Index: src/gpu/GrAAConvexTessellator.cpp |
diff --git a/src/gpu/GrAAConvexTessellator.cpp b/src/gpu/GrAAConvexTessellator.cpp |
new file mode 100644 |
index 0000000000000000000000000000000000000000..b2269c5afe17f6aac39c7da7026fc1b23ab1913a |
--- /dev/null |
+++ b/src/gpu/GrAAConvexTessellator.cpp |
@@ -0,0 +1,874 @@ |
+/* |
+ * Copyright 2015 Google Inc. |
+ * |
+ * Use of this source code is governed by a BSD-style license that can be |
+ * found in the LICENSE file. |
+ */ |
+ |
+#include "GrAAConvexTessellator.h" |
+#include "SkCanvas.h" |
+#include "SkPath.h" |
+#include "SkPoint.h" |
+#include "SkString.h" |
+ |
+// Next steps: |
+// use in AAConvexPathRenderer |
+// add an interactive sample app slide |
+// add debug check that all points are suitably far apart |
+// test more degenerate cases |
+ |
+// The tolerance for fusing vertices and eliminating colinear lines (It is in device space). |
+static const SkScalar kClose = (SK_Scalar1 / 16); |
+static const SkScalar kCloseSqd = SkScalarMul(kClose, kClose); |
+ |
+static SkScalar intersect(const SkPoint& p0, const SkPoint& n0, |
+ const SkPoint& p1, const SkPoint& n1) { |
+ const SkPoint v = p1 - p0; |
+ |
+ SkScalar perpDot = n0.fX * n1.fY - n0.fY * n1.fX; |
+ return (v.fX * n1.fY - v.fY * n1.fX) / perpDot; |
+} |
+ |
+// This is a special case version of intersect where we have the vector |
+// perpendicular to the second line rather than the vector parallel to it. |
+static SkScalar perp_intersect(const SkPoint& p0, const SkPoint& n0, |
+ const SkPoint& p1, const SkPoint& perp) { |
+ const SkPoint v = p1 - p0; |
+ SkScalar perpDot = n0.dot(perp); |
+ return v.dot(perp) / perpDot; |
+} |
+ |
+static bool duplicate_pt(const SkPoint& p0, const SkPoint& p1) { |
+ SkScalar distSq = p0.distanceToSqd(p1); |
+ return distSq < kCloseSqd; |
+} |
+ |
+static SkScalar abs_dist_from_line(const SkPoint& p0, const SkVector& v, const SkPoint& test) { |
+ SkPoint testV = test - p0; |
+ SkScalar dist = testV.fX * v.fY - testV.fY * v.fX; |
+ return SkScalarAbs(dist); |
+} |
+ |
+int GrAAConvexTessellator::addPt(const SkPoint& pt, |
+ SkScalar depth, |
+ bool movable) { |
+ this->validate(); |
+ |
+ int index = fPts.count(); |
+ *fPts.push() = pt; |
+ *fDepths.push() = depth; |
+ *fMovable.push() = movable; |
+ |
+ this->validate(); |
+ return index; |
+} |
+ |
+void GrAAConvexTessellator::popLastPt() { |
+ this->validate(); |
+ |
+ fPts.pop(); |
+ fDepths.pop(); |
+ fMovable.pop(); |
+ |
+ this->validate(); |
+} |
+ |
+void GrAAConvexTessellator::popFirstPtShuffle() { |
+ this->validate(); |
+ |
+ fPts.removeShuffle(0); |
+ fDepths.removeShuffle(0); |
+ fMovable.removeShuffle(0); |
+ |
+ this->validate(); |
+} |
+ |
+void GrAAConvexTessellator::updatePt(int index, |
+ const SkPoint& pt, |
+ SkScalar depth) { |
+ this->validate(); |
+ SkASSERT(fMovable[index]); |
+ |
+ fPts[index] = pt; |
+ fDepths[index] = depth; |
+} |
+ |
+void GrAAConvexTessellator::addTri(int i0, int i1, int i2) { |
+ if (i0 == i1 || i1 == i2 || i2 == i0) { |
+ return; |
+ } |
+ |
+ *fIndices.push() = i0; |
+ *fIndices.push() = i1; |
+ *fIndices.push() = i2; |
+} |
+ |
+void GrAAConvexTessellator::rewind() { |
+ fPts.rewind(); |
+ fDepths.rewind(); |
+ fMovable.rewind(); |
+ fIndices.rewind(); |
+ fNorms.rewind(); |
+ fInitialRing.rewind(); |
+ fCandidateVerts.rewind(); |
+#if GR_AA_CONVEX_TESSELLATOR_VIZ |
+ fRings.rewind(); // TODO: leak in this case! |
+#else |
+ fRings[0].rewind(); |
