| Index: src/gpu/GrAAConvexTessellator.cpp
|
| diff --git a/src/gpu/GrAAConvexTessellator.cpp b/src/gpu/GrAAConvexTessellator.cpp
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..b2269c5afe17f6aac39c7da7026fc1b23ab1913a
|
| --- /dev/null
|
| +++ b/src/gpu/GrAAConvexTessellator.cpp
|
| @@ -0,0 +1,874 @@
|
| +/*
|
| + * Copyright 2015 Google Inc.
|
| + *
|
| + * Use of this source code is governed by a BSD-style license that can be
|
| + * found in the LICENSE file.
|
| + */
|
| +
|
| +#include "GrAAConvexTessellator.h"
|
| +#include "SkCanvas.h"
|
| +#include "SkPath.h"
|
| +#include "SkPoint.h"
|
| +#include "SkString.h"
|
| +
|
| +// Next steps:
|
| +// use in AAConvexPathRenderer
|
| +// add an interactive sample app slide
|
| +// add debug check that all points are suitably far apart
|
| +// test more degenerate cases
|
| +
|
| +// The tolerance for fusing vertices and eliminating colinear lines (It is in device space).
|
| +static const SkScalar kClose = (SK_Scalar1 / 16);
|
| +static const SkScalar kCloseSqd = SkScalarMul(kClose, kClose);
|
| +
|
| +static SkScalar intersect(const SkPoint& p0, const SkPoint& n0,
|
| + const SkPoint& p1, const SkPoint& n1) {
|
| + const SkPoint v = p1 - p0;
|
| +
|
| + SkScalar perpDot = n0.fX * n1.fY - n0.fY * n1.fX;
|
| + return (v.fX * n1.fY - v.fY * n1.fX) / perpDot;
|
| +}
|
| +
|
| +// This is a special case version of intersect where we have the vector
|
| +// perpendicular to the second line rather than the vector parallel to it.
|
| +static SkScalar perp_intersect(const SkPoint& p0, const SkPoint& n0,
|
| + const SkPoint& p1, const SkPoint& perp) {
|
| + const SkPoint v = p1 - p0;
|
| + SkScalar perpDot = n0.dot(perp);
|
| + return v.dot(perp) / perpDot;
|
| +}
|
| +
|
| +static bool duplicate_pt(const SkPoint& p0, const SkPoint& p1) {
|
| + SkScalar distSq = p0.distanceToSqd(p1);
|
| + return distSq < kCloseSqd;
|
| +}
|
| +
|
| +static SkScalar abs_dist_from_line(const SkPoint& p0, const SkVector& v, const SkPoint& test) {
|
| + SkPoint testV = test - p0;
|
| + SkScalar dist = testV.fX * v.fY - testV.fY * v.fX;
|
| + return SkScalarAbs(dist);
|
| +}
|
| +
|
| +int GrAAConvexTessellator::addPt(const SkPoint& pt,
|
| + SkScalar depth,
|
| + bool movable) {
|
| + this->validate();
|
| +
|
| + int index = fPts.count();
|
| + *fPts.push() = pt;
|
| + *fDepths.push() = depth;
|
| + *fMovable.push() = movable;
|
| +
|
| + this->validate();
|
| + return index;
|
| +}
|
| +
|
| +void GrAAConvexTessellator::popLastPt() {
|
| + this->validate();
|
| +
|
| + fPts.pop();
|
| + fDepths.pop();
|
| + fMovable.pop();
|
| +
|
| + this->validate();
|
| +}
|
| +
|
| +void GrAAConvexTessellator::popFirstPtShuffle() {
|
| + this->validate();
|
| +
|
| + fPts.removeShuffle(0);
|
| + fDepths.removeShuffle(0);
|
| + fMovable.removeShuffle(0);
|
| +
|
| + this->validate();
|
| +}
|
| +
|
| +void GrAAConvexTessellator::updatePt(int index,
|
| + const SkPoint& pt,
|
| + SkScalar depth) {
|
| + this->validate();
|
| + SkASSERT(fMovable[index]);
|
| +
|
| + fPts[index] = pt;
|
| + fDepths[index] = depth;
|
| +}
|
| +
|
| +void GrAAConvexTessellator::addTri(int i0, int i1, int i2) {
|
| + if (i0 == i1 || i1 == i2 || i2 == i0) {
|
| + return;
|
| + }
|
| +
|
| + *fIndices.push() = i0;
|
| + *fIndices.push() = i1;
|
| + *fIndices.push() = i2;
|
| +}
|
| +
|
| +void GrAAConvexTessellator::rewind() {
|
| + fPts.rewind();
|
| + fDepths.rewind();
|
| + fMovable.rewind();
|
| + fIndices.rewind();
|
| + fNorms.rewind();
|
| + fInitialRing.rewind();
|
| + fCandidateVerts.rewind();
|
| +#if GR_AA_CONVEX_TESSELLATOR_VIZ
|
| + fRings.rewind(); // TODO: leak in this case!
