 } |
| 368 |
| 369 GrAAConvexTessellator::Ring* GrAAConvexTessellator::getNextRing(Ring* lastRing)
{ |
| 370 #if GR_AA_CONVEX_TESSELLATOR_VIZ |
| 371 Ring* ring = *fRings.push() = SkNEW(Ring); |
| 372 ring->setReserve(fInitialRing.numPts()); |
| 373 ring->rewind(); |
| 374 return ring; |
| 375 #else |
| 376 // Flip flop back and forth between fRings[0] & fRings[1] |
| 377 int nextRing = (lastRing == &fRings[0]) ? 1 : 0; |
| 378 fRings[nextRing].setReserve(fInitialRing.numPts()); |
| 379 fRings[nextRing].rewind(); |
| 380 return &fRings[nextRing]; |
| 381 #endif |
| 382 } |
| 383 |
| 384 void GrAAConvexTessellator::fanRing(const Ring& ring) { |
| 385 // fan out from point 0 |
| 386 for (int cur = 1; cur < ring.numPts()-1; ++cur) { |
| 387 this->addTri(ring.index(0), ring.index(cur), ring.index(cur+1)); |
| 388 } |
| 389 } |
| 390 |
| 391 void GrAAConvexTessellator::createOuterRing() { |
| 392 // For now, we're only generating one outer ring (at the start). This |
| 393 // could be relaxed for stroking use cases. |
| 394 SkASSERT(0 == fIndices.count()); |
| 395 SkASSERT(fPts.count() == fNorms.count()); |
| 396 |
| 397 const int numPts = fPts.count(); |
| 398 |
| 399 // For each vertex of the original polygon we add three points to the |
| 400 // outset polygon - one extending perpendicular to each impinging edge |
| 401 // and one along the bisector. Two triangles are added for each corner |
| 402 // and two are added along each edge. |
| 403 int prev = numPts - 1; |
| 404 int lastPerpIdx = -1, firstPerpIdx = -1, newIdx0, newIdx1, newIdx2; |
| 405 for (int cur = 0; cur < numPts; ++cur) { |
| 406 // The perpendicular point for the last edge |
| 407 SkPoint temp = fNorms[prev]; |
| 408 temp.scale(fTargetDepth); |
| 409 temp += fPts[cur]; |
| 410 |
| 411 // We know it isn't a duplicate of the prior point (since it and this |
| 412 // one are just perpendicular offsets from the non-merged polygon points
) |
| 413 newIdx0 = this->addPt(temp, -fTargetDepth, false); |
| 414 |
| 415 // The bisector outset point |
| 416 temp = fBisectors[cur]; |
| 417 temp.scale(-fTargetDepth); // the bisectors point in |
| 418 temp += fPts[cur]; |
| 419 |
| 420 // For very shallow angles all the corner points could fuse |
| 421 if (duplicate_pt(temp, this->point(newIdx0))) { |
| 422 newIdx1 = newIdx0; |
| 423 } else { |
| 424 newIdx1 = this->addPt(temp, -fTargetDepth, false); |
| 425 } |
| 426 |
| 427 // The perpendicular point for the next edge. |
| 428 temp = fNorms[cur]; |
| 429 temp.scale(fTargetDepth); |
| 430 temp += fPts[cur]; |
| 431 |
| 432 // For very shallow angles all the corner points could fuse. |
| 433 if (duplicate_pt(temp, this->point(newIdx1))) { |
| 434 newIdx2 = newIdx1; |
| 435 } else { |
| 436 newIdx2 = this->addPt(temp, -fTargetDepth, false); |
| 437 } |
| 438 |
| 439 if (0 == cur) { |
| 440 // Store the index of the first perpendicular point to finish up |
| 441 firstPerpIdx = newIdx0; |
| 442 SkASSERT(-1 == lastPerpIdx); |
| 443 } else { |
| 444 // The triangles for the previous edge |
| 445 this->addTri(prev, newIdx0, cur); |
