Index: third_party/libwebp/enc/histogram.c |
diff --git a/third_party/libwebp/enc/histogram.c b/third_party/libwebp/enc/histogram.c |
new file mode 100644 |
index 0000000000000000000000000000000000000000..ca838e064dc10e299e2ed29308d9ae17e86798f0 |
--- /dev/null |
+++ b/third_party/libwebp/enc/histogram.c |
@@ -0,0 +1,406 @@ |
+// Copyright 2012 Google Inc. All Rights Reserved. |
+// |
+// This code is licensed under the same terms as WebM: |
+// Software License Agreement: http://www.webmproject.org/license/software/ |
+// Additional IP Rights Grant: http://www.webmproject.org/license/additional/ |
+// ----------------------------------------------------------------------------- |
+// |
+// Author: Jyrki Alakuijala (jyrki@google.com) |
+// |
+#ifdef HAVE_CONFIG_H |
+#include "config.h" |
+#endif |
+ |
+#include <math.h> |
+#include <stdio.h> |
+ |
+#include "./backward_references.h" |
+#include "./histogram.h" |
+#include "../dsp/lossless.h" |
+#include "../utils/utils.h" |
+ |
+static void HistogramClear(VP8LHistogram* const p) { |
+ memset(p->literal_, 0, sizeof(p->literal_)); |
+ memset(p->red_, 0, sizeof(p->red_)); |
+ memset(p->blue_, 0, sizeof(p->blue_)); |
+ memset(p->alpha_, 0, sizeof(p->alpha_)); |
+ memset(p->distance_, 0, sizeof(p->distance_)); |
+ p->bit_cost_ = 0; |
+} |
+ |
+void VP8LHistogramStoreRefs(const VP8LBackwardRefs* const refs, |
+ VP8LHistogram* const histo) { |
+ int i; |
+ for (i = 0; i < refs->size; ++i) { |
+ VP8LHistogramAddSinglePixOrCopy(histo, &refs->refs[i]); |
+ } |
+} |
+ |
+void VP8LHistogramCreate(VP8LHistogram* const p, |
+ const VP8LBackwardRefs* const refs, |
+ int palette_code_bits) { |
+ if (palette_code_bits >= 0) { |
+ p->palette_code_bits_ = palette_code_bits; |
+ } |
+ HistogramClear(p); |
+ VP8LHistogramStoreRefs(refs, p); |
+} |
+ |
+void VP8LHistogramInit(VP8LHistogram* const p, int palette_code_bits) { |
+ p->palette_code_bits_ = palette_code_bits; |
+ HistogramClear(p); |
+} |
+ |
+VP8LHistogramSet* VP8LAllocateHistogramSet(int size, int cache_bits) { |
+ int i; |
+ VP8LHistogramSet* set; |
+ VP8LHistogram* bulk; |
+ const uint64_t total_size = (uint64_t)sizeof(*set) |
+ + size * sizeof(*set->histograms) |
+ + size * sizeof(**set->histograms); |
+ uint8_t* memory = (uint8_t*)WebPSafeMalloc(total_size, sizeof(*memory)); |
+ if (memory == NULL) return NULL; |
+ |
+ set = (VP8LHistogramSet*)memory; |
+ memory += sizeof(*set); |
+ set->histograms = (VP8LHistogram**)memory; |
+ memory += size * sizeof(*set->histograms); |
+ bulk = (VP8LHistogram*)memory; |
+ set->max_size = size; |
+ set->size = size; |
+ for (i = 0; i < size; ++i) { |
+ set->histograms[i] = bulk + i; |
+ VP8LHistogramInit(set->histograms[i], cache_bits); |
+ } |
+ return set; |
+} |
+ |
+// ----------------------------------------------------------------------------- |
+ |
+void VP8LHistogramAddSinglePixOrCopy(VP8LHistogram* const histo, |
+ const PixOrCopy* const v) { |
+ if (PixOrCopyIsLiteral(v)) { |
+ ++histo->alpha_[PixOrCopyLiteral(v, 3)]; |
+ ++histo->red_[PixOrCopyLiteral(v, 2)]; |
+ ++histo->literal_[PixOrCopyLiteral(v, 1)]; |
+ ++histo->blue_[PixOrCopyLiteral(v, 0)]; |
+ } else if (PixOrCopyIsCacheIdx(v)) { |
+ int literal_ix = 256 + NUM_LENGTH_CODES + PixOrCopyCacheIdx(v); |
+ ++histo->literal_[literal_ix]; |
+ } else { |
+ int code, extra_bits_count, extra_bits_value; |
+ PrefixEncode(PixOrCopyLength(v), |