|
| +#else
|
| + fRings[0].rewind();
|
| + fRings[1].rewind();
|
| +#endif
|
| +}
|
| +
|
| +void GrAAConvexTessellator::computeBisectors() {
|
| + fBisectors.setCount(fNorms.count());
|
| +
|
| + int prev = fBisectors.count() - 1;
|
| + for (int cur = 0; cur < fBisectors.count(); prev = cur, ++cur) {
|
| + fBisectors[cur] = fNorms[cur] + fNorms[prev];
|
| + fBisectors[cur].normalize();
|
| + fBisectors[cur].negate(); // make the bisector face in
|
| +
|
| + SkASSERT(SkScalarNearlyEqual(1.0f, fBisectors[cur].length()));
|
| + }
|
| +}
|
| +
|
| +// The general idea here is to, conceptually, start with the original polygon and slide
|
| +// the vertices along the bisectors until the first intersection. At that
|
| +// point two of the edges collapse and the process repeats on the new polygon.
|
| +// The polygon state is captured in the Ring class while the GrAAConvexTessellator
|
| +// controls the iteration. The CandidateVerts holds the formative points for the
|
| +// next ring.
|
| +bool GrAAConvexTessellator::tessellate(const SkMatrix& m, const SkPath& path) {
|
| + static const int kMaxNumRings = 8;
|
| +
|
| + SkDEBUGCODE(fShouldCheckDepths = true;)
|
| +
|
| + if (!this->extractFromPath(m, path)) {
|
| + return false;
|
| + }
|
| +
|
| + this->createOuterRing();
|
| +
|
| + // the bisectors are only needed for the computation of the outer ring
|
| + fBisectors.rewind();
|
| +
|
| + Ring* lastRing = &fInitialRing;
|
| + int i;
|
| + for (i = 0; i < kMaxNumRings; ++i) {
|
| + Ring* nextRing = this->getNextRing(lastRing);
|
| +
|
| + if (this->createInsetRing(*lastRing, nextRing)) {
|
| + break;
|
| + }
|
| +
|
| + nextRing->init(*this);
|
| + lastRing = nextRing;
|
| + }
|
| +
|
| + if (kMaxNumRings == i) {
|
| + // If we've exceeded the amount of time we want to throw at this, set
|
| + // the depth of all points in the final ring to 'fTargetDepth' and
|
| + // create a fan.
|
| + this->terminate(*lastRing);
|
| + SkDEBUGCODE(fShouldCheckDepths = false;)
|
| + }
|
| +
|
| +#ifdef SK_DEBUG
|
| + this->validate();
|
| + if (fShouldCheckDepths) {
|
| + SkDEBUGCODE(this->checkAllDepths();)
|
| + }
|
| +#endif
|
| + return true;
|
| +}
|
| +
|
| +SkScalar GrAAConvexTessellator::computeDepthFromEdge(int edgeIdx, const SkPoint& p) const {
|
| + SkASSERT(edgeIdx < fNorms.count());
|
| +
|
| + SkPoint v = p - fPts[edgeIdx];
|
| + SkScalar depth = -fNorms[edgeIdx].dot(v);
|
| + SkASSERT(depth >= 0.0f);
|
| + return depth;
|
| +}
|
| +
|
| +// Find a point that is 'desiredDepth' away from the 'edgeIdx'-th edge and lies
|
| +// along the 'bisector' from the 'startIdx'-th point.
|
| +bool GrAAConvexTessellator::computePtAlongBisector(int startIdx,
|
| + const SkVector& bisector,
|
| + int edgeIdx,
|
| + SkScalar desiredDepth,
|
| + SkPoint* result) const {
|
| + const SkPoint& norm = fNorms[edgeIdx];
|
| +
|
| + // First find the point where the edge and the bisector intersect
|
| + SkPoint newP;
|
| + SkScalar t = perp_intersect(fPts[startIdx], bisector, fPts[edgeIdx], norm);
|
| + if (SkScalarNearlyEqual(t, 0.0f)) {
|
| + // the start point was one of the original ring points
|
| + SkASSERT(startIdx < fNorms.count());
|
| + newP = fPts[startIdx];
|
| + } else if (t > 0.0f) {
|
| + SkASSERT(t < 0.0f);
|
| + newP = bisector;
|
| + newP.scale(t);
|
| + newP += fPts[startIdx];
|
| + } else {
|
| + return false;
|
| + }
|
| +
|
| + // Then offset along the bisector from that point the correct distance
|
| + t = -desiredDepth / bisector.dot(norm);
|
| + SkASSERT(t > 0.0f);
|
| + *result = bisector;
|
| + result->scale(t);
|
| + *result += newP;
|
| +
|
| +
|
| + return true;
|
| +}
|
| +
|
| +bool GrAAConvexTessellator::extractFromPath(const SkMatrix& m, const SkPath& path) {
|
| + SkASSERT(SkPath::kLine_SegmentMask == path.getSegmentMasks());
|
| + SkASSERT(SkPath::kConvex_Convexity == path.getConvexity());
|
| +
|
| + // Outer ring: 3*numPts
|
| + // Middle ring: numPts
|
| + // Presumptive inner ring: numPts
|
| + this->reservePts(5*path.countPoints());
|
| + // Outer ring: 12*numPts
|
| + // Middle ring: 0
|
| + // Presumptive inner ring: 6*numPts + 6
|
| + fIndices.setReserve(18*path.countPoints() + 6);
|
| +
|
| + fNorms.setReserve(path.countPoints());
|
| +
|
| + SkScalar minCross = SK_ScalarMax, maxCross = -SK_ScalarMax;
|
| +
|
| + // TODO: is there a faster way to extract the points from the path? Perhaps
|
| + // get all the points via a new entry point, transform them all in bulk
|
| + // and then walk them to find duplicates?