| 446 this->addTri(prev, lastPerpIdx, newIdx0); |
| 447 } |
| 448 |
| 449 // The two triangles for the corner |
| 450 this->addTri(cur, newIdx0, newIdx1); |
| 451 this->addTri(cur, newIdx1, newIdx2); |
| 452 |
| 453 prev = cur; |
| 454 // Track the last perpendicular outset point so we can construct the |
| 455 // trailing edge triangles. |
| 456 lastPerpIdx = newIdx2; |
| 457 } |
| 458 |
| 459 // pick up the final edge rect |
| 460 this->addTri(numPts-1, firstPerpIdx, 0); |
| 461 this->addTri(numPts-1, lastPerpIdx, firstPerpIdx); |
| 462 |
| 463 this->validate(); |
| 464 } |
| 465 |
| 466 // Something went wrong in the creation of the next ring. Mark the last good |
| 467 // ring as being at the desired depth and fan it. |
| 468 void GrAAConvexTessellator::terminate(const Ring& ring) { |
| 469 for (int i = 0; i < ring.numPts(); ++i) { |
| 470 fDepths[ring.index(i)] = fTargetDepth; |
| 471 } |
| 472 |
| 473 this->fanRing(ring); |
| 474 } |
| 475 |
| 476 // return true when processing is complete |
| 477 bool GrAAConvexTessellator::createInsetRing(const Ring& lastRing, Ring* nextRing
) { |
| 478 bool done = false; |
| 479 |
| 480 fCandidateVerts.rewind(); |
| 481 |
| 482 // Loop through all the points in the ring and find the intersection with th
e smallest depth |
| 483 SkScalar minDist = SK_ScalarMax, minT = 0.0f; |
| 484 int minEdgeIdx = -1; |
| 485 |
| 486 for (int cur = 0; cur < lastRing.numPts(); ++cur) { |
| 487 int next = (cur + 1) % lastRing.numPts(); |
| 488 |
| 489 SkScalar t = intersect(this->point(lastRing.index(cur)), lastRing.bisec
tor(cur), |
| 490 this->point(lastRing.index(next)), lastRing.bisec
tor(next)); |
| 491 SkScalar dist = -t * lastRing.norm(cur).dot(lastRing.bisector(cur)); |
| 492 |
| 493 if (minDist > dist) { |
| 494 minDist = dist; |
| 495 minT = t; |
| 496 minEdgeIdx = cur; |
| 497 } |
| 498 } |
| 499 |
| 500 SkPoint newPt = lastRing.bisector(minEdgeIdx); |
| 501 newPt.scale(minT); |
| 502 newPt += this->point(lastRing.index(minEdgeIdx)); |
| 503 |
| 504 SkScalar depth = this->computeDepthFromEdge(lastRing.origEdgeID(minEdgeIdx),
newPt); |
| 505 if (depth >= fTargetDepth) { |
| 506 // None of the bisectors intersect before reaching the desired depth. |
| 507 // Just step them all to the desired depth |
| 508 depth = fTargetDepth; |
| 509 done = true; |
| 510 } |
| 511 |
| 512 // 'dst' stores where each point in the last ring maps to/transforms into |
| 513 // in the next ring. |
| 514 SkTDArray<int> dst; |
| 515 dst.setCount(lastRing.numPts()); |
| 516 |
| 517 // Create the first point (who compares with no one) |
| 518 if (!this->computePtAlongBisector(lastRing.index(0), |
| 519 lastRing.bisector(0), |
| 520 lastRing.origEdgeID(0), |
| 521 depth, &newPt)) { |
| 522 this->terminate(lastRing); |
| 523 SkDEBUGCODE(fShouldCheckDepths = false;) |
| 524 return true; |
| 525 } |
| 526 dst[0] = fCandidateVerts.addNewPt(newPt, |
| 527 lastRing.index(0), lastRing.origEdgeID(0), |
| 528 !this->movable(lastRing.index(0))); |
| 529 |
| 530 // Handle the middle points (who only compare with the prior point) |