+ &code, &extra_bits_count, &extra_bits_value); |
+ ++histo->literal_[256 + code]; |
+ PrefixEncode(PixOrCopyDistance(v), |
+ &code, &extra_bits_count, &extra_bits_value); |
+ ++histo->distance_[code]; |
+ } |
+} |
+ |
+ |
+ |
+static double BitsEntropy(const int* const array, int n) { |
+ double retval = 0.; |
+ int sum = 0; |
+ int nonzeros = 0; |
+ int max_val = 0; |
+ int i; |
+ double mix; |
+ for (i = 0; i < n; ++i) { |
+ if (array[i] != 0) { |
+ sum += array[i]; |
+ ++nonzeros; |
+ retval -= VP8LFastSLog2(array[i]); |
+ if (max_val < array[i]) { |
+ max_val = array[i]; |
+ } |
+ } |
+ } |
+ retval += VP8LFastSLog2(sum); |
+ |
+ if (nonzeros < 5) { |
+ if (nonzeros <= 1) { |
+ return 0; |
+ } |
+ // Two symbols, they will be 0 and 1 in a Huffman code. |
+ // Let's mix in a bit of entropy to favor good clustering when |
+ // distributions of these are combined. |
+ if (nonzeros == 2) { |
+ return 0.99 * sum + 0.01 * retval; |
+ } |
+ // No matter what the entropy says, we cannot be better than min_limit |
+ // with Huffman coding. I am mixing a bit of entropy into the |
+ // min_limit since it produces much better (~0.5 %) compression results |
+ // perhaps because of better entropy clustering. |
+ if (nonzeros == 3) { |
+ mix = 0.95; |
+ } else { |
+ mix = 0.7; // nonzeros == 4. |
+ } |
+ } else { |
+ mix = 0.627; |
+ } |
+ |
+ { |
+ double min_limit = 2 * sum - max_val; |
+ min_limit = mix * min_limit + (1.0 - mix) * retval; |
+ return (retval < min_limit) ? min_limit : retval; |
+ } |
+} |
+ |
+double VP8LHistogramEstimateBitsBulk(const VP8LHistogram* const p) { |
+ double retval = BitsEntropy(&p->literal_[0], VP8LHistogramNumCodes(p)) |
+ + BitsEntropy(&p->red_[0], 256) |
+ + BitsEntropy(&p->blue_[0], 256) |
+ + BitsEntropy(&p->alpha_[0], 256) |
+ + BitsEntropy(&p->distance_[0], NUM_DISTANCE_CODES); |
+ // Compute the extra bits cost. |
+ int i; |
+ for (i = 2; i < NUM_LENGTH_CODES - 2; ++i) { |
+ retval += |
+ (i >> 1) * p->literal_[256 + i + 2]; |
+ } |
+ for (i = 2; i < NUM_DISTANCE_CODES - 2; ++i) { |
+ retval += (i >> 1) * p->distance_[i + 2]; |
+ } |
+ return retval; |
+} |
+ |
+ |
+// Returns the cost encode the rle-encoded entropy code. |
+// The constants in this function are experimental. |
+static double HuffmanCost(const int* const population, int length) { |
+ // Small bias because Huffman code length is typically not stored in |
+ // full length. |
+ static const int kHuffmanCodeOfHuffmanCodeSize = CODE_LENGTH_CODES * 3; |
+ static const double kSmallBias = 9.1; |
+ double retval = kHuffmanCodeOfHuffmanCodeSize - kSmallBias; |
+ int streak = 0; |
+ int i = 0; |
+ for (; i < length - 1; ++i) { |
+ ++streak; |
+ if (population[i] == population[i + 1]) { |
+ continue; |
+ } |
+ last_streak_hack: |
+ // population[i] points now to the symbol in the streak of same values. |
+ if (streak > 3) { |
+ if (population[i] == 0) { |
+ retval += 1.5625 + 0.234375 * streak; |
+ } else { |
+ retval += 2.578125 + 0.703125 * streak; |
+ } |
+ } else { |
+ if (population[i] == 0) { |
+ retval += 1.796875 * streak; |
+ } else { |
+ retval += 3.28125 * streak; |
+ } |
+ } |
+ streak = 0; |
+ } |
+ if (i == length - 1) { |
+ ++streak; |
+ goto last_streak_hack; |
+ } |
+ return retval; |
+} |
+ |
+// Estimates the Huffman dictionary + other block overhead size. |
+static double HistogramEstimateBitsHeader(const VP8LHistogram* const p) { |
