| OLD | NEW |
| (Empty) | |
| 1 // Copyright 2011 Google Inc. All Rights Reserved. |
| 2 // |
| 3 // This code is licensed under the same terms as WebM: |
| 4 // Software License Agreement: http://www.webmproject.org/license/software/ |
| 5 // Additional IP Rights Grant: http://www.webmproject.org/license/additional/ |
| 6 // ----------------------------------------------------------------------------- |
| 7 // |
| 8 // Quantize levels for specified number of quantization-levels ([2, 256]). |
| 9 // Min and max values are preserved (usual 0 and 255 for alpha plane). |
| 10 // |
| 11 // Author: Skal (pascal.massimino@gmail.com) |
| 12 |
| 13 #include <assert.h> |
| 14 |
| 15 #include "./quant_levels.h" |
| 16 |
| 17 #if defined(__cplusplus) || defined(c_plusplus) |
| 18 extern "C" { |
| 19 #endif |
| 20 |
| 21 #define NUM_SYMBOLS 256 |
| 22 |
| 23 #define MAX_ITER 6 // Maximum number of convergence steps. |
| 24 #define ERROR_THRESHOLD 1e-4 // MSE stopping criterion. |
| 25 |
| 26 // ----------------------------------------------------------------------------- |
| 27 // Quantize levels. |
| 28 |
| 29 int QuantizeLevels(uint8_t* const data, int width, int height, |
| 30 int num_levels, uint64_t* const sse) { |
| 31 int freq[NUM_SYMBOLS] = { 0 }; |
| 32 int q_level[NUM_SYMBOLS] = { 0 }; |
| 33 double inv_q_level[NUM_SYMBOLS] = { 0 }; |
| 34 int min_s = 255, max_s = 0; |
| 35 const size_t data_size = height * width; |
| 36 int i, num_levels_in, iter; |
| 37 double last_err = 1.e38, err = 0.; |
| 38 const double err_threshold = ERROR_THRESHOLD * data_size; |
| 39 |
| 40 if (data == NULL) { |
| 41 return 0; |
| 42 } |
| 43 |
| 44 if (width <= 0 || height <= 0) { |
| 45 return 0; |
| 46 } |
| 47 |
| 48 if (num_levels < 2 || num_levels > 256) { |
| 49 return 0; |
| 50 } |
| 51 |
| 52 { |
| 53 size_t n; |
| 54 num_levels_in = 0; |
| 55 for (n = 0; n < data_size; ++n) { |
| 56 num_levels_in += (freq[data[n]] == 0); |
| 57 if (min_s > data[n]) min_s = data[n]; |
| 58 if (max_s < data[n]) max_s = data[n]; |
| 59 ++freq[data[n]]; |
| 60 } |
| 61 } |
| 62 |
| 63 if (num_levels_in <= num_levels) goto End; // nothing to do! |
| 64 |
| 65 // Start with uniformly spread centroids. |
| 66 for (i = 0; i < num_levels; ++i) { |
| 67 inv_q_level[i] = min_s + (double)(max_s - min_s) * i / (num_levels - 1); |
| 68 } |
| 69 |
| 70 // Fixed values. Won't be changed. |
| 71 q_level[min_s] = 0; |
| 72 q_level[max_s] = num_levels - 1; |
| 73 assert(inv_q_level[0] == min_s); |
| 74 assert(inv_q_level[num_levels - 1] == max_s); |
| 75 |
| 76 // k-Means iterations. |
| 77 for (iter = 0; iter < MAX_ITER; ++iter) { |
| 78 double q_sum[NUM_SYMBOLS] = { 0 }; |
| 79 double q_count[NUM_SYMBOLS] = { 0 }; |
| 80 int s, slot = 0; |
| 81 |
| 82 // Assign classes to representatives. |
| 83 for (s = min_s; s <= max_s; ++s) { |
| 84 // Keep track of the nearest neighbour 'slot' |
| 85 while (slot < num_levels - 1 && |
| 86 2 * s > inv_q_level[slot] + inv_q_level[slot + 1]) { |
| 87 ++slot; |
| 88 } |
| 89 if (freq[s] > 0) { |
| 90 q_sum[slot] += s * freq[s]; |
| 91 q_count[slot] += freq[s]; |
| 92 } |
| 93 q_level[s] = slot; |
| 94 } |
| 95 |
| 96 // Assign new representatives to classes. |
| 97 if (num_levels > 2) { |
| 98 for (slot = 1; slot < num_levels - 1; ++slot) { |
| 99 const double count = q_count[slot]; |
| 100 if (count > 0.) { |
| 101 inv_q_level[slot] = q_sum[slot] / count; |
| 102 } |
| 103 } |
| 104 } |
| 105 |
| 106 // Compute convergence error. |
| 107 err = 0.; |
| 108 for (s = min_s; s <= max_s; ++s) { |
| 109 const double error = s - inv_q_level[q_level[s]]; |
| 110 err += freq[s] * error * error; |
| 111 } |
| 112 |
| 113 // Check for convergence: we stop as soon as the error is no |
| 114 // longer improving. |
| 115 if (last_err - err < err_threshold) break; |
| 116 last_err = err; |
| 117 } |
| 118 |
| 119 // Remap the alpha plane to quantized values. |
| 120 { |
| 121 // double->int rounding operation can be costly, so we do it |
| 122 // once for all before remapping. We also perform the data[] -> slot |
| 123 // mapping, while at it (avoid one indirection in the final loop). |
| 124 uint8_t map[NUM_SYMBOLS]; |
| 125 int s; |
| 126 size_t n; |
| 127 for (s = min_s; s <= max_s; ++s) { |
| 128 const int slot = q_level[s]; |
| 129 map[s] = (uint8_t)(inv_q_level[slot] + .5); |
| 130 } |
| 131 // Final pass. |
| 132 for (n = 0; n < data_size; ++n) { |
| 133 data[n] = map[data[n]]; |
| 134 } |
| 135 } |
| 136 End: |
| 137 // Store sum of squared error if needed. |
| 138 if (sse != NULL) *sse = (uint64_t)err; |
| 139 |
| 140 return 1; |
| 141 } |
| 142 |
| 143 int DequantizeLevels(uint8_t* const data, int width, int height) { |
| 144 if (data == NULL || width <= 0 || height <= 0) return 0; |
| 145 // TODO(skal): implement gradient smoothing. |
| 146 (void)data; |
| 147 (void)width; |
| 148 (void)height; |
| 149 return 1; |
| 150 } |
| 151 |
| 152 #if defined(__cplusplus) || defined(c_plusplus) |
| 153 } // extern "C" |
| 154 #endif |
| OLD | NEW |