| 531 for (int cur = 1; cur < lastRing.numPts()-1; ++cur) { |
| 532 if (!this->computePtAlongBisector(lastRing.index(cur), |
| 533 lastRing.bisector(cur), |
| 534 lastRing.origEdgeID(cur), |
| 535 depth, &newPt)) { |
| 536 this->terminate(lastRing); |
| 537 SkDEBUGCODE(fShouldCheckDepths = false;) |
| 538 return true; |
| 539 } |
| 540 if (!duplicate_pt(newPt, fCandidateVerts.lastPoint())) { |
| 541 dst[cur] = fCandidateVerts.addNewPt(newPt, |
| 542 lastRing.index(cur), lastRing.or
igEdgeID(cur), |
| 543 !this->movable(lastRing.index(cu
r))); |
| 544 } else { |
| 545 dst[cur] = fCandidateVerts.fuseWithPrior(lastRing.origEdgeID(cur)); |
| 546 } |
| 547 } |
| 548 |
| 549 // Check on the last point (handling the wrap around) |
| 550 int cur = lastRing.numPts()-1; |
| 551 if (!this->computePtAlongBisector(lastRing.index(cur), |
| 552 lastRing.bisector(cur), |
| 553 lastRing.origEdgeID(cur), |
| 554 depth, &newPt)) { |
| 555 this->terminate(lastRing); |
| 556 SkDEBUGCODE(fShouldCheckDepths = false;) |
| 557 return true; |
| 558 } |
| 559 bool dupPrev = duplicate_pt(newPt, fCandidateVerts.lastPoint()); |
| 560 bool dupNext = duplicate_pt(newPt, fCandidateVerts.firstPoint()); |
| 561 |
| 562 if (!dupPrev && !dupNext) { |
| 563 dst[cur] = fCandidateVerts.addNewPt(newPt, |
| 564 lastRing.index(cur), lastRing.origEd
geID(cur), |
| 565 !this->movable(lastRing.index(cur)))
; |
| 566 } else if (dupPrev && !dupNext) { |
| 567 dst[cur] = fCandidateVerts.fuseWithPrior(lastRing.origEdgeID(cur)); |
| 568 } else if (!dupPrev && dupNext) { |
| 569 dst[cur] = fCandidateVerts.fuseWithNext(); |
| 570 } else { |
| 571 bool dupPrevVsNext = duplicate_pt(fCandidateVerts.firstPoint(), fCandida
teVerts.lastPoint()); |
| 572 |
| 573 if (!dupPrevVsNext) { |
| 574 dst[cur] = fCandidateVerts.fuseWithPrior(lastRing.origEdgeID(cur)); |
| 575 } else { |
| 576 dst[cur] = dst[cur-1] = fCandidateVerts.fuseWithBoth(); |
| 577 } |
| 578 } |
| 579 |
| 580 // Fold the new ring's points into the global pool |
| 581 for (int i = 0; i < fCandidateVerts.numPts(); ++i) { |
| 582 int newIdx; |
| 583 if (fCandidateVerts.needsToBeNew(i)) { |
| 584 // if the originating index is still valid then this point wasn't |
| 585 // fused (and is thus movable) |
| 586 newIdx = this->addPt(fCandidateVerts.point(i), depth, |
| 587 fCandidateVerts.originatingIdx(i) != -1); |
| 588 } else { |
| 589 SkASSERT(fCandidateVerts.originatingIdx(i) != -1); |
| 590 this->updatePt(fCandidateVerts.originatingIdx(i), fCandidateVerts.po
int(i), depth); |
| 591 newIdx = fCandidateVerts.originatingIdx(i); |
| 592 } |
| 593 |
| 594 nextRing->addIdx(newIdx, fCandidateVerts.origEdge(i)); |
| 595 } |
| 596 |
| 597 // 'dst' currently has indices into the ring. Remap these to be indices |
| 598 // into the global pool since the triangulation operates in that space. |
| 599 for (int i = 0; i < dst.count(); ++i) { |
| 600 dst[i] = nextRing->index(dst[i]); |
| 601 } |
| 602 |
| 603 for (int cur = 0; cur < lastRing.numPts(); ++cur) { |
| 604 int next = (cur + 1) % lastRing.numPts(); |
| 605 |
| 606 this->addTri(lastRing.index(cur), lastRing.index(next), dst[next]); |
