OLD | NEW |
(Empty) | |
| 1 // Copyright 2012 Google Inc. All Rights Reserved. |
| 2 // |
| 3 // This code is licensed under the same terms as WebM: |
| 4 // Software License Agreement: http://www.webmproject.org/license/software/ |
| 5 // Additional IP Rights Grant: http://www.webmproject.org/license/additional/ |
| 6 // ----------------------------------------------------------------------------- |
| 7 // |
| 8 // Author: Jyrki Alakuijala (jyrki@google.com) |
| 9 // |
| 10 #ifdef HAVE_CONFIG_H |
| 11 #include "config.h" |
| 12 #endif |
| 13 |
| 14 #include <math.h> |
| 15 #include <stdio.h> |
| 16 |
| 17 #include "./backward_references.h" |
| 18 #include "./histogram.h" |
| 19 #include "../dsp/lossless.h" |
| 20 #include "../utils/utils.h" |
| 21 |
| 22 static void HistogramClear(VP8LHistogram* const p) { |
| 23 memset(p->literal_, 0, sizeof(p->literal_)); |
| 24 memset(p->red_, 0, sizeof(p->red_)); |
| 25 memset(p->blue_, 0, sizeof(p->blue_)); |
| 26 memset(p->alpha_, 0, sizeof(p->alpha_)); |
| 27 memset(p->distance_, 0, sizeof(p->distance_)); |
| 28 p->bit_cost_ = 0; |
| 29 } |
| 30 |
| 31 void VP8LHistogramStoreRefs(const VP8LBackwardRefs* const refs, |
| 32 VP8LHistogram* const histo) { |
| 33 int i; |
| 34 for (i = 0; i < refs->size; ++i) { |
| 35 VP8LHistogramAddSinglePixOrCopy(histo, &refs->refs[i]); |
| 36 } |
| 37 } |
| 38 |
| 39 void VP8LHistogramCreate(VP8LHistogram* const p, |
| 40 const VP8LBackwardRefs* const refs, |
| 41 int palette_code_bits) { |
| 42 if (palette_code_bits >= 0) { |
| 43 p->palette_code_bits_ = palette_code_bits; |
| 44 } |
| 45 HistogramClear(p); |
| 46 VP8LHistogramStoreRefs(refs, p); |
| 47 } |
| 48 |
| 49 void VP8LHistogramInit(VP8LHistogram* const p, int palette_code_bits) { |
| 50 p->palette_code_bits_ = palette_code_bits; |
| 51 HistogramClear(p); |
| 52 } |
| 53 |
| 54 VP8LHistogramSet* VP8LAllocateHistogramSet(int size, int cache_bits) { |
| 55 int i; |
| 56 VP8LHistogramSet* set; |
| 57 VP8LHistogram* bulk; |
| 58 const uint64_t total_size = (uint64_t)sizeof(*set) |
| 59 + size * sizeof(*set->histograms) |
| 60 + size * sizeof(**set->histograms); |
| 61 uint8_t* memory = (uint8_t*)WebPSafeMalloc(total_size, sizeof(*memory)); |
| 62 if (memory == NULL) return NULL; |
| 63 |
| 64 set = (VP8LHistogramSet*)memory; |
| 65 memory += sizeof(*set); |
| 66 set->histograms = (VP8LHistogram**)memory; |
| 67 memory += size * sizeof(*set->histograms); |
| 68 bulk = (VP8LHistogram*)memory; |
| 69 set->max_size = size; |
| 70 set->size = size; |
| 71 for (i = 0; i < size; ++i) { |
| 72 set->histograms[i] = bulk + i; |
| 73 VP8LHistogramInit(set->histograms[i], cache_bits); |
| 74 } |
| 75 return set; |
| 76 } |
| 77 |
| 78 // ----------------------------------------------------------------------------- |
| 79 |
| 80 void VP8LHistogramAddSinglePixOrCopy(VP8LHistogram* const histo, |
| 81 const PixOrCopy* const v) { |
| 82 if (PixOrCopyIsLiteral(v)) { |
| 83 ++histo->alpha_[PixOrCopyLiteral(v, 3)]; |