+ fRings[1].rewind(); |
+#endif |
+} |
+ |
+void GrAAConvexTessellator::computeBisectors() { |
+ fBisectors.setCount(fNorms.count()); |
+ |
+ int prev = fBisectors.count() - 1; |
+ for (int cur = 0; cur < fBisectors.count(); prev = cur, ++cur) { |
+ fBisectors[cur] = fNorms[cur] + fNorms[prev]; |
+ fBisectors[cur].normalize(); |
+ fBisectors[cur].negate(); // make the bisector face in |
+ |
+ SkASSERT(SkScalarNearlyEqual(1.0f, fBisectors[cur].length())); |
+ } |
+} |
+ |
+// The general idea here is to, conceptually, start with the original polygon and slide |
+// the vertices along the bisectors until the first intersection. At that |
+// point two of the edges collapse and the process repeats on the new polygon. |
+// The polygon state is captured in the Ring class while the GrAAConvexTessellator |
+// controls the iteration. The CandidateVerts holds the formative points for the |
+// next ring. |
+bool GrAAConvexTessellator::tessellate(const SkMatrix& m, const SkPath& path) { |
+ static const int kMaxNumRings = 8; |
+ |
+ SkDEBUGCODE(fShouldCheckDepths = true;) |
+ |
+ if (!this->extractFromPath(m, path)) { |
+ return false; |
+ } |
+ |
+ this->createOuterRing(); |
+ |
+ // the bisectors are only needed for the computation of the outer ring |
+ fBisectors.rewind(); |
+ |
+ Ring* lastRing = &fInitialRing; |
+ int i; |
+ for (i = 0; i < kMaxNumRings; ++i) { |
+ Ring* nextRing = this->getNextRing(lastRing); |
+ |
+ if (this->createInsetRing(*lastRing, nextRing)) { |
+ break; |
+ } |
+ |
+ nextRing->init(*this); |
+ lastRing = nextRing; |
+ } |
+ |
+ if (kMaxNumRings == i) { |
+ // If we've exceeded the amount of time we want to throw at this, set |
+ // the depth of all points in the final ring to 'fTargetDepth' and |
+ // create a fan. |
+ this->terminate(*lastRing); |
+ SkDEBUGCODE(fShouldCheckDepths = false;) |
+ } |
+ |
+#ifdef SK_DEBUG |
+ this->validate(); |
+ if (fShouldCheckDepths) { |
+ SkDEBUGCODE(this->checkAllDepths();) |
+ } |
+#endif |
+ return true; |
+} |
+ |
+SkScalar GrAAConvexTessellator::computeDepthFromEdge(int edgeIdx, const SkPoint& p) const { |
+ SkASSERT(edgeIdx < fNorms.count()); |
+ |
+ SkPoint v = p - fPts[edgeIdx]; |
+ SkScalar depth = -fNorms[edgeIdx].dot(v); |
+ SkASSERT(depth >= 0.0f); |
+ return depth; |
+} |
+ |
+// Find a point that is 'desiredDepth' away from the 'edgeIdx'-th edge and lies |
+// along the 'bisector' from the 'startIdx'-th point. |
+bool GrAAConvexTessellator::computePtAlongBisector(int startIdx, |
+ const SkVector& bisector, |
+ int edgeIdx, |
+ SkScalar desiredDepth, |
+ SkPoint* result) const { |
+ const SkPoint& norm = fNorms[edgeIdx]; |
+ |
+ // First find the point where the edge and the bisector intersect |
+ SkPoint newP; |
+ SkScalar t = perp_intersect(fPts[startIdx], bisector, fPts[edgeIdx], norm); |
+ if (SkScalarNearlyEqual(t, 0.0f)) { |
+ // the start point was one of the original ring points |
+ SkASSERT(startIdx < fNorms.count()); |
+ newP = fPts[startIdx]; |
+ } else if (t > 0.0f) { |
+ SkASSERT(t < 0.0f); |
+ newP = bisector; |
+ newP.scale(t); |
+ newP += fPts[startIdx]; |
+ } else { |
+ return false; |
+ } |
+ |
+ // Then offset along the bisector from that point the correct distance |
+ t = -desiredDepth / bisector.dot(norm); |
+ SkASSERT(t > 0.0f); |
+ *result = bisector; |
+ result->scale(t); |
+ *result += newP; |
+ |
+ |
+ return true; |
+} |
+ |
+bool GrAAConvexTessellator::extractFromPath(const SkMatrix& m, const SkPath& path) { |