| 607 this->addTri(lastRing.index(cur), dst[next], dst[cur]); |
| 608 } |
| 609 |
| 610 if (done) { |
| 611 this->fanRing(*nextRing); |
| 612 } |
| 613 |
| 614 if (nextRing->numPts() < 3) { |
| 615 done = true; |
| 616 } |
| 617 |
| 618 return done; |
| 619 } |
| 620 |
| 621 void GrAAConvexTessellator::validate() const { |
| 622 SkASSERT(fPts.count() == fDepths.count()); |
| 623 SkASSERT(fPts.count() == fMovable.count()); |
| 624 SkASSERT(0 == (fIndices.count() % 3)); |
| 625 } |
| 626 |
| 627 ////////////////////////////////////////////////////////////////////////////// |
| 628 void GrAAConvexTessellator::Ring::init(const GrAAConvexTessellator& tess) { |
| 629 this->computeNormals(tess); |
| 630 this->computeBisectors(); |
| 631 SkASSERT(this->isConvex(tess)); |
| 632 } |
| 633 |
| 634 void GrAAConvexTessellator::Ring::init(const SkTDArray<SkVector>& norms, |
| 635 const SkTDArray<SkVector>& bisectors) { |
| 636 for (int i = 0; i < fPts.count(); ++i) { |
| 637 fPts[i].fNorm = norms[i]; |
| 638 fPts[i].fBisector = bisectors[i]; |
| 639 } |
| 640 } |
| 641 |
| 642 // Compute the outward facing normal at each vertex. |
| 643 void GrAAConvexTessellator::Ring::computeNormals(const GrAAConvexTessellator& te
ss) { |
| 644 for (int cur = 0; cur < fPts.count(); ++cur) { |
| 645 int next = (cur + 1) % fPts.count(); |
| 646 |
| 647 fPts[cur].fNorm = tess.point(fPts[next].fIndex) - tess.point(fPts[cur].f
Index); |
| 648 SkDEBUGCODE(SkScalar len =) SkPoint::Normalize(&fPts[cur].fNorm); |
| 649 SkASSERT(len > 0.0f); |
| 650 fPts[cur].fNorm.setOrthog(fPts[cur].fNorm, tess.side()); |
| 651 |
| 652 SkASSERT(SkScalarNearlyEqual(1.0f, fPts[cur].fNorm.length())); |
| 653 } |
| 654 } |
| 655 |
| 656 void GrAAConvexTessellator::Ring::computeBisectors() { |
| 657 int prev = fPts.count() - 1; |
| 658 for (int cur = 0; cur < fPts.count(); prev = cur, ++cur) { |
| 659 fPts[cur].fBisector = fPts[cur].fNorm + fPts[prev].fNorm; |
| 660 fPts[cur].fBisector.normalize(); |
| 661 fPts[cur].fBisector.negate(); // make the bisector face in |
| 662 |
| 663 SkASSERT(SkScalarNearlyEqual(1.0f, fPts[cur].fBisector.length())); |
| 664 } |
| 665 } |
| 666 |
| 667 ////////////////////////////////////////////////////////////////////////////// |
| 668 #ifdef SK_DEBUG |
| 669 // Is this ring convex? |
| 670 bool GrAAConvexTessellator::Ring::isConvex(const GrAAConvexTessellator& tess) co
nst { |
| 671 if (fPts.count() < 3) { |
| 672 return false; |
| 673 } |
| 674 |
| 675 SkPoint prev = tess.point(fPts[0].fIndex) - tess.point(fPts.top().fIndex); |
| 676 SkPoint cur = tess.point(fPts[1].fIndex) - tess.point(fPts[0].fIndex); |
| 677 SkScalar minDot = prev.fX * cur.fY - prev.fY * cur.fX; |
| 678 SkScalar maxDot = minDot; |
| 679 |
| 680 prev = cur; |
| 681 for (int i = 1; i < fPts.count(); ++i) { |
| 682 int next = (i + 1) % fPts.count(); |
| 683 |
| 684 cur = tess.point(fPts[next].fIndex) - tess.point(fPts[i].fIndex); |
| 685 SkScalar dot = prev.fX * cur.fY - prev.fY * cur.fX; |
| 686 |
| 687 minDot = SkMinScalar(minDot, dot); |
| 688 maxDot = SkMaxScalar(maxDot, dot); |
| 689 |
| 690 prev = cur; |
| 691 } |
| 692 |
| 693 return (maxDot > 0.0f) == (minDot >= 0.0f); |
| 694 } |
| 695 |
| 696 static SkScalar capsule_depth(const SkPoint& p0, const SkPoint& p1, |
| 697 const SkPoint& test, SkPoint::Side side, |
| 698 int* sign) { |
| 699 *sign = -1; |
| 700 SkPoint edge = p1 - p0; |
| 701 SkScalar len = SkPoint::Normalize(&edge); |
| 702 |
| 703 SkPoint testVec = test - p0; |
| 704 |
| 705 SkScalar d0 = edge.dot(testVec); |
| 706 if (d0 < 0.0f) { |
| 707 return SkPoint::Distance(p0, test); |
| 708 } |
| 709 if (d0 > len) { |
| 710 return SkPoint::Distance(p1, test); |
| 711 } |
| 712 |
| 713 SkScalar perpDist = testVec.fY * edge.fX - testVec.fX * edge.fY; |
| 714 if (SkPoint::kRight_Side == side) { |
| 715 perpDist = -perpDist; |
| 716 } |
| 717 |
| 718 if (perpDist < 0.0f) { |
| 719 perpDist = -perpDist; |
| 720 } else { |
| 721 *sign = 1; |
| 722 } |
| 723 return perpDist; |
| 724 } |
| 725 |
| 726 SkScalar GrAAConvexTessellator::computeRealDepth(const SkPoint& p) const { |
| 727 SkScalar minDist = SK_ScalarMax; |
| 728 int closestSign, sign; |
| 729 |
| 730 for (int edge = 0; edge < fNorms.count(); ++edge) { |
| 731 SkScalar dist = capsule_depth(this->point(edge), |
| 732 this->point((edge+1) % fNorms.count()), |
| 733 p, fSide, &sign); |
| 734 SkASSERT(dist >= 0.0f); |
| 735 |
| 736 if (minDist > dist) { |
| 737 minDist = dist; |
| 738 closestSign = sign; |
| 739 } |
| 740 } |
| 741 |
| 742 return closestSign * minDist; |
| 743 } |
| 744 |
| 745 // Verify that the incrementally computed depths are close to the actual depths. |
| 746 void GrAAConvexTessellator::checkAllDepths() const { |
| 747 for (int cur = 0; cur < this->numPts(); ++cur) { |
| 748 SkScalar realDepth = this->computeRealDepth(this->point(cur)); |
| 749 SkScalar computedDepth = this->depth(cur); |
| 750 SkASSERT(SkScalarNearlyEqual(realDepth, computedDepth, 0.01f)); |
| 751 } |
| 752 } |
| 753 #endif |
| 754 |
| 755 ////////////////////////////////////////////////////////////////////////////// |
| 756 #if GR_AA_CONVEX_TESSELLATOR_VIZ |
| 757 static const SkScalar kPointRadius = 0.02f; |
| 758 static const SkScalar kArrowStrokeWidth = 0.0f; |
| 759 static const SkScalar kArrowLength = 0.2f; |
| 760 static const SkScalar kEdgeTextSize = 0.1f; |
| 761 static const SkScalar kPointTextSize = 0.02f; |
| 762 |
| 763 static void draw_point(SkCanvas* canvas, const SkPoint& p, SkScalar paramValue,
bool stroke) { |
| 764 SkPaint paint; |
| 765 SkASSERT(paramValue <= 1.0f); |
| 766 int gs = int(255*paramValue); |
| 767 paint.setARGB(255, gs, gs, gs); |
| 768 |
| 769 canvas->drawCircle(p.fX, p.fY, kPointRadius, paint); |
| 770 |
| 771 if (stroke) { |
| 772 SkPaint stroke; |
| 773 stroke.setColor(SK_ColorYELLOW); |
| 774 stroke.setStyle(SkPaint::kStroke_Style); |
| 775 stroke.setStrokeWidth(kPointRadius/3.0f); |
| 776 canvas->drawCircle(p.fX, p.fY, kPointRadius, stroke); |
| 777 } |
| 778 } |
| 779 |
| 780 static void draw_line(SkCanvas* canvas, const SkPoint& p0, const SkPoint& p1, Sk
Color color) { |
| 781 SkPaint p; |