| 84 ++histo->red_[PixOrCopyLiteral(v, 2)]; |
| 85 ++histo->literal_[PixOrCopyLiteral(v, 1)]; |
| 86 ++histo->blue_[PixOrCopyLiteral(v, 0)]; |
| 87 } else if (PixOrCopyIsCacheIdx(v)) { |
| 88 int literal_ix = 256 + NUM_LENGTH_CODES + PixOrCopyCacheIdx(v); |
| 89 ++histo->literal_[literal_ix]; |
| 90 } else { |
| 91 int code, extra_bits_count, extra_bits_value; |
| 92 PrefixEncode(PixOrCopyLength(v), |
| 93 &code, &extra_bits_count, &extra_bits_value); |
| 94 ++histo->literal_[256 + code]; |
| 95 PrefixEncode(PixOrCopyDistance(v), |
| 96 &code, &extra_bits_count, &extra_bits_value); |
| 97 ++histo->distance_[code]; |
| 98 } |
| 99 } |
| 100 |
| 101 |
| 102 |
| 103 static double BitsEntropy(const int* const array, int n) { |
| 104 double retval = 0.; |
| 105 int sum = 0; |
| 106 int nonzeros = 0; |
| 107 int max_val = 0; |
| 108 int i; |
| 109 double mix; |
| 110 for (i = 0; i < n; ++i) { |
| 111 if (array[i] != 0) { |
| 112 sum += array[i]; |
| 113 ++nonzeros; |
| 114 retval -= VP8LFastSLog2(array[i]); |
| 115 if (max_val < array[i]) { |
| 116 max_val = array[i]; |
| 117 } |
| 118 } |
| 119 } |
| 120 retval += VP8LFastSLog2(sum); |
| 121 |
| 122 if (nonzeros < 5) { |
| 123 if (nonzeros <= 1) { |
| 124 return 0; |
| 125 } |
| 126 // Two symbols, they will be 0 and 1 in a Huffman code. |
| 127 // Let's mix in a bit of entropy to favor good clustering when |
| 128 // distributions of these are combined. |
| 129 if (nonzeros == 2) { |
| 130 return 0.99 * sum + 0.01 * retval; |
| 131 } |
| 132 // No matter what the entropy says, we cannot be better than min_limit |
| 133 // with Huffman coding. I am mixing a bit of entropy into the |
| 134 // min_limit since it produces much better (~0.5 %) compression results |
| 135 // perhaps because of better entropy clustering. |
| 136 if (nonzeros == 3) { |
| 137 mix = 0.95; |
| 138 } else { |
| 139 mix = 0.7; // nonzeros == 4. |
| 140 } |
| 141 } else { |
| 142 mix = 0.627; |
| 143 } |
| 144 |
| 145 { |
| 146 double min_limit = 2 * sum - max_val; |
| 147 min_limit = mix * min_limit + (1.0 - mix) * retval; |
| 148 return (retval < min_limit) ? min_limit : retval; |
| 149 } |
| 150 } |
| 151 |
| 152 double VP8LHistogramEstimateBitsBulk(const VP8LHistogram* const p) { |
| 153 double retval = BitsEntropy(&p->literal_[0], VP8LHistogramNumCodes(p)) |
| 154 + BitsEntropy(&p->red_[0], 256) |
| 155 + BitsEntropy(&p->blue_[0], 256) |
| 156 + BitsEntropy(&p->alpha_[0], 256) |
| 157 + BitsEntropy(&p->distance_[0], NUM_DISTANCE_CODES); |
| 158 // Compute the extra bits cost. |
| 159 int i; |
| 160 for (i = 2; i < NUM_LENGTH_CODES - 2; ++i) { |
| 161 retval += |
| 162 (i >> 1) * p->literal_[256 + i + 2]; |
| 163 } |
| 164 for (i = 2; i < NUM_DISTANCE_CODES - 2; ++i) { |
| 165 retval += (i >> 1) * p->distance_[i + 2]; |
| 166 } |
| 167 return retval; |
| 168 } |
| 169 |
| 170 |
| 171 // Returns the cost encode the rle-encoded entropy code. |
| 172 // The constants in this function are experimental. |