|
| + SkPath::Iter iter(path, true);
|
| + SkPoint pts[4];
|
| + SkPath::Verb verb;
|
| + while ((verb = iter.next(pts)) != SkPath::kDone_Verb) {
|
| + switch (verb) {
|
| + case SkPath::kLine_Verb:
|
| + m.mapPoints(&pts[1], 1);
|
| + if (this->numPts() > 0 && duplicate_pt(pts[1], this->lastPoint())) {
|
| + continue;
|
| + }
|
| +
|
| + SkASSERT(fPts.count() <= 1 || fPts.count() == fNorms.count()+1);
|
| + if (this->numPts() >= 2 &&
|
| + abs_dist_from_line(fPts.top(), fNorms.top(), pts[1]) < kClose) {
|
| + // The old last point is on the line from the second to last to the new point
|
| + this->popLastPt();
|
| + fNorms.pop();
|
| + }
|
| +
|
| + this->addPt(pts[1], 0.0f, false);
|
| + if (this->numPts() > 1) {
|
| + *fNorms.push() = fPts.top() - fPts[fPts.count()-2];
|
| + SkDEBUGCODE(SkScalar len =) SkPoint::Normalize(&fNorms.top());
|
| + SkASSERT(len > 0.0f);
|
| + SkASSERT(SkScalarNearlyEqual(1.0f, fNorms.top().length()));
|
| + }
|
| +
|
| + if (this->numPts() >= 3) {
|
| + int cur = this->numPts()-1;
|
| + SkScalar cross = SkPoint::CrossProduct(fNorms[cur-1], fNorms[cur-2]);
|
| + maxCross = SkTMax(maxCross, cross);
|
| + minCross = SkTMin(minCross, cross);
|
| + }
|
| + break;
|
| + case SkPath::kQuad_Verb:
|
| + case SkPath::kConic_Verb:
|
| + case SkPath::kCubic_Verb:
|
| + SkASSERT(false);
|
| + break;
|
| + case SkPath::kMove_Verb:
|
| + case SkPath::kClose_Verb:
|
| + case SkPath::kDone_Verb:
|
| + break;
|
| + }
|
| + }
|
| +
|
| + if (this->numPts() < 3) {
|
| + return false;
|
| + }
|
| +
|
| + // check if last point is a duplicate of the first point. If so, remove it.
|
| + if (duplicate_pt(fPts[this->numPts()-1], fPts[0])) {
|
| + this->popLastPt();
|
| + fNorms.pop();
|
| + }
|
| +
|
| + SkASSERT(fPts.count() == fNorms.count()+1);
|
| + if (this->numPts() >= 3 &&
|
| + abs_dist_from_line(fPts.top(), fNorms.top(), fPts[0]) < kClose) {
|
| + // The last point is on the line from the second to last to the first point.
|
| + this->popLastPt();
|
| + fNorms.pop();
|
| + }
|
| +
|
| + if (this->numPts() < 3) {
|
| + return false;
|
| + }
|
| +
|
| + *fNorms.push() = fPts[0] - fPts.top();
|
| + SkDEBUGCODE(SkScalar len =) SkPoint::Normalize(&fNorms.top());
|
| + SkASSERT(len > 0.0f);
|
| + SkASSERT(fPts.count() == fNorms.count());
|
| +
|
| + if (abs_dist_from_line(fPts[0], fNorms.top(), fPts[1]) < kClose) {
|
| + // The first point is on the line from the last to the second.