+ return HuffmanCost(&p->alpha_[0], 256) + |
+ HuffmanCost(&p->red_[0], 256) + |
+ HuffmanCost(&p->literal_[0], VP8LHistogramNumCodes(p)) + |
+ HuffmanCost(&p->blue_[0], 256) + |
+ HuffmanCost(&p->distance_[0], NUM_DISTANCE_CODES); |
+} |
+ |
+double VP8LHistogramEstimateBits(const VP8LHistogram* const p) { |
+ return HistogramEstimateBitsHeader(p) + VP8LHistogramEstimateBitsBulk(p); |
+} |
+ |
+static void HistogramBuildImage(int xsize, int histo_bits, |
+ const VP8LBackwardRefs* const backward_refs, |
+ VP8LHistogramSet* const image) { |
+ int i; |
+ int x = 0, y = 0; |
+ const int histo_xsize = VP8LSubSampleSize(xsize, histo_bits); |
+ VP8LHistogram** const histograms = image->histograms; |
+ assert(histo_bits > 0); |
+ for (i = 0; i < backward_refs->size; ++i) { |
+ const PixOrCopy* const v = &backward_refs->refs[i]; |
+ const int ix = (y >> histo_bits) * histo_xsize + (x >> histo_bits); |
+ VP8LHistogramAddSinglePixOrCopy(histograms[ix], v); |
+ x += PixOrCopyLength(v); |
+ while (x >= xsize) { |
+ x -= xsize; |
+ ++y; |
+ } |
+ } |
+} |
+ |
+static uint32_t MyRand(uint32_t *seed) { |
+ *seed *= 16807U; |
+ if (*seed == 0) { |
+ *seed = 1; |
+ } |
+ return *seed; |
+} |
+ |
+static int HistogramCombine(const VP8LHistogramSet* const in, |
+ VP8LHistogramSet* const out, int num_pairs) { |
+ int ok = 0; |
+ int i, iter; |
+ uint32_t seed = 0; |
+ int tries_with_no_success = 0; |
+ const int min_cluster_size = 2; |
+ int out_size = in->size; |
+ const int outer_iters = in->size * 3; |
+ VP8LHistogram* const histos = (VP8LHistogram*)malloc(2 * sizeof(*histos)); |
+ VP8LHistogram* cur_combo = histos + 0; // trial merged histogram |
+ VP8LHistogram* best_combo = histos + 1; // best merged histogram so far |
+ if (histos == NULL) goto End; |
+ |
+ // Copy histograms from in[] to out[]. |
+ assert(in->size <= out->size); |
+ for (i = 0; i < in->size; ++i) { |
+ in->histograms[i]->bit_cost_ = VP8LHistogramEstimateBits(in->histograms[i]); |
+ *out->histograms[i] = *in->histograms[i]; |
+ } |
+ |
+ // Collapse similar histograms in 'out'. |
+ for (iter = 0; iter < outer_iters && out_size >= min_cluster_size; ++iter) { |
+ // We pick the best pair to be combined out of 'inner_iters' pairs. |
+ double best_cost_diff = 0.; |
+ int best_idx1 = 0, best_idx2 = 1; |
+ int j; |
+ seed += iter; |
+ for (j = 0; j < num_pairs; ++j) { |
+ double curr_cost_diff; |
+ // Choose two histograms at random and try to combine them. |
+ const uint32_t idx1 = MyRand(&seed) % out_size; |
+ const uint32_t tmp = ((j & 7) + 1) % (out_size - 1); |
+ const uint32_t diff = (tmp < 3) ? tmp : MyRand(&seed) % (out_size - 1); |
+ const uint32_t idx2 = (idx1 + diff + 1) % out_size; |
+ if (idx1 == idx2) { |
+ continue; |
+ } |
+ *cur_combo = *out->histograms[idx1]; |
+ VP8LHistogramAdd(cur_combo, out->histograms[idx2]); |
+ cur_combo->bit_cost_ = VP8LHistogramEstimateBits(cur_combo); |
+ // Calculate cost reduction on combining. |
+ curr_cost_diff = cur_combo->bit_cost_ |
+ - out->histograms[idx1]->bit_cost_ |
+ - out->histograms[idx2]->bit_cost_; |
+ if (best_cost_diff > curr_cost_diff) { // found a better pair? |
+ { // swap cur/best combo histograms |
+ VP8LHistogram* const tmp_histo = cur_combo; |
+ cur_combo = best_combo; |
+ best_combo = tmp_histo; |
+ } |
+ best_cost_diff = curr_cost_diff; |
+ best_idx1 = idx1; |
+ best_idx2 = idx2; |
+ } |
+ } |
+ |
+ if (best_cost_diff < 0.0) { |
+ *out->histograms[best_idx1] = *best_combo; |
+ // swap best_idx2 slot with last one (which is now unused) |
+ --out_size; |
+ if (best_idx2 != out_size) { |
+ out->histograms[best_idx2] = out->histograms[out_size]; |
+ out->histograms[out_size] = NULL; // just for sanity check. |
+ } |
+ tries_with_no_success = 0; |
+ } |
+ if (++tries_with_no_success >= 50) { |
+ break; |
+ } |
+ } |
+ out->size = out_size; |
+ ok = 1; |
+ |
+ End: |
+ free(histos); |
+ return ok; |
+} |
+ |
+// ----------------------------------------------------------------------------- |
+// Histogram refinement |
+ |
+// What is the bit cost of moving square_histogram from |
+// cur_symbol to candidate_symbol. |
+// TODO(skal): we don't really need to copy the histogram and Add(). Instead |
+// we just need VP8LDualHistogramEstimateBits(A, B) estimation function. |
+static double HistogramDistance(const VP8LHistogram* const square_histogram, |
+ const VP8LHistogram* const candidate) { |
+ const double previous_bit_cost = candidate->bit_cost_; |
+ double new_bit_cost; |
+ VP8LHistogram modified_histo; |
+ modified_histo = *candidate; |
+ VP8LHistogramAdd(&modified_histo, square_histogram); |
+ new_bit_cost = VP8LHistogramEstimateBits(&modified_histo); |
+ |
+ return new_bit_cost - previous_bit_cost; |
+} |
+ |
+// Find the best 'out' histogram for each of the 'in' histograms. |
+// Note: we assume that out[]->bit_cost_ is already up-to-date. |
+static void HistogramRemap(const VP8LHistogramSet* const in, |
+ const VP8LHistogramSet* const out, |
+ uint16_t* const symbols) { |
+ int i; |
+ for (i = 0; i < in->size; ++i) { |
+ int best_out = 0; |
+ double best_bits = HistogramDistance(in->histograms[i], out->histograms[0]); |
+ int k; |
+ for (k = 1; k < out->size; ++k) { |
+ const double cur_bits = |
+ HistogramDistance(in->histograms[i], out->histograms[k]); |
+ if (cur_bits < best_bits) { |
+ best_bits = cur_bits; |
+ best_out = k; |
+ } |
+ } |
+ symbols[i] = best_out; |
+ } |
+ |
+ // Recompute each out based on raw and symbols. |
+ for (i = 0; i < out->size; ++i) { |
+ HistogramClear(out->histograms[i]); |
+ } |
+ for (i = 0; i < in->size; ++i) { |
+ VP8LHistogramAdd(out->histograms[symbols[i]], in->histograms[i]); |
+ } |
+} |
+ |
+int VP8LGetHistoImageSymbols(int xsize, int ysize, |
+ const VP8LBackwardRefs* const refs, |
+ int quality, int histo_bits, int cache_bits, |
+ VP8LHistogramSet* const image_in, |
+ uint16_t* const histogram_symbols) { |
+ int ok = 0; |
+ const int histo_xsize = histo_bits ? VP8LSubSampleSize(xsize, histo_bits) : 1; |
+ const int histo_ysize = histo_bits ? VP8LSubSampleSize(ysize, histo_bits) : 1; |
+ const int num_histo_pairs = 10 + quality / 2; // For HistogramCombine(). |
+ const int histo_image_raw_size = histo_xsize * histo_ysize; |
+ VP8LHistogramSet* const image_out = |
+ VP8LAllocateHistogramSet(histo_image_raw_size, cache_bits); |
+ if (image_out == NULL) return 0; |
+ |
+ // Build histogram image. |
+ HistogramBuildImage(xsize, histo_bits, refs, image_out); |
+ // Collapse similar histograms. |
+ if (!HistogramCombine(image_out, image_in, num_histo_pairs)) { |
+ goto Error; |
+ } |
+ // Find the optimal map from original histograms to the final ones. |
+ HistogramRemap(image_out, image_in, histogram_symbols); |
+ ok = 1; |
+ |
+Error: |
+ free(image_out); |
+ return ok; |
+} |