| 173 static double HuffmanCost(const int* const population, int length) { |
| 174 // Small bias because Huffman code length is typically not stored in |
| 175 // full length. |
| 176 static const int kHuffmanCodeOfHuffmanCodeSize = CODE_LENGTH_CODES * 3; |
| 177 static const double kSmallBias = 9.1; |
| 178 double retval = kHuffmanCodeOfHuffmanCodeSize - kSmallBias; |
| 179 int streak = 0; |
| 180 int i = 0; |
| 181 for (; i < length - 1; ++i) { |
| 182 ++streak; |
| 183 if (population[i] == population[i + 1]) { |
| 184 continue; |
| 185 } |
| 186 last_streak_hack: |
| 187 // population[i] points now to the symbol in the streak of same values. |
| 188 if (streak > 3) { |
| 189 if (population[i] == 0) { |
| 190 retval += 1.5625 + 0.234375 * streak; |
| 191 } else { |
| 192 retval += 2.578125 + 0.703125 * streak; |
| 193 } |
| 194 } else { |
| 195 if (population[i] == 0) { |
| 196 retval += 1.796875 * streak; |
| 197 } else { |
| 198 retval += 3.28125 * streak; |
| 199 } |
| 200 } |
| 201 streak = 0; |
| 202 } |
| 203 if (i == length - 1) { |
| 204 ++streak; |
| 205 goto last_streak_hack; |
| 206 } |
| 207 return retval; |
| 208 } |
| 209 |
| 210 // Estimates the Huffman dictionary + other block overhead size. |
| 211 static double HistogramEstimateBitsHeader(const VP8LHistogram* const p) { |
| 212 return HuffmanCost(&p->alpha_[0], 256) + |
| 213 HuffmanCost(&p->red_[0], 256) + |
| 214 HuffmanCost(&p->literal_[0], VP8LHistogramNumCodes(p)) + |
| 215 HuffmanCost(&p->blue_[0], 256) + |
| 216 HuffmanCost(&p->distance_[0], NUM_DISTANCE_CODES); |
| 217 } |
| 218 |
| 219 double VP8LHistogramEstimateBits(const VP8LHistogram* const p) { |
| 220 return HistogramEstimateBitsHeader(p) + VP8LHistogramEstimateBitsBulk(p); |
| 221 } |
| 222 |
| 223 static void HistogramBuildImage(int xsize, int histo_bits, |
| 224 const VP8LBackwardRefs* const backward_refs, |
| 225 VP8LHistogramSet* const image) { |
| 226 int i; |
| 227 int x = 0, y = 0; |
| 228 const int histo_xsize = VP8LSubSampleSize(xsize, histo_bits); |
| 229 VP8LHistogram** const histograms = image->histograms; |
| 230 assert(histo_bits > 0); |
| 231 for (i = 0; i < backward_refs->size; ++i) { |
| 232 const PixOrCopy* const v = &backward_refs->refs[i]; |
| 233 const int ix = (y >> histo_bits) * histo_xsize + (x >> histo_bits); |
| 234 VP8LHistogramAddSinglePixOrCopy(histograms[ix], v); |
| 235 x += PixOrCopyLength(v); |
| 236 while (x >= xsize) { |
| 237 x -= xsize; |
| 238 ++y; |
| 239 } |
| 240 } |
| 241 } |
| 242 |
| 243 static uint32_t MyRand(uint32_t *seed) { |
| 244 *seed *= 16807U; |
| 245 if (*seed == 0) { |
| 246 *seed = 1; |
| 247 } |
| 248 return *seed; |
| 249 } |
| 250 |
| 251 static int HistogramCombine(const VP8LHistogramSet* const in, |
| 252 VP8LHistogramSet* const out, int num_pairs) { |
| 253 int ok = 0; |
| 254 int i, iter; |
| 255 uint32_t seed = 0; |
| 256 int tries_with_no_success = 0; |
| 257 const int min_cluster_size = 2; |