| 782 p.setColor(color); |
| 783 |
| 784 canvas->drawLine(p0.fX, p0.fY, p1.fX, p1.fY, p); |
| 785 } |
| 786 |
| 787 static void draw_arrow(SkCanvas*canvas, const SkPoint& p, const SkPoint &n, |
| 788 SkScalar len, SkColor color) { |
| 789 SkPaint paint; |
| 790 paint.setColor(color); |
| 791 paint.setStrokeWidth(kArrowStrokeWidth); |
| 792 paint.setStyle(SkPaint::kStroke_Style); |
| 793 |
| 794 canvas->drawLine(p.fX, p.fY, |
| 795 p.fX + len * n.fX, p.fY + len * n.fY, |
| 796 paint); |
| 797 } |
| 798 |
| 799 void GrAAConvexTessellator::Ring::draw(SkCanvas* canvas, const GrAAConvexTessell
ator& tess) const { |
| 800 SkPaint paint; |
| 801 paint.setTextSize(kEdgeTextSize); |
| 802 |
| 803 for (int cur = 0; cur < fPts.count(); ++cur) { |
| 804 int next = (cur + 1) % fPts.count(); |
| 805 |
| 806 draw_line(canvas, |
| 807 tess.point(fPts[cur].fIndex), |
| 808 tess.point(fPts[next].fIndex), |
| 809 SK_ColorGREEN); |
| 810 |
| 811 SkPoint mid = tess.point(fPts[cur].fIndex) + tess.point(fPts[next].fInde
x); |
| 812 mid.scale(0.5f); |
| 813 |
| 814 if (fPts.count()) { |
| 815 draw_arrow(canvas, mid, fPts[cur].fNorm, kArrowLength, SK_ColorRED); |
| 816 mid.fX += (kArrowLength/2) * fPts[cur].fNorm.fX; |
| 817 mid.fY += (kArrowLength/2) * fPts[cur].fNorm.fY; |
| 818 } |
| 819 |
| 820 SkString num; |
| 821 num.printf("%d", this->origEdgeID(cur)); |
| 822 canvas->drawText(num.c_str(), num.size(), mid.fX, mid.fY, paint); |
| 823 |
| 824 if (fPts.count()) { |
| 825 draw_arrow(canvas, tess.point(fPts[cur].fIndex), fPts[cur].fBisector
, |
| 826 kArrowLength, SK_ColorBLUE); |
| 827 } |
| 828 } |
| 829 } |
| 830 |
| 831 void GrAAConvexTessellator::draw(SkCanvas* canvas) const { |
| 832 for (int i = 0; i < fIndices.count(); i += 3) { |
| 833 SkASSERT(fIndices[i] < this->numPts()) ; |
| 834 SkASSERT(fIndices[i+1] < this->numPts()) ; |
| 835 SkASSERT(fIndices[i+2] < this->numPts()) ; |
| 836 |
| 837 draw_line(canvas, |
| 838 this->point(this->fIndices[i]), this->point(this->fIndices[i+1
]), |
| 839 SK_ColorBLACK); |
| 840 draw_line(canvas, |
| 841 this->point(this->fIndices[i+1]), this->point(this->fIndices[i
+2]), |
| 842 SK_ColorBLACK); |
| 843 draw_line(canvas, |
| 844 this->point(this->fIndices[i+2]), this->point(this->fIndices[i
]), |
| 845 SK_ColorBLACK); |
| 846 } |
| 847 |
| 848 fInitialRing.draw(canvas, *this); |
| 849 for (int i = 0; i < fRings.count(); ++i) { |
| 850 fRings[i]->draw(canvas, *this); |
| 851 } |
| 852 |
| 853 for (int i = 0; i < this->numPts(); ++i) { |
| 854 draw_point(canvas, |
| 855 this->point(i), 0.5f + (this->depth(i)/(2*fTargetDepth)), |
| 856 !this->movable(i)); |
| 857 |
| 858 SkPaint paint; |
| 859 paint.setTextSize(kPointTextSize); |
| 860 paint.setTextAlign(SkPaint::kCenter_Align); |
| 861 if (this->depth(i) <= -fTargetDepth) { |
| 862 paint.setColor(SK_ColorWHITE); |
| 863 } |
| 864 |
| 865 SkString num; |
| 866 num.printf("%d", i); |
| 867 canvas->drawText(num.c_str(), num.size(), |
| 868 this->point(i).fX, this->point(i).fY+(kPointRadius/2.0f
), |
| 869 paint); |
| 870 } |
| 871 } |
| 872 |
| 873 #endif |
| 874 |
OLD | NEW |