+ SkASSERT(SkPath::kLine_SegmentMask == path.getSegmentMasks()); |
+ SkASSERT(SkPath::kConvex_Convexity == path.getConvexity()); |
+ |
+ // Outer ring: 3*numPts |
+ // Middle ring: numPts |
+ // Presumptive inner ring: numPts |
+ this->reservePts(5*path.countPoints()); |
+ // Outer ring: 12*numPts |
+ // Middle ring: 0 |
+ // Presumptive inner ring: 6*numPts + 6 |
+ fIndices.setReserve(18*path.countPoints() + 6); |
+ |
+ fNorms.setReserve(path.countPoints()); |
+ |
+ SkScalar minCross = SK_ScalarMax, maxCross = -SK_ScalarMax; |
+ |
+ // TODO: is there a faster way to extract the points from the path? Perhaps |
+ // get all the points via a new entry point, transform them all in bulk |
+ // and then walk them to find duplicates? |
+ SkPath::Iter iter(path, true); |
+ SkPoint pts[4]; |
+ SkPath::Verb verb; |
+ while ((verb = iter.next(pts)) != SkPath::kDone_Verb) { |
+ switch (verb) { |
+ case SkPath::kLine_Verb: |
+ m.mapPoints(&pts[1], 1); |
+ if (this->numPts() > 0 && duplicate_pt(pts[1], this->lastPoint())) { |
+ continue; |
+ } |
+ |
+ SkASSERT(fPts.count() <= 1 || fPts.count() == fNorms.count()+1); |
+ if (this->numPts() >= 2 && |
+ abs_dist_from_line(fPts.top(), fNorms.top(), pts[1]) < kClose) { |
+ // The old last point is on the line from the second to last to the new point |
+ this->popLastPt(); |
+ fNorms.pop(); |
+ } |
+ |
+ this->addPt(pts[1], 0.0f, false); |
+ if (this->numPts() > 1) { |
+ *fNorms.push() = fPts.top() - fPts[fPts.count()-2]; |
+ SkDEBUGCODE(SkScalar len =) SkPoint::Normalize(&fNorms.top()); |
+ SkASSERT(len > 0.0f); |
+ SkASSERT(SkScalarNearlyEqual(1.0f, fNorms.top().length())); |
+ } |
+ |
+ if (this->numPts() >= 3) { |
+ int cur = this->numPts()-1; |
+ SkScalar cross = SkPoint::CrossProduct(fNorms[cur-1], fNorms[cur-2]); |
+ maxCross = SkTMax(maxCross, cross); |
+ minCross = SkTMin(minCross, cross); |
+ } |
+ break; |
+ case SkPath::kQuad_Verb: |
+ case SkPath::kConic_Verb: |
+ case SkPath::kCubic_Verb: |
+ SkASSERT(false); |
+ break; |
+ case SkPath::kMove_Verb: |
+ case SkPath::kClose_Verb: |
+ case SkPath::kDone_Verb: |
+ break; |
+ } |
+ } |
+ |
+ if (this->numPts() < 3) { |
+ return false; |
+ } |
+ |
+ // check if last point is a duplicate of the first point. If so, remove it. |
+ if (duplicate_pt(fPts[this->numPts()-1], fPts[0])) { |
+ this->popLastPt(); |
+ fNorms.pop(); |
+ } |
+ |
+ SkASSERT(fPts.count() == fNorms.count()+1); |
+ if (this->numPts() >= 3 && |
+ abs_dist_from_line(fPts.top(), fNorms.top(), fPts[0]) < kClose) { |
+ // The last point is on the line from the second to last to the first point. |
+ this->popLastPt(); |
+ fNorms.pop(); |
+ } |
+ |
+ if (this->numPts() < 3) { |
+ return false; |
+ } |
+ |
+ *fNorms.push() = fPts[0] - fPts.top(); |
+ SkDEBUGCODE(SkScalar len =) SkPoint::Normalize(&fNorms.top()); |
+ SkASSERT(len > 0.0f); |
+ SkASSERT(fPts.count() == fNorms.count()); |
+ |
+ if (abs_dist_from_line(fPts[0], fNorms.top(), fPts[1]) < kClose) { |
+ // The first point is on the line from the last to the second. |
+ this->popFirstPtShuffle(); |
+ fNorms.removeShuffle(0); |
+ fNorms[0] = fPts[1] - fPts[0]; |
+ SkDEBUGCODE(SkScalar len =) SkPoint::Normalize(&fNorms[0]); |
+ SkASSERT(len > 0.0f); |
+ SkASSERT(SkScalarNearlyEqual(1.0f, fNorms[0].length())); |
+ } |
+ |
+ if (this->numPts() < 3) { |
+ return false; |
+ } |
+ |
+ // Check the cross produce of the final trio |
+ SkScalar cross = SkPoint::CrossProduct(fNorms[0], fNorms.top()); |
+ maxCross = SkTMax(maxCross, cross); |
+ minCross = SkTMin(minCross, cross); |
+ |
+ if (maxCross > 0.0f) { |
+ SkASSERT(minCross >= 0.0f); |
+ fSide = SkPoint::kRight_Side; |
+ } else { |
+ SkASSERT(minCross <= 0.0f); |
+ fSide = SkPoint::kLeft_Side; |
+ } |
+ |
+ // Make all the normals face outwards rather than along the edge |
+ for (int cur = 0; cur < fNorms.count(); ++cur) { |
+ fNorms[cur].setOrthog(fNorms[cur], fSide); |
+ SkASSERT(SkScalarNearlyEqual(1.0f, fNorms[cur].length())); |
+ } |
+ |
+ this->computeBisectors(); |
+ |
+ fCandidateVerts.setReserve(this->numPts()); |
+ fInitialRing.setReserve(this->numPts()); |
+ for (int i = 0; i < this->numPts(); ++i) { |
+ fInitialRing.addIdx(i, i); |
+ } |
+ fInitialRing.init(fNorms, fBisectors); |
+ |
+ this->validate(); |
+ return true; |
+} |
+ |
+GrAAConvexTessellator::Ring* GrAAConvexTessellator::getNextRing(Ring* lastRing) { |
+#if GR_AA_CONVEX_TESSELLATOR_VIZ |
+ Ring* ring = *fRings.push() = SkNEW(Ring); |
+ ring->setReserve(fInitialRing.numPts()); |
+ ring->rewind(); |
+ return ring; |
+#else |
+ // Flip flop back and forth between fRings[0] & fRings[1] |
+ int nextRing = (lastRing == &fRings[0]) ? 1 : 0; |
+ fRings[nextRing].setReserve(fInitialRing.numPts()); |
+ fRings[nextRing].rewind(); |
+ return &fRings[nextRing]; |
+#endif |
+} |
+ |
+void GrAAConvexTessellator::fanRing(const Ring& ring) { |
+ // fan out from point 0 |
+ for (int cur = 1; cur < ring.numPts()-1; ++cur) { |
+ this->addTri(ring.index(0), ring.index(cur), ring.index(cur+1)); |
+ } |
+} |
+ |
+void GrAAConvexTessellator::createOuterRing() { |
+ // For now, we're only generating one outer ring (at the start). This |
+ // could be relaxed for stroking use cases. |
+ SkASSERT(0 == fIndices.count()); |
+ SkASSERT(fPts.count() == fNorms.count()); |
+ |
+ const int numPts = fPts.count(); |
+ |
+ // For each vertex of the original polygon we add three points to the |
+ // outset polygon - one extending perpendicular to each impinging edge |
+ // and one along the bisector. Two triangles are added for each corner |
+ // and two are added along each edge. |
+ int prev = numPts - 1; |
+ int lastPerpIdx = -1, firstPerpIdx = -1, newIdx0, newIdx1, newIdx2; |
+ for (int cur = 0; cur < numPts; ++cur) { |
+ // The perpendicular point for the last edge |
+ SkPoint temp = fNorms[prev]; |
+ temp.scale(fTargetDepth); |
+ temp += fPts[cur]; |
+ |
+ // We know it isn't a duplicate of the prior point (since it and this |
+ // one are just perpendicular offsets from the non-merged polygon points) |
+ newIdx0 = this->addPt(temp, -fTargetDepth, false); |
+ |
+ // The bisector outset point |
+ temp = fBisectors[cur]; |
+ temp.scale(-fTargetDepth); // the bisectors point in |
+ temp += fPts[cur]; |
+ |
+ // For very shallow angles all the corner points could fuse |
+ if (duplicate_pt(temp, this->point(newIdx0))) { |
+ newIdx1 = newIdx0; |
+ } else { |
+ newIdx1 = this->addPt(temp, -fTargetDepth, false); |
+ } |
+ |
+ // The perpendicular point for the next edge. |
+ temp = fNorms[cur]; |
+ temp.scale(fTargetDepth); |
+ temp += fPts[cur]; |
+ |
+ // For very shallow angles all the corner points could fuse. |
+ if (duplicate_pt(temp, this->point(newIdx1))) { |
+ newIdx2 = newIdx1; |
+ } else { |
+ newIdx2 = this->addPt(temp, -fTargetDepth, false); |
+ } |
+ |
+ if (0 == cur) { |
+ // Store the index of the first perpendicular point to finish up |
+ firstPerpIdx = newIdx0; |
+ SkASSERT(-1 == lastPerpIdx); |
+ } else { |
+ // The triangles for the previous edge |
+ this->addTri(prev, newIdx0, cur); |
+ this->addTri(prev, lastPerpIdx, newIdx0); |
+ } |
+ |
+ // The two triangles for the corner |
+ this->addTri(cur, newIdx0, newIdx1); |
+ this->addTri(cur, newIdx1, newIdx2); |
+ |
+ prev = cur; |
+ // Track the last perpendicular outset point so we can construct the |
+ // trailing edge triangles. |
+ lastPerpIdx = newIdx2; |
+ } |
+ |
+ // pick up the final edge rect |
+ this->addTri(numPts-1, firstPerpIdx, 0); |
+ this->addTri(numPts-1, lastPerpIdx, firstPerpIdx); |
+ |
+ this->validate(); |
+} |
+ |
+// Something went wrong in the creation of the next ring. Mark the last good |
+// ring as being at the desired depth and fan it. |
+void GrAAConvexTessellator::terminate(const Ring& ring) { |
+ for (int i = 0; i < ring.numPts(); ++i) { |
+ fDepths[ring.index(i)] = fTargetDepth; |
+ } |
+ |
+ this->fanRing(ring); |
+} |
+ |
+// return true when processing is complete |
+bool GrAAConvexTessellator::createInsetRing(const Ring& lastRing, Ring* nextRing) { |
+ bool done = false; |
+ |
+ fCandidateVerts.rewind(); |
+ |
+ // Loop through all the points in the ring and find the intersection with the smallest depth |
+ SkScalar minDist = SK_ScalarMax, minT = 0.0f; |
+ int minEdgeIdx = -1; |
+ |
+ for (int cur = 0; cur < lastRing.numPts(); ++cur) { |
+ int next = (cur + 1) % lastRing.numPts(); |
+ |
+ SkScalar t = intersect(this->point(lastRing.index(cur)), lastRing.bisector(cur), |
+ this->point(lastRing.index(next)), lastRing.bisector(next)); |
+ SkScalar dist = -t * lastRing.norm(cur).dot(lastRing.bisector(cur)); |
+ |
+ if (minDist > dist) { |
+ minDist = dist; |
+ minT = t; |
+ minEdgeIdx = cur; |
+ } |
+ } |
+ |
+ SkPoint newPt = lastRing.bisector(minEdgeIdx); |
+ newPt.scale(minT); |
+ newPt += this->point(lastRing.index(minEdgeIdx)); |
+ |
+ SkScalar depth = this->computeDepthFromEdge(lastRing.origEdgeID(minEdgeIdx), newPt); |
+ if (depth >= fTargetDepth) { |
+ // None of the bisectors intersect before reaching the desired depth. |
+ // Just step them all to the desired depth |
+ depth = fTargetDepth; |
+ done = true; |
+ } |
+ |
+ // 'dst' stores where each point in the last ring maps to/transforms into |
+ // in the next ring. |
+ SkTDArray<int> dst; |
+ dst.setCount(lastRing.numPts()); |
+ |
+ // Create the first point (who compares with no one) |
+ if (!this->computePtAlongBisector(lastRing.index(0), |
+ lastRing.bisector(0), |
+ lastRing.origEdgeID(0), |
+ depth, &newPt)) { |
+ this->terminate(lastRing); |
+ SkDEBUGCODE(fShouldCheckDepths = false;) |
+ return true; |
+ } |
+ dst[0] = fCandidateVerts.addNewPt(newPt, |
+ lastRing.index(0), lastRing.origEdgeID(0), |
+ !this->movable(lastRing.index(0))); |
+ |
+ // Handle the middle points (who only compare with the prior point) |
+ for (int cur = 1; cur < lastRing.numPts()-1; ++cur) { |
+ if (!this->computePtAlongBisector(lastRing.index(cur), |
+ lastRing.bisector(cur), |
+ lastRing.origEdgeID(cur), |
+ depth, &newPt)) { |
+ this->terminate(lastRing); |
+ SkDEBUGCODE(fShouldCheckDepths = false;) |
+ return true; |
+ } |
+ if (!duplicate_pt(newPt, fCandidateVerts.lastPoint())) { |
+ dst[cur] = fCandidateVerts.addNewPt(newPt, |
+ lastRing.index(cur), lastRing.origEdgeID(cur), |
+ !this->movable(lastRing.index(cur))); |
+ } else { |
+ dst[cur] = fCandidateVerts.fuseWithPrior(lastRing.origEdgeID(cur)); |
+ } |
+ } |
+ |
+ // Check on the last point (handling the wrap around) |
+ int cur = lastRing.numPts()-1; |
+ if (!this->computePtAlongBisector(lastRing.index(cur), |
+ lastRing.bisector(cur), |
+ lastRing.origEdgeID(cur), |
+ depth, &newPt)) { |
+ this->terminate(lastRing); |
+ SkDEBUGCODE(fShouldCheckDepths = false;) |
+ return true; |
+ } |
+ bool dupPrev = duplicate_pt(newPt, fCandidateVerts.lastPoint()); |
+ bool dupNext = duplicate_pt(newPt, fCandidateVerts.firstPoint()); |
+ |
+ if (!dupPrev && !dupNext) { |
+ dst[cur] = fCandidateVerts.addNewPt(newPt, |
+ lastRing.index(cur), lastRing.origEdgeID(cur), |
+ !this->movable(lastRing.index(cur))); |
+ } else if (dupPrev && !dupNext) { |
+ dst[cur] = fCandidateVerts.fuseWithPrior(lastRing.origEdgeID(cur)); |
+ } else if (!dupPrev && dupNext) { |
+ dst[cur] = fCandidateVerts.fuseWithNext(); |
+ } else { |
+ bool dupPrevVsNext = duplicate_pt(fCandidateVerts.firstPoint(), fCandidateVerts.lastPoint()); |
+ |
+ if (!dupPrevVsNext) { |
+ dst[cur] = fCandidateVerts.fuseWithPrior(lastRing.origEdgeID(cur)); |
+ } else { |
+ dst[cur] = dst[cur-1] = fCandidateVerts.fuseWithBoth(); |
+ } |
+ } |
+ |
+ // Fold the new ring's points into the global pool |
+ for (int i = 0; i < fCandidateVerts.numPts(); ++i) { |
+ int newIdx; |
+ if (fCandidateVerts.needsToBeNew(i)) { |
+ // if the originating index is still valid then this point wasn't |
+ // fused (and is thus movable) |
+ newIdx = this->addPt(fCandidateVerts.point(i), depth, |
+ fCandidateVerts.originatingIdx(i) != -1); |
+ } else { |
+ SkASSERT(fCandidateVerts.originatingIdx(i) != -1); |
+ this->updatePt(fCandidateVerts.originatingIdx(i), fCandidateVerts.point(i), depth); |
+ newIdx = fCandidateVerts.originatingIdx(i); |
+ } |
+ |
+ nextRing->addIdx(newIdx, fCandidateVerts.origEdge(i)); |
+ } |
+ |
+ // 'dst' currently has indices into the ring. Remap these to be indices |
+ // into the global pool since the triangulation operates in that space. |
+ for (int i = 0; i < dst.count(); ++i) { |
+ dst[i] = nextRing->index(dst[i]); |
+ } |
+ |
+ for (int cur = 0; cur < lastRing.numPts(); ++cur) { |
+ int next = (cur + 1) % lastRing.numPts(); |
+ |
+ this->addTri(lastRing.index(cur), lastRing.index(next), dst[next]); |
+ this->addTri(lastRing.index(cur), dst[next], dst[cur]); |
+ } |
+ |
+ if (done) { |
+ this->fanRing(*nextRing); |
+ } |
+ |
+ if (nextRing->numPts() < 3) { |
+ done = true; |
+ } |
+ |
+ return done; |
+} |
+ |
+void GrAAConvexTessellator::validate() const { |
+ SkASSERT(fPts.count() == fDepths.count()); |
+ SkASSERT(fPts.count() == fMovable.count()); |
+ SkASSERT(0 == (fIndices.count() % 3)); |
+} |
+ |
+////////////////////////////////////////////////////////////////////////////// |
+void GrAAConvexTessellator::Ring::init(const GrAAConvexTessellator& tess) { |
+ this->computeNormals(tess); |
+ this->computeBisectors(); |
+ SkASSERT(this->isConvex(tess)); |
+} |
+ |
+void GrAAConvexTessellator::Ring::init(const SkTDArray<SkVector>& norms, |
+ const SkTDArray<SkVector>& bisectors) { |
+ for (int i = 0; i < fPts.count(); ++i) { |
+ fPts[i].fNorm = norms[i]; |
+ fPts[i].fBisector = bisectors[i]; |
+ } |
+} |
+ |
+// Compute the outward facing normal at each vertex. |
+void GrAAConvexTessellator::Ring::computeNormals(const GrAAConvexTessellator& tess) { |
+ for (int cur = 0; cur < fPts.count(); ++cur) { |
+ int next = (cur + 1) % fPts.count(); |
+ |
+ fPts[cur].fNorm = tess.point(fPts[next].fIndex) - tess.point(fPts[cur].fIndex); |
+ SkDEBUGCODE(SkScalar len =) SkPoint::Normalize(&fPts[cur].fNorm); |
+ SkASSERT(len > 0.0f); |
+ fPts[cur].fNorm.setOrthog(fPts[cur].fNorm, tess.side()); |
+ |
+ SkASSERT(SkScalarNearlyEqual(1.0f, fPts[cur].fNorm.length())); |
+ } |
+} |
+ |
+void GrAAConvexTessellator::Ring::computeBisectors() { |
+ int prev = fPts.count() - 1; |
+ for (int cur = 0; cur < fPts.count(); prev = cur, ++cur) { |
+ fPts[cur].fBisector = fPts[cur].fNorm + fPts[prev].fNorm; |
+ fPts[cur].fBisector.normalize(); |
+ fPts[cur].fBisector.negate(); // make the bisector face in |
+ |
+ SkASSERT(SkScalarNearlyEqual(1.0f, fPts[cur].fBisector.length())); |
+ } |
+} |
+ |
+////////////////////////////////////////////////////////////////////////////// |
+#ifdef SK_DEBUG |
+// Is this ring convex? |
+bool GrAAConvexTessellator::Ring::isConvex(const GrAAConvexTessellator& tess) const { |
+ if (fPts.count() < 3) { |
+ return false; |
+ } |
+ |
+ SkPoint prev = tess.point(fPts[0].fIndex) - tess.point(fPts.top().fIndex); |
+ SkPoint cur = tess.point(fPts[1].fIndex) - tess.point(fPts[0].fIndex); |
+ SkScalar minDot = prev.fX * cur.fY - prev.fY * cur.fX; |
+ SkScalar maxDot = minDot; |
+ |
+ prev = cur; |
+ for (int i = 1; i < fPts.count(); ++i) { |
+ int next = (i + 1) % fPts.count(); |
+ |
+ cur = tess.point(fPts[next].fIndex) - tess.point(fPts[i].fIndex); |
+ SkScalar dot = prev.fX * cur.fY - prev.fY * cur.fX; |
+ |
+ minDot = SkMinScalar(minDot, dot); |
+ maxDot = SkMaxScalar(maxDot, dot); |
+ |
+ prev = cur; |
+ } |
+ |
+ return (maxDot > 0.0f) == (minDot >= 0.0f); |
+} |
+ |
+static SkScalar capsule_depth(const SkPoint& p0, const SkPoint& p1, |
+ const SkPoint& test, SkPoint::Side side, |
+ int* sign) { |
+ *sign = -1; |
+ SkPoint edge = p1 - p0; |
+ SkScalar len = SkPoint::Normalize(&edge); |
+ |
+ SkPoint testVec = test - p0; |
+ |
+ SkScalar d0 = edge.dot(testVec); |
+ if (d0 < 0.0f) { |
+ return SkPoint::Distance(p0, test); |
+ } |
+ if (d0 > len) { |
+ return SkPoint::Distance(p1, test); |
+ } |
+ |
+ SkScalar perpDist = testVec.fY * edge.fX - testVec.fX * edge.fY; |
+ if (SkPoint::kRight_Side == side) { |
+ perpDist = -perpDist; |
+ } |
+ |
+ if (perpDist < 0.0f) { |
+ perpDist = -perpDist; |
+ } else { |
+ *sign = 1; |
+ } |
+ return perpDist; |
+} |
+ |
+SkScalar GrAAConvexTessellator::computeRealDepth(const SkPoint& p) const { |
+ SkScalar minDist = SK_ScalarMax; |
+ int closestSign, sign; |
+ |
+ for (int edge = 0; edge < fNorms.count(); ++edge) { |
+ SkScalar dist = capsule_depth(this->point(edge), |
+ this->point((edge+1) % fNorms.count()), |
+ p, fSide, &sign); |
+ SkASSERT(dist >= 0.0f); |
+ |
+ if (minDist > dist) { |
+ minDist = dist; |
+ closestSign = sign; |
+ } |
+ } |
+ |
+ return closestSign * minDist; |
+} |
+ |
+// Verify that the incrementally computed depths are close to the actual depths. |
+void GrAAConvexTessellator::checkAllDepths() const { |
+ for (int cur = 0; cur < this->numPts(); ++cur) { |
+ SkScalar realDepth = this->computeRealDepth(this->point(cur)); |
+ SkScalar computedDepth = this->depth(cur); |
+ SkASSERT(SkScalarNearlyEqual(realDepth, computedDepth, 0.01f)); |
+ } |
+} |
+#endif |
+ |
+////////////////////////////////////////////////////////////////////////////// |
+#if GR_AA_CONVEX_TESSELLATOR_VIZ |
+static const SkScalar kPointRadius = 0.02f; |
+static const SkScalar kArrowStrokeWidth = 0.0f; |
+static const SkScalar kArrowLength = 0.2f; |
+static const SkScalar kEdgeTextSize = 0.1f; |
+static const SkScalar kPointTextSize = 0.02f; |
+ |
+static void draw_point(SkCanvas* canvas, const SkPoint& p, SkScalar paramValue, bool stroke) { |
+ SkPaint paint; |
+ SkASSERT(paramValue <= 1.0f); |
+ int gs = int(255*paramValue); |
+ paint.setARGB(255, gs, gs, gs); |
+ |
+ canvas->drawCircle(p.fX, p.fY, kPointRadius, paint); |
+ |
+ if (stroke) { |
+ SkPaint stroke; |
+ stroke.setColor(SK_ColorYELLOW); |
+ stroke.setStyle(SkPaint::kStroke_Style); |
+ stroke.setStrokeWidth(kPointRadius/3.0f); |
+ canvas->drawCircle(p.fX, p.fY, kPointRadius, stroke); |
+ } |
+} |
+ |
+static void draw_line(SkCanvas* canvas, const SkPoint& p0, const SkPoint& p1, SkColor color) { |
+ SkPaint p; |
+ p.setColor(color); |
+ |
+ canvas->drawLine(p0.fX, p0.fY, p1.fX, p1.fY, p); |
+} |
+ |
+static void draw_arrow(SkCanvas*canvas, const SkPoint& p, const SkPoint &n, |
+ SkScalar len, SkColor color) { |
+ SkPaint paint; |
+ paint.setColor(color); |
+ paint.setStrokeWidth(kArrowStrokeWidth); |
+ paint.setStyle(SkPaint::kStroke_Style); |
+ |
+ canvas->drawLine(p.fX, p.fY, |
+ p.fX + len * n.fX, p.fY + len * n.fY, |
+ paint); |
+} |
+ |
+void GrAAConvexTessellator::Ring::draw(SkCanvas* canvas, const GrAAConvexTessellator& tess) const { |
+ SkPaint paint; |
+ paint.setTextSize(kEdgeTextSize); |
+ |
+ for (int cur = 0; cur < fPts.count(); ++cur) { |
+ int next = (cur + 1) % fPts.count(); |
+ |
+ draw_line(canvas, |
+ tess.point(fPts[cur].fIndex), |
+ tess.point(fPts[next].fIndex), |
+ SK_ColorGREEN); |
+ |
+ SkPoint mid = tess.point(fPts[cur].fIndex) + tess.point(fPts[next].fIndex); |
+ mid.scale(0.5f); |
+ |
+ if (fPts.count()) { |
+ draw_arrow(canvas, mid, fPts[cur].fNorm, kArrowLength, SK_ColorRED); |
+ mid.fX += (kArrowLength/2) * fPts[cur].fNorm.fX; |
+ mid.fY += (kArrowLength/2) * fPts[cur].fNorm.fY; |
+ } |
+ |
+ SkString num; |
+ num.printf("%d", this->origEdgeID(cur)); |
+ canvas->drawText(num.c_str(), num.size(), mid.fX, mid.fY, paint); |
+ |
+ if (fPts.count()) { |
+ draw_arrow(canvas, tess.point(fPts[cur].fIndex), fPts[cur].fBisector, |
+ kArrowLength, SK_ColorBLUE); |
+ } |
+ } |
+} |
+ |
+void GrAAConvexTessellator::draw(SkCanvas* canvas) const { |
+ for (int i = 0; i < fIndices.count(); i += 3) { |
+ SkASSERT(fIndices[i] < this->numPts()) ; |
+ SkASSERT(fIndices[i+1] < this->numPts()) ; |
+ SkASSERT(fIndices[i+2] < this->numPts()) ; |
+ |
+ draw_line(canvas, |
+ this->point(this->fIndices[i]), this->point(this->fIndices[i+1]), |
+ SK_ColorBLACK); |
+ draw_line(canvas, |
+ this->point(this->fIndices[i+1]), this->point(this->fIndices[i+2]), |
+ SK_ColorBLACK); |
+ draw_line(canvas, |
+ this->point(this->fIndices[i+2]), this->point(this->fIndices[i]), |
+ SK_ColorBLACK); |
+ } |
+ |
+ fInitialRing.draw(canvas, *this); |
+ for (int i = 0; i < fRings.count(); ++i) { |
+ fRings[i]->draw(canvas, *this); |
+ } |
+ |
+ for (int i = 0; i < this->numPts(); ++i) { |
+ draw_point(canvas, |
+ this->point(i), 0.5f + (this->depth(i)/(2*fTargetDepth)), |
+ !this->movable(i)); |
+ |
+ SkPaint paint; |
+ paint.setTextSize(kPointTextSize); |
+ paint.setTextAlign(SkPaint::kCenter_Align); |
+ if (this->depth(i) <= -fTargetDepth) { |
+ paint.setColor(SK_ColorWHITE); |
+ } |
+ |
+ SkString num; |
+ num.printf("%d", i); |
+ canvas->drawText(num.c_str(), num.size(), |
+ this->point(i).fX, this->point(i).fY+(kPointRadius/2.0f), |
+ paint); |
+ } |
+} |
+ |
+#endif |
+ |