| 258 int out_size = in->size; |
| 259 const int outer_iters = in->size * 3; |
| 260 VP8LHistogram* const histos = (VP8LHistogram*)malloc(2 * sizeof(*histos)); |
| 261 VP8LHistogram* cur_combo = histos + 0; // trial merged histogram |
| 262 VP8LHistogram* best_combo = histos + 1; // best merged histogram so far |
| 263 if (histos == NULL) goto End; |
| 264 |
| 265 // Copy histograms from in[] to out[]. |
| 266 assert(in->size <= out->size); |
| 267 for (i = 0; i < in->size; ++i) { |
| 268 in->histograms[i]->bit_cost_ = VP8LHistogramEstimateBits(in->histograms[i]); |
| 269 *out->histograms[i] = *in->histograms[i]; |
| 270 } |
| 271 |
| 272 // Collapse similar histograms in 'out'. |
| 273 for (iter = 0; iter < outer_iters && out_size >= min_cluster_size; ++iter) { |
| 274 // We pick the best pair to be combined out of 'inner_iters' pairs. |
| 275 double best_cost_diff = 0.; |
| 276 int best_idx1 = 0, best_idx2 = 1; |
| 277 int j; |
| 278 seed += iter; |
| 279 for (j = 0; j < num_pairs; ++j) { |
| 280 double curr_cost_diff; |
| 281 // Choose two histograms at random and try to combine them. |
| 282 const uint32_t idx1 = MyRand(&seed) % out_size; |
| 283 const uint32_t tmp = ((j & 7) + 1) % (out_size - 1); |
| 284 const uint32_t diff = (tmp < 3) ? tmp : MyRand(&seed) % (out_size - 1); |
| 285 const uint32_t idx2 = (idx1 + diff + 1) % out_size; |
| 286 if (idx1 == idx2) { |
| 287 continue; |
| 288 } |
| 289 *cur_combo = *out->histograms[idx1]; |
| 290 VP8LHistogramAdd(cur_combo, out->histograms[idx2]); |
| 291 cur_combo->bit_cost_ = VP8LHistogramEstimateBits(cur_combo); |
| 292 // Calculate cost reduction on combining. |
| 293 curr_cost_diff = cur_combo->bit_cost_ |
| 294 - out->histograms[idx1]->bit_cost_ |
| 295 - out->histograms[idx2]->bit_cost_; |
| 296 if (best_cost_diff > curr_cost_diff) { // found a better pair? |
| 297 { // swap cur/best combo histograms |
| 298 VP8LHistogram* const tmp_histo = cur_combo; |
| 299 cur_combo = best_combo; |
| 300 best_combo = tmp_histo; |
| 301 } |
| 302 best_cost_diff = curr_cost_diff; |
| 303 best_idx1 = idx1; |
| 304 best_idx2 = idx2; |
| 305 } |
| 306 } |
| 307 |
| 308 if (best_cost_diff < 0.0) { |
| 309 *out->histograms[best_idx1] = *best_combo; |
| 310 // swap best_idx2 slot with last one (which is now unused) |
| 311 --out_size; |
| 312 if (best_idx2 != out_size) { |
| 313 out->histograms[best_idx2] = out->histograms[out_size]; |
| 314 out->histograms[out_size] = NULL; // just for sanity check. |
| 315 } |
| 316 tries_with_no_success = 0; |
| 317 } |
| 318 if (++tries_with_no_success >= 50) { |
| 319 break; |
| 320 } |
| 321 } |
| 322 out->size = out_size; |
| 323 ok = 1; |
| 324 |
| 325 End: |
| 326 free(histos); |
| 327 return ok; |
| 328 } |
| 329 |
| 330 // ----------------------------------------------------------------------------- |
| 331 // Histogram refinement |
| 332 |
| 333 // What is the bit cost of moving square_histogram from |
| 334 // cur_symbol to candidate_symbol. |
