| Index: third_party/libwebp/enc/histogram.c
|
| diff --git a/third_party/libwebp/enc/histogram.c b/third_party/libwebp/enc/histogram.c
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..ca838e064dc10e299e2ed29308d9ae17e86798f0
|
| --- /dev/null
|
| +++ b/third_party/libwebp/enc/histogram.c
|
| @@ -0,0 +1,406 @@
|
| +// Copyright 2012 Google Inc. All Rights Reserved.
|
| +//
|
| +// This code is licensed under the same terms as WebM:
|
| +// Software License Agreement: http://www.webmproject.org/license/software/
|
| +// Additional IP Rights Grant: http://www.webmproject.org/license/additional/
|
| +// -----------------------------------------------------------------------------
|
| +//
|
| +// Author: Jyrki Alakuijala (jyrki@google.com)
|
| +//
|
| +#ifdef HAVE_CONFIG_H
|
| +#include "config.h"
|
| +#endif
|
| +
|
| +#include <math.h>
|
| +#include <stdio.h>
|
| +
|
| +#include "./backward_references.h"
|
| +#include "./histogram.h"
|
| +#include "../dsp/lossless.h"
|
| +#include "../utils/utils.h"
|
| +
|
| +static void HistogramClear(VP8LHistogram* const p) {
|
| + memset(p->literal_, 0, sizeof(p->literal_));
|
| + memset(p->red_, 0, sizeof(p->red_));
|
| + memset(p->blue_, 0, sizeof(p->blue_));
|
| + memset(p->alpha_, 0, sizeof(p->alpha_));
|
| + memset(p->distance_, 0, sizeof(p->distance_));
|
| + p->bit_cost_ = 0;
|
| +}
|
| +
|
| +void VP8LHistogramStoreRefs(const VP8LBackwardRefs* const refs,
|
| + VP8LHistogram* const histo) {
|
| + int i;
|
| + for (i = 0; i < refs->size; ++i) {
|
| + VP8LHistogramAddSinglePixOrCopy(histo, &refs->refs[i]);
|
| + }
|
| +}
|
| +
|
| +void VP8LHistogramCreate(VP8LHistogram* const p,
|
| + const VP8LBackwardRefs* const refs,
|
| + int palette_code_bits) {
|
| + if (palette_code_bits >= 0) {
|
| + p->palette_code_bits_ = palette_code_bits;
|
| + }
|
| + HistogramClear(p);
|
| + VP8LHistogramStoreRefs(refs, p);
|
| +}
|
| +
|
| +void VP8LHistogramInit(VP8LHistogram* const p, int palette_code_bits) {
|
| + p->palette_code_bits_ = palette_code_bits;
|
| + HistogramClear(p);
|
| +}
|
| +
|
| +VP8LHistogramSet* VP8LAllocateHistogramSet(int size, int cache_bits) {
|
| + int i;
|
| + VP8LHistogramSet* set;
|
| + VP8LHistogram* bulk;
|
| + const uint64_t total_size = (uint64_t)sizeof(*set)
|
| + + size * sizeof(*set->histograms)
|
| + + size * sizeof(**set->histograms);
|
| + uint8_t* memory = (uint8_t*)WebPSafeMalloc(total_size, sizeof(*memory));
|
| + if (memory == NULL) return NULL;
|
| +
|
| + set = (VP8LHistogramSet*)memory;
|
| + memory += sizeof(*set);
|
| + set->histograms = (VP8LHistogram**)memory;
|
| + memory += size * sizeof(*set->histograms);
|
| + bulk = (VP8LHistogram*)memory;
|
| + set->max_size = size;
|
| + set->size = size;
|
| + for (i = 0; i < size; ++i) {
|
| + set->histograms[i] = bulk + i;
|
| + VP8LHistogramInit(set->histograms[i], cache_bits);
|
| + }
|
| + return set;
|
| +}
|
| +
|
| +// -----------------------------------------------------------------------------
|
| +
|
| +void VP8LHistogramAddSinglePixOrCopy(VP8LHistogram* const histo,
|
| + const PixOrCopy* const v) {
|
| + if (PixOrCopyIsLiteral(v)) {
|
| + ++histo->alpha_[PixOrCopyLiteral(v, 3)];
|
| + ++histo->red_[PixOrCopyLiteral(v, 2)];
|
| + ++histo->literal_[PixOrCopyLiteral(v, 1)];
|
| + ++histo->blue_[PixOrCopyLiteral(v, 0)];
|
| + } else if (PixOrCopyIsCacheIdx(v)) {
|
| + int literal_ix = 256 + NUM_LENGTH_CODES + PixOrCopyCacheIdx(v);
|
| + ++histo->literal_[literal_ix];
|
| + } else {
|
| + int code, extra_bits_count, extra_bits_value;
|
| + PrefixEncode(PixOrCopyLength(v),
|
| + &code, &extra_bits_count, &extra_bits_value);
|
| + ++histo->literal_[256 + code];
|
| + PrefixEncode(PixOrCopyDistance(v),
|
| + &code, &extra_bits_count, &extra_bits_value);
|
| + ++histo->distance_[code];
|
| + }
|
| +}
|
| +
|
| +
|
| +
|
| +static double BitsEntropy(const int* const array, int n) {
|
| + double retval = 0.;
|
| + int sum = 0;
|
| + int nonzeros = 0;
|
| + int max_val = 0;
|
| + int i;
|
| + double mix;
|
| + for (i = 0; i < n; ++i) {
|
| + if (array[i] != 0) {
|
| + sum += array[i];
|
| + ++nonzeros;
|
| + retval -= VP8LFastSLog2(array[i]);
|
| + if (max_val < array[i]) {
|
| + max_val = array[i];
|
| + }
|
| + }
|
| + }
|
| + retval += VP8LFastSLog2(sum);
|
| +
|
| + if (nonzeros < 5) {
|
| + if (nonzeros <= 1) {
|
| + return 0;
|
| + }
|
| + // Two symbols, they will be 0 and 1 in a Huffman code.