|
| + this->popFirstPtShuffle();
|
| + fNorms.removeShuffle(0);
|
| + fNorms[0] = fPts[1] - fPts[0];
|
| + SkDEBUGCODE(SkScalar len =) SkPoint::Normalize(&fNorms[0]);
|
| + SkASSERT(len > 0.0f);
|
| + SkASSERT(SkScalarNearlyEqual(1.0f, fNorms[0].length()));
|
| + }
|
| +
|
| + if (this->numPts() < 3) {
|
| + return false;
|
| + }
|
| +
|
| + // Check the cross produce of the final trio
|
| + SkScalar cross = SkPoint::CrossProduct(fNorms[0], fNorms.top());
|
| + maxCross = SkTMax(maxCross, cross);
|
| + minCross = SkTMin(minCross, cross);
|
| +
|
| + if (maxCross > 0.0f) {
|
| + SkASSERT(minCross >= 0.0f);
|
| + fSide = SkPoint::kRight_Side;
|
| + } else {
|
| + SkASSERT(minCross <= 0.0f);
|
| + fSide = SkPoint::kLeft_Side;
|
| + }
|
| +
|
| + // Make all the normals face outwards rather than along the edge
|
| + for (int cur = 0; cur < fNorms.count(); ++cur) {
|
| + fNorms[cur].setOrthog(fNorms[cur], fSide);
|
| + SkASSERT(SkScalarNearlyEqual(1.0f, fNorms[cur].length()));
|
| + }
|
| +
|
| + this->computeBisectors();
|
| +
|
| + fCandidateVerts.setReserve(this->numPts());
|
| + fInitialRing.setReserve(this->numPts());
|
| + for (int i = 0; i < this->numPts(); ++i) {
|
| + fInitialRing.addIdx(i, i);
|
| + }
|
| + fInitialRing.init(fNorms, fBisectors);
|
| +
|
| + this->validate();
|
| + return true;
|
| +}
|
| +
|
| +GrAAConvexTessellator::Ring* GrAAConvexTessellator::getNextRing(Ring* lastRing) {
|
| +#if GR_AA_CONVEX_TESSELLATOR_VIZ
|
| + Ring* ring = *fRings.push() = SkNEW(Ring);
|
| + ring->setReserve(fInitialRing.numPts());
|
| + ring->rewind();
|
| + return ring;
|
| +#else
|
| + // Flip flop back and forth between fRings[0] & fRings[1]
|
| + int nextRing = (lastRing == &fRings[0]) ? 1 : 0;
|
| + fRings[nextRing].setReserve(fInitialRing.numPts());
|
| + fRings[nextRing].rewind();
|
| + return &fRings[nextRing];
|
| +#endif
|
| +}
|
| +
|
| +void GrAAConvexTessellator::fanRing(const Ring& ring) {
|
| + // fan out from point 0
|
| + for (int cur = 1; cur < ring.numPts()-1; ++cur) {
|
| + this->addTri(ring.index(0), ring.index(cur), ring.index(cur+1));
|
| + }
|
| +}
|
| +
|
| +void GrAAConvexTessellator::createOuterRing() {
|
| + // For now, we're only generating one outer ring (at the start). This
|
| + // could be relaxed for stroking use cases.
|
| + SkASSERT(0 == fIndices.count());
|
| + SkASSERT(fPts.count() == fNorms.count());
|
| +
|
| + const int numPts = fPts.count();
|
| +
|
| + // For each vertex of the original polygon we add three points to the
|
| + // outset polygon - one extending perpendicular to each impinging edge
|
| + // and one along the bisector. Two triangles are added for each corner
|
| + // and two are added along each edge.
|
| + int prev = numPts - 1;
|
| + int lastPerpIdx = -1, firstPerpIdx = -1, newIdx0, newIdx1, newIdx2;
|
| + for (int cur = 0; cur < numPts; ++cur) {
|
| + // The perpendicular point for the last edge
|
| + SkPoint temp = fNorms[prev];
|
| + temp.scale(fTargetDepth);
|
| + temp += fPts[cur];
|
| +
|
| + // We know it isn't a duplicate of the prior point (since it and this
|
| + // one are just perpendicular offsets from the non-merged polygon points)
|
| + newIdx0 = this->addPt(temp, -fTargetDepth, false);
|
| +
|
| + // The bisector outset point
|
| + temp = fBisectors[cur];
|
| + temp.scale(-fTargetDepth); // the bisectors point in
|
| + temp += fPts[cur];
|
| +
|
| + // For very shallow angles all the corner points could fuse
|
| + if (duplicate_pt(temp, this->point(newIdx0))) {
|
| + newIdx1 = newIdx0;
|
| + } else {
|
| + newIdx1 = this->addPt(temp, -fTargetDepth, false);
|
| + }
|
| +
|
| + // The perpendicular point for the next edge.
|
| + temp = fNorms[cur];
|
| + temp.scale(fTargetDepth);
|
| + temp += fPts[cur];
|
| +
|
| + // For very shallow angles all the corner points could fuse.
|
| + if (duplicate_pt(temp, this->point(newIdx1))) {
|
| + newIdx2 = newIdx1;
|
| + } else {
|
| + newIdx2 = this->addPt(temp, -fTargetDepth, false);
|
| + }
|
| +
|
| + if (0 == cur) {
|
| + // Store the index of the first perpendicular point to finish up
|
| + firstPerpIdx = newIdx0;
|
| + SkASSERT(-1 == lastPerpIdx);
|
| + } else {
|
| + // The triangles for the previous edge
|
| + this->addTri(prev, newIdx0, cur);
|
| + this->addTri(prev, lastPerpIdx, newIdx0);
|
| + }
|
| +
|
| + // The two triangles for the corner
|
| + this->addTri(cur, newIdx0, newIdx1);
|
| + this->addTri(cur, newIdx1, newIdx2);
|
| +
|
| + prev = cur;
|
| + // Track the last perpendicular outset point so we can construct the
|
| + // trailing edge triangles.
|
| + lastPerpIdx = newIdx2;
|
| + }
|
| +
|
| + // pick up the final edge rect
|
| + this->addTri(numPts-1, firstPerpIdx, 0);
|
| + this->addTri(numPts-1, lastPerpIdx, firstPerpIdx);
|
| +
|
| + this->validate();
|
| +}
|
| +
|
| +// Something went wrong in the creation of the next ring. Mark the last good
|
| +// ring as being at the desired depth and fan it.
|
| +void GrAAConvexTessellator::terminate(const Ring& ring) {
|
| + for (int i = 0; i < ring.numPts(); ++i) {
|
| + fDepths[ring.index(i)] = fTargetDepth;
|
| + }
|
| +
|
| + this->fanRing(ring);
|
| +}
|
| +
|
| +// return true when processing is complete
|
| +bool GrAAConvexTessellator::createInsetRing(const Ring& lastRing, Ring* nextRing) {
|
| + bool done = false;
|
| +
|
| + fCandidateVerts.rewind();
|
| +
|
| + // Loop through all the points in the ring and find the intersection with the smallest depth
|
| + SkScalar minDist = SK_ScalarMax, minT = 0.0f;
|
| + int minEdgeIdx = -1;
|
| +
|
| + for (int cur = 0; cur < lastRing.numPts(); ++cur) {
|
| + int next = (cur + 1) % lastRing.numPts();
|
| +
|
| + SkScalar t = intersect(this->point(lastRing.index(cur)), lastRing.bisector(cur),
|
| + this->point(lastRing.index(next)), lastRing.bisector(next));
|
| + SkScalar dist = -t * lastRing.norm(cur).dot(lastRing.bisector(cur));
|
| +
|
| + if (minDist > dist) {
|
| + minDist = dist;
|
| + minT = t;
|
| + minEdgeIdx = cur;
|
| + }
|
| + }
|
| +
|
| + SkPoint newPt = lastRing.bisector(minEdgeIdx);
|
| + newPt.scale(minT);
|
| + newPt += this->point(lastRing.index(minEdgeIdx));
|
| +
|
| + SkScalar depth = this->computeDepthFromEdge(lastRing.origEdgeID(minEdgeIdx), newPt);
|
| + if (depth >= fTargetDepth) {
|
| + // None of the bisectors intersect before reaching the desired depth.
|
| + // Just step them all to the desired depth
|
| + depth = fTargetDepth;
|
| + done = true;
|
| + }
|
| +
|
| + // 'dst' stores where each point in the last ring maps to/transforms into
|
| + // in the next ring.
|
| + SkTDArray<int> dst;
|
| + dst.setCount(lastRing.numPts());
|
| +
|
| + // Create the first point (who compares with no one)
|
| + if (!this->computePtAlongBisector(lastRing.index(0),
|
| + lastRing.bisector(0),
|
| + lastRing.origEdgeID(0),
|
| + depth, &newPt)) {
|
| + this->terminate(lastRing);
|
| + SkDEBUGCODE(fShouldCheckDepths = false;)
|
| + return true;
|
| + }
|
| + dst[0] = fCandidateVerts.addNewPt(newPt,
|
| + lastRing.index(0), lastRing.origEdgeID(0),
|
| + !this->movable(lastRing.index(0)));
|
| +
|
| + // Handle the middle points (who only compare with the prior point)
|
| + for (int cur = 1; cur < lastRing.numPts()-1; ++cur) {
|
| + if (!this->computePtAlongBisector(lastRing.index(cur),
|
| + lastRing.bisector(cur),
|
| + lastRing.origEdgeID(cur),
|
| + depth, &newPt)) {
|
| + this->terminate(lastRing);
|
| + SkDEBUGCODE(fShouldCheckDepths = false;)
|
| + return true;
|
| + }
|
| + if (!duplicate_pt(newPt, fCandidateVerts.lastPoint())) {
|
| + dst[cur] = fCandidateVerts.addNewPt(newPt,
|
| + lastRing.index(cur), lastRing.origEdgeID(cur),
|
| + !this->movable(lastRing.index(cur)));
|
| + } else {
|
| + dst[cur] = fCandidateVerts.fuseWithPrior(lastRing.origEdgeID(cur));
|
| + }
|
| + }
|
| +
|
| + // Check on the last point (handling the wrap around)
|
| + int cur = lastRing.numPts()-1;
|
| + if (!this->computePtAlongBisector(lastRing.index(cur),
|
| + lastRing.bisector(cur),
|
| + lastRing.origEdgeID(cur),
|
| + depth, &newPt)) {
|
| + this->terminate(lastRing);
|
| + SkDEBUGCODE(fShouldCheckDepths = false;)
|
| + return true;
|
| + }
|
| + bool dupPrev = duplicate_pt(newPt, fCandidateVerts.lastPoint());
|
| + bool dupNext = duplicate_pt(newPt, fCandidateVerts.firstPoint());
|
| +
|
| + if (!dupPrev && !dupNext) {
|
| + dst[cur] = fCandidateVerts.addNewPt(newPt,
|
| + lastRing.index(cur), lastRing.origEdgeID(cur),
|
| + !this->movable(lastRing.index(cur)));
|
| + } else if (dupPrev && !dupNext) {
|
| + dst[cur] = fCandidateVerts.fuseWithPrior(lastRing.origEdgeID(cur));
|
| + } else if (!dupPrev && dupNext) {
|
| + dst[cur] = fCandidateVerts.fuseWithNext();
|
| + } else {
|
| + bool dupPrevVsNext = duplicate_pt(fCandidateVerts.firstPoint(), fCandidateVerts.lastPoint());
|
| +
|
| + if (!dupPrevVsNext) {
|
| + dst[cur] = fCandidateVerts.fuseWithPrior(lastRing.origEdgeID(cur));
|
| + } else {
|
| + dst[cur] = dst[cur-1] = fCandidateVerts.fuseWithBoth();
|
| + }
|
| + }
|
| +
|
| + // Fold the new ring's points into the global pool
|
| + for (int i = 0; i < fCandidateVerts.numPts(); ++i) {
|
| + int newIdx;
|
| + if (fCandidateVerts.needsToBeNew(i)) {
|
| + // if the originating index is still valid then this point wasn't
|
| + // fused (and is thus movable)
|
| + newIdx = this->addPt(fCandidateVerts.point(i), depth,
|
| + fCandidateVerts.originatingIdx(i) != -1);
|
| + } else {
|
| + SkASSERT(fCandidateVerts.originatingIdx(i) != -1);
|
| + this->updatePt(fCandidateVerts.originatingIdx(i), fCandidateVerts.point(i), depth);
|
| + newIdx = fCandidateVerts.originatingIdx(i);
|
| + }
|
| +
|
| + nextRing->addIdx(newIdx, fCandidateVerts.origEdge(i));
|
| + }
|
| +
|
| + // 'dst' currently has indices into the ring. Remap these to be indices
|
| + // into the global pool since the triangulation operates in that space.
|
| + for (int i = 0; i < dst.count(); ++i) {
|
| + dst[i] = nextRing->index(dst[i]);
|
| + }
|
| +
|
| + for (int cur = 0; cur < lastRing.numPts(); ++cur) {
|
| + int next = (cur + 1) % lastRing.numPts();
|
| +
|
| + this->addTri(lastRing.index(cur), lastRing.index(next), dst[next]);
|
| + this->addTri(lastRing.index(cur), dst[next], dst[cur]);
|
| + }
|
| +
|
| + if (done) {
|
| + this->fanRing(*nextRing);
|
| + }
|
| +
|
| + if (nextRing->numPts() < 3) {
|
| + done = true;
|
| + }
|
| +
|
| + return done;
|
| +}
|
| +
|
| +void GrAAConvexTessellator::validate() const {
|
| + SkASSERT(fPts.count() == fDepths.count());
|
| + SkASSERT(fPts.count() == fMovable.count());
|
| + SkASSERT(0 == (fIndices.count() % 3));
|
| +}
|
| +
|
| +//////////////////////////////////////////////////////////////////////////////
|
| +void GrAAConvexTessellator::Ring::init(const GrAAConvexTessellator& tess) {
|
| + this->computeNormals(tess);
|
| + this->computeBisectors();
|
| + SkASSERT(this->isConvex(tess));
|
| +}
|
| +
|
| +void GrAAConvexTessellator::Ring::init(const SkTDArray<SkVector>& norms,
|
| + const SkTDArray<SkVector>& bisectors) {
|
| + for (int i = 0; i < fPts.count(); ++i) {
|
| + fPts[i].fNorm = norms[i];
|
| + fPts[i].fBisector = bisectors[i];
|
| + }
|
| +}
|
| +
|
| +// Compute the outward facing normal at each vertex.
|
| +void GrAAConvexTessellator::Ring::computeNormals(const GrAAConvexTessellator& tess) {
|
| + for (int cur = 0; cur < fPts.count(); ++cur) {
|
| + int next = (cur + 1) % fPts.count();
|
| +
|
| + fPts[cur].fNorm = tess.point(fPts[next].fIndex) - tess.point(fPts[cur].fIndex);
|
| + SkDEBUGCODE(SkScalar len =) SkPoint::Normalize(&fPts[cur].fNorm);
|
| + SkASSERT(len > 0.0f);
|
| + fPts[cur].fNorm.setOrthog(fPts[cur].fNorm, tess.side());
|
| +
|
| + SkASSERT(SkScalarNearlyEqual(1.0f, fPts[cur].fNorm.length()));
|
| + }
|
| +}
|
| +
|
| +void GrAAConvexTessellator::Ring::computeBisectors() {
|
| + int prev = fPts.count() - 1;
|
| + for (int cur = 0; cur < fPts.count(); prev = cur, ++cur) {
|
| + fPts[cur].fBisector = fPts[cur].fNorm + fPts[prev].fNorm;
|
| + fPts[cur].fBisector.normalize();
|
| + fPts[cur].fBisector.negate(); // make the bisector face in
|
| +
|
| + SkASSERT(SkScalarNearlyEqual(1.0f, fPts[cur].fBisector.length()));
|
| + }
|
| +}
|
| +
|
| +//////////////////////////////////////////////////////////////////////////////
|
| +#ifdef SK_DEBUG
|
| +// Is this ring convex?
|
| +bool GrAAConvexTessellator::Ring::isConvex(const GrAAConvexTessellator& tess) const {
|
| + if (fPts.count() < 3) {
|
| + return false;
|
| + }
|
| +
|
| + SkPoint prev = tess.point(fPts[0].fIndex) - tess.point(fPts.top().fIndex);
|
| + SkPoint cur = tess.point(fPts[1].fIndex) - tess.point(fPts[0].fIndex);
|
| + SkScalar minDot = prev.fX * cur.fY - prev.fY * cur.fX;
|
| + SkScalar maxDot = minDot;
|
| +
|
| + prev = cur;
|
| + for (int i = 1; i < fPts.count(); ++i) {
|
| + int next = (i + 1) % fPts.count();
|
| +
|
| + cur = tess.point(fPts[next].fIndex) - tess.point(fPts[i].fIndex);
|
| + SkScalar dot = prev.fX * cur.fY - prev.fY * cur.fX;
|
| +
|
| + minDot = SkMinScalar(minDot, dot);
|
| + maxDot = SkMaxScalar(maxDot, dot);
|
| +
|
| + prev = cur;
|
| + }
|
| +
|
| + return (maxDot > 0.0f) == (minDot >= 0.0f);
|
| +}
|
| +
|
| +static SkScalar capsule_depth(const SkPoint& p0, const SkPoint& p1,
|
| + const SkPoint& test, SkPoint::Side side,
|
| + int* sign) {
|
| + *sign = -1;
|
| + SkPoint edge = p1 - p0;
|
| + SkScalar len = SkPoint::Normalize(&edge);
|
| +
|
| + SkPoint testVec = test - p0;
|
| +
|
| + SkScalar d0 = edge.dot(testVec);
|
| + if (d0 < 0.0f) {
|
| + return SkPoint::Distance(p0, test);
|
| + }
|
| + if (d0 > len) {
|
| + return SkPoint::Distance(p1, test);
|
| + }
|
| +
|
| + SkScalar perpDist = testVec.fY * edge.fX - testVec.fX * edge.fY;
|
| + if (SkPoint::kRight_Side == side) {
|
| + perpDist = -perpDist;
|
| + }
|
| +
|
| + if (perpDist < 0.0f) {
|
| + perpDist = -perpDist;
|
| + } else {
|
| + *sign = 1;
|
| + }
|
| + return perpDist;
|
| +}
|
| +
|
| +SkScalar GrAAConvexTessellator::computeRealDepth(const SkPoint& p) const {
|
| + SkScalar minDist = SK_ScalarMax;
|
| + int closestSign, sign;
|
| +
|
| + for (int edge = 0; edge < fNorms.count(); ++edge) {
|
| + SkScalar dist = capsule_depth(this->point(edge),
|
| + this->point((edge+1) % fNorms.count()),
|
| + p, fSide, &sign);
|
| + SkASSERT(dist >= 0.0f);
|
| +
|
| + if (minDist > dist) {
|
| + minDist = dist;
|
| + closestSign = sign;
|
| + }
|
| + }
|
| +
|
| + return closestSign * minDist;
|
| +}
|
| +
|
| +// Verify that the incrementally computed depths are close to the actual depths.
|
| +void GrAAConvexTessellator::checkAllDepths() const {
|
| + for (int cur = 0; cur < this->numPts(); ++cur) {
|
| + SkScalar realDepth = this->computeRealDepth(this->point(cur));
|
| + SkScalar computedDepth = this->depth(cur);
|
| + SkASSERT(SkScalarNearlyEqual(realDepth, computedDepth, 0.01f));
|
| + }
|
| +}
|
| +#endif
|
| +
|
| +//////////////////////////////////////////////////////////////////////////////
|
| +#if GR_AA_CONVEX_TESSELLATOR_VIZ
|
| +static const SkScalar kPointRadius = 0.02f;
|
| +static const SkScalar kArrowStrokeWidth = 0.0f;
|
| +static const SkScalar kArrowLength = 0.2f;
|
| +static const SkScalar kEdgeTextSize = 0.1f;
|
| +static const SkScalar kPointTextSize = 0.02f;
|
| +
|
| +static void draw_point(SkCanvas* canvas, const SkPoint& p, SkScalar paramValue, bool stroke) {
|
| + SkPaint paint;
|
| + SkASSERT(paramValue <= 1.0f);
|
| + int gs = int(255*paramValue);
|
| + paint.setARGB(255, gs, gs, gs);
|
| +
|
| + canvas->drawCircle(p.fX, p.fY, kPointRadius, paint);
|
| +
|
| + if (stroke) {
|
| + SkPaint stroke;
|
| + stroke.setColor(SK_ColorYELLOW);
|
| + stroke.setStyle(SkPaint::kStroke_Style);
|
| + stroke.setStrokeWidth(kPointRadius/3.0f);
|
| + canvas->drawCircle(p.fX, p.fY, kPointRadius, stroke);
|
| + }
|
| +}
|
| +
|
| +static void draw_line(SkCanvas* canvas, const SkPoint& p0, const SkPoint& p1, SkColor color) {
|
| + SkPaint p;
|
| + p.setColor(color);
|
| +
|
| + canvas->drawLine(p0.fX, p0.fY, p1.fX, p1.fY, p);
|
| +}
|
| +
|
| +static void draw_arrow(SkCanvas*canvas, const SkPoint& p, const SkPoint &n,
|
| + SkScalar len, SkColor color) {
|
| + SkPaint paint;
|
| + paint.setColor(color);
|
| + paint.setStrokeWidth(kArrowStrokeWidth);
|
| + paint.setStyle(SkPaint::kStroke_Style);
|
| +
|
| + canvas->drawLine(p.fX, p.fY,
|
| + p.fX + len * n.fX, p.fY + len * n.fY,
|
| + paint);
|
| +}
|
| +
|
| +void GrAAConvexTessellator::Ring::draw(SkCanvas* canvas, const GrAAConvexTessellator& tess) const {
|
| + SkPaint paint;
|
| + paint.setTextSize(kEdgeTextSize);
|
| +
|
| + for (int cur = 0; cur < fPts.count(); ++cur) {
|
| + int next = (cur + 1) % fPts.count();
|
| +
|
| + draw_line(canvas,
|
| + tess.point(fPts[cur].fIndex),
|
| + tess.point(fPts[next].fIndex),
|
| + SK_ColorGREEN);
|
| +
|
| + SkPoint mid = tess.point(fPts[cur].fIndex) + tess.point(fPts[next].fIndex);
|
| + mid.scale(0.5f);
|
| +
|
| + if (fPts.count()) {
|
| + draw_arrow(canvas, mid, fPts[cur].fNorm, kArrowLength, SK_ColorRED);
|
| + mid.fX += (kArrowLength/2) * fPts[cur].fNorm.fX;
|
| + mid.fY += (kArrowLength/2) * fPts[cur].fNorm.fY;
|
| + }
|
| +
|
| + SkString num;
|
| + num.printf("%d", this->origEdgeID(cur));
|
| + canvas->drawText(num.c_str(), num.size(), mid.fX, mid.fY, paint);
|
| +
|
| + if (fPts.count()) {
|
| + draw_arrow(canvas, tess.point(fPts[cur].fIndex), fPts[cur].fBisector,
|
| + kArrowLength, SK_ColorBLUE);
|
| + }
|
| + }
|
| +}
|
| +
|
| +void GrAAConvexTessellator::draw(SkCanvas* canvas) const {
|
| + for (int i = 0; i < fIndices.count(); i += 3) {
|
| + SkASSERT(fIndices[i] < this->numPts()) ;
|
| + SkASSERT(fIndices[i+1] < this->numPts()) ;
|
| + SkASSERT(fIndices[i+2] < this->numPts()) ;
|
| +
|
| + draw_line(canvas,
|
| + this->point(this->fIndices[i]), this->point(this->fIndices[i+1]),
|
| + SK_ColorBLACK);
|
| + draw_line(canvas,
|
| + this->point(this->fIndices[i+1]), this->point(this->fIndices[i+2]),
|
| + SK_ColorBLACK);
|
| + draw_line(canvas,
|
| + this->point(this->fIndices[i+2]), this->point(this->fIndices[i]),
|
| + SK_ColorBLACK);
|
| + }
|
| +
|
| + fInitialRing.draw(canvas, *this);
|
| + for (int i = 0; i < fRings.count(); ++i) {
|
| + fRings[i]->draw(canvas, *this);
|
| + }
|
| +
|
| + for (int i = 0; i < this->numPts(); ++i) {
|
| + draw_point(canvas,
|
| + this->point(i), 0.5f + (this->depth(i)/(2*fTargetDepth)),
|
| + !this->movable(i));
|
| +
|
| + SkPaint paint;
|
| + paint.setTextSize(kPointTextSize);
|
| + paint.setTextAlign(SkPaint::kCenter_Align);
|
| + if (this->depth(i) <= -fTargetDepth) {
|
| + paint.setColor(SK_ColorWHITE);
|
| + }
|
| +
|
| + SkString num;
|
| + num.printf("%d", i);
|
| + canvas->drawText(num.c_str(), num.size(),
|
| + this->point(i).fX, this->point(i).fY+(kPointRadius/2.0f),
|
| + paint);
|
| + }
|
| +}
|
| +
|
| +#endif
|
| +
|
|
|