| 335 // TODO(skal): we don't really need to copy the histogram and Add(). Instead |
| 336 // we just need VP8LDualHistogramEstimateBits(A, B) estimation function. |
| 337 static double HistogramDistance(const VP8LHistogram* const square_histogram, |
| 338 const VP8LHistogram* const candidate) { |
| 339 const double previous_bit_cost = candidate->bit_cost_; |
| 340 double new_bit_cost; |
| 341 VP8LHistogram modified_histo; |
| 342 modified_histo = *candidate; |
| 343 VP8LHistogramAdd(&modified_histo, square_histogram); |
| 344 new_bit_cost = VP8LHistogramEstimateBits(&modified_histo); |
| 345 |
| 346 return new_bit_cost - previous_bit_cost; |
| 347 } |
| 348 |
| 349 // Find the best 'out' histogram for each of the 'in' histograms. |
| 350 // Note: we assume that out[]->bit_cost_ is already up-to-date. |
| 351 static void HistogramRemap(const VP8LHistogramSet* const in, |
| 352 const VP8LHistogramSet* const out, |
| 353 uint16_t* const symbols) { |
| 354 int i; |
| 355 for (i = 0; i < in->size; ++i) { |
| 356 int best_out = 0; |
| 357 double best_bits = HistogramDistance(in->histograms[i], out->histograms[0]); |
| 358 int k; |
| 359 for (k = 1; k < out->size; ++k) { |
| 360 const double cur_bits = |
| 361 HistogramDistance(in->histograms[i], out->histograms[k]); |
| 362 if (cur_bits < best_bits) { |
| 363 best_bits = cur_bits; |
| 364 best_out = k; |
| 365 } |
| 366 } |
| 367 symbols[i] = best_out; |
| 368 } |
| 369 |
| 370 // Recompute each out based on raw and symbols. |
| 371 for (i = 0; i < out->size; ++i) { |
| 372 HistogramClear(out->histograms[i]); |
| 373 } |
| 374 for (i = 0; i < in->size; ++i) { |
| 375 VP8LHistogramAdd(out->histograms[symbols[i]], in->histograms[i]); |
| 376 } |
| 377 } |
| 378 |
| 379 int VP8LGetHistoImageSymbols(int xsize, int ysize, |
| 380 const VP8LBackwardRefs* const refs, |
| 381 int quality, int histo_bits, int cache_bits, |
| 382 VP8LHistogramSet* const image_in, |
| 383 uint16_t* const histogram_symbols) { |
| 384 int ok = 0; |
| 385 const int histo_xsize = histo_bits ? VP8LSubSampleSize(xsize, histo_bits) : 1; |
| 386 const int histo_ysize = histo_bits ? VP8LSubSampleSize(ysize, histo_bits) : 1; |
| 387 const int num_histo_pairs = 10 + quality / 2; // For HistogramCombine(). |
| 388 const int histo_image_raw_size = histo_xsize * histo_ysize; |
| 389 VP8LHistogramSet* const image_out = |
| 390 VP8LAllocateHistogramSet(histo_image_raw_size, cache_bits); |
| 391 if (image_out == NULL) return 0; |
| 392 |
| 393 // Build histogram image. |
| 394 HistogramBuildImage(xsize, histo_bits, refs, image_out); |
| 395 // Collapse similar histograms. |
| 396 if (!HistogramCombine(image_out, image_in, num_histo_pairs)) { |
| 397 goto Error; |
| 398 } |
| 399 // Find the optimal map from original histograms to the final ones. |
| 400 HistogramRemap(image_out, image_in, histogram_symbols); |
| 401 ok = 1; |
| 402 |
| 403 Error: |
| 404 free(image_out); |
| 405 return ok; |
| 406 } |
OLD | NEW |