|
| + // Let's mix in a bit of entropy to favor good clustering when
|
| + // distributions of these are combined.
|
| + if (nonzeros == 2) {
|
| + return 0.99 * sum + 0.01 * retval;
|
| + }
|
| + // No matter what the entropy says, we cannot be better than min_limit
|
| + // with Huffman coding. I am mixing a bit of entropy into the
|
| + // min_limit since it produces much better (~0.5 %) compression results
|
| + // perhaps because of better entropy clustering.
|
| + if (nonzeros == 3) {
|
| + mix = 0.95;
|
| + } else {
|
| + mix = 0.7; // nonzeros == 4.
|
| + }
|
| + } else {
|
| + mix = 0.627;
|
| + }
|
| +
|
| + {
|
| + double min_limit = 2 * sum - max_val;
|
| + min_limit = mix * min_limit + (1.0 - mix) * retval;
|
| + return (retval < min_limit) ? min_limit : retval;
|
| + }
|
| +}
|
| +
|
| +double VP8LHistogramEstimateBitsBulk(const VP8LHistogram* const p) {
|
| + double retval = BitsEntropy(&p->literal_[0], VP8LHistogramNumCodes(p))
|
| + + BitsEntropy(&p->red_[0], 256)
|
| + + BitsEntropy(&p->blue_[0], 256)
|
| + + BitsEntropy(&p->alpha_[0], 256)
|
| + + BitsEntropy(&p->distance_[0], NUM_DISTANCE_CODES);
|
| + // Compute the extra bits cost.
|
| + int i;
|
| + for (i = 2; i < NUM_LENGTH_CODES - 2; ++i) {
|
| + retval +=
|
| + (i >> 1) * p->literal_[256 + i + 2];
|
| + }
|
| + for (i = 2; i < NUM_DISTANCE_CODES - 2; ++i) {
|
| + retval += (i >> 1) * p->distance_[i + 2];
|
| + }
|
| + return retval;
|
| +}
|
| +
|
| +
|
| +// Returns the cost encode the rle-encoded entropy code.
|
| +// The constants in this function are experimental.
|
| +static double HuffmanCost(const int* const population, int length) {
|
| + // Small bias because Huffman code length is typically not stored in
|
| + // full length.
|
| + static const int kHuffmanCodeOfHuffmanCodeSize = CODE_LENGTH_CODES * 3;
|
| + static const double kSmallBias = 9.1;
|
| + double retval = kHuffmanCodeOfHuffmanCodeSize - kSmallBias;
|
| + int streak = 0;
|
| + int i = 0;
|
| + for (; i < length - 1; ++i) {
|
| + ++streak;
|
| + if (population[i] == population[i + 1]) {
|
| + continue;
|
| + }
|
| + last_streak_hack:
|
| + // population[i] points now to the symbol in the streak of same values.
|
| + if (streak > 3) {
|
| + if (population[i] == 0) {
|
| + retval += 1.5625 + 0.234375 * streak;
|
| + } else {
|
| + retval += 2.578125 + 0.703125 * streak;
|
| + }
|
| + } else {
|
| + if (population[i] == 0) {
|
| + retval += 1.796875 * streak;
|
| + } else {
|
| + retval += 3.28125 * streak;
|
| + }
|
| + }
|
| + streak = 0;
|
| + }
|
| + if (i == length - 1) {
|
| + ++streak;
|
| + goto last_streak_hack;
|
| + }
|
| + return retval;
|
| +}
|
| +
|
| +// Estimates the Huffman dictionary + other block overhead size.
|
| +static double HistogramEstimateBitsHeader(const VP8LHistogram* const p) {
|
| + return HuffmanCost(&p->alpha_[0], 256) +
|
| + HuffmanCost(&p->red_[0], 256) +
|
| + HuffmanCost(&p->literal_[0], VP8LHistogramNumCodes(p)) +
|
| + HuffmanCost(&p->blue_[0], 256) +
|
| + HuffmanCost(&p->distance_[0], NUM_DISTANCