| Index: third_party/libwebp/utils/quant_levels.c
|
| diff --git a/third_party/libwebp/utils/quant_levels.c b/third_party/libwebp/utils/quant_levels.c
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..f6884392aa733c43f3fc837284e7b803a27f561d
|
| --- /dev/null
|
| +++ b/third_party/libwebp/utils/quant_levels.c
|
| @@ -0,0 +1,154 @@
|
| +// Copyright 2011 Google Inc. All Rights Reserved.
|
| +//
|
| +// This code is licensed under the same terms as WebM:
|
| +// Software License Agreement: http://www.webmproject.org/license/software/
|
| +// Additional IP Rights Grant: http://www.webmproject.org/license/additional/
|
| +// -----------------------------------------------------------------------------
|
| +//
|
| +// Quantize levels for specified number of quantization-levels ([2, 256]).
|
| +// Min and max values are preserved (usual 0 and 255 for alpha plane).
|
| +//
|
| +// Author: Skal (pascal.massimino@gmail.com)
|
| +
|
| +#include <assert.h>
|
| +
|
| +#include "./quant_levels.h"
|
| +
|
| +#if defined(__cplusplus) || defined(c_plusplus)
|
| +extern "C" {
|
| +#endif
|
| +
|
| +#define NUM_SYMBOLS 256
|
| +
|
| +#define MAX_ITER 6 // Maximum number of convergence steps.
|
| +#define ERROR_THRESHOLD 1e-4 // MSE stopping criterion.
|
| +
|
| +// -----------------------------------------------------------------------------
|
| +// Quantize levels.
|
| +
|
| +int QuantizeLevels(uint8_t* const data, int width, int height,
|
| + int num_levels, uint64_t* const sse) {
|
| + int freq[NUM_SYMBOLS] = { 0 };
|
| + int q_level[NUM_SYMBOLS] = { 0 };
|
| + double inv_q_level[NUM_SYMBOLS] = { 0 };
|
| + int min_s = 255, max_s = 0;
|
| + const size_t data_size = height * width;
|
| + int i, num_levels_in, iter;
|
| + double last_err = 1.e38, err = 0.;
|
| + const double err_threshold = ERROR_THRESHOLD * data_size;
|
| +
|
| + if (data == NULL) {
|
| + return 0;
|
| + }
|
| +
|
| + if (width <= 0 || height <= 0) {
|
| + return 0;
|
| + }
|
| +
|
| + if (num_levels < 2 || num_levels > 256) {
|
| + return 0;
|
| + }
|
| +
|
| + {
|
| + size_t n;
|
| + num_levels_in = 0;
|
| + for (n = 0; n < data_size; ++n) {
|
| + num_levels_in += (freq[data[n]] == 0);
|
| + if (min_s > data[n]) min_s = data[n];
|
| + if (max_s < data[n]) max_s = data[n];
|
| + ++freq[data[n]];
|
| + }
|
| + }
|
| +
|
| + if (num_levels_in <= num_levels) goto End; // nothing to do!
|
| +
|
| + // Start with uniformly spread centroids.
|
| + for (i = 0; i < num_levels; ++i) {
|
| + inv_q_level[i] = min_s + (double)(max_s - min_s) * i / (num_levels - 1);
|
| + }
|
| +
|
| + // Fixed values. Won't be changed.
|
| + q_level[min_s] = 0;
|
| + q_level[max_s] = num_levels - 1;
|
| + assert(inv_q_level[0] == min_s);
|
| + assert(inv_q_level[num_levels - 1] == max_s);
|
| +
|
| + // k-Means iterations.
|
| + for (iter = 0; iter < MAX_ITER; ++iter) {
|
| + double q_sum[NUM_SYMBOLS] = { 0 };
|
| + double q_count[NUM_SYMBOLS] = { 0 };
|
| + int s, slot = 0;
|
| +
|
| + // Assign classes to representatives.
|
| + for (s = min_s; s <= max_s; ++s) {
|
| + // Keep track of the nearest neighbour 'slot'
|
| + while (slot < num_levels - 1 &&
|
| + 2 * s > inv_q_level[slot] + inv_q_level[slot + 1]) {
|
| + ++slot;
|
| + }
|
| + if (freq[s] > 0) {
|
| + q_sum[slot] += s * freq[s];
|
| + q_count[slot] += freq[s];
|
| + }
|
| + q_level[s] = slot;
|
| + }
|
| +
|
| + // Assign new representatives to classes.
|
| + if (num_levels > 2) {
|
| + for (slot = 1; slot < num_levels - 1; ++slot) {
|
| + const double count = q_count[slot];
|
| + if (count > 0.) {
|
| + inv_q_level[slot] = q_sum[slot] / count;
|
| + }
|
| + }
|
| + }
|
| +
|
| + // Compute convergence error.
|
| + err = 0.;
|
| + for (s = min_s; s <= max_s; ++s) {
|
| + const double error = s - inv_q_level[q_level[s]];
|
| + err += freq[s] * error * error;
|
| + }
|
| +
|
| + // Check for convergence: we stop as soon as the error is no
|
| + // longer improving.
|
| + if (last_err - err < err_threshold) break;
|
| + last_err = err;
|
| + }
|
| +
|
| + // Remap the alpha plane to quantized values.
|
| + {
|
| + // double->int rounding operation can be costly, so we do it
|
| + // once for all before remapping. We also perform the data[] -> slot
|
| + // mapping, while at it (avoid one indirection in the final loop).
|
| + uint8_t map[NUM_SYMBOLS];
|
| + int s;
|
| + size_t n;
|
| + for (s = min_s; s <= max_s; ++s) {
|
| + const int slot = q_level[s];
|
| + map[s] = (uint8_t)(inv_q_level[slot] + .5);
|
| + }
|
| + // Final pass.
|
| + for (n = 0; n < data_size; ++n) {
|
| + data[n] = map[data[n]];
|
| + }
|
| + }
|
| + End:
|
| + // Store sum of squared error if needed.
|
| + if (sse != NULL) *sse = (uint64_t)err;
|
| +
|
| + return 1;
|
| +}
|
| +
|
| +int DequantizeLevels(uint8_t* const data, int width, int height) {
|
| + if (data == NULL || width <= 0 || height <= 0) return 0;
|
| + // TODO(skal): implement gradient smoothing.
|
| + (void)data;
|
| + (void)width;
|
| + (void)height;
|
| + return 1;
|
| +}
|
| +
|
| +#if defined(__cplusplus) || defined(c_plusplus)
|
| +} // extern "C"
|
| +#endif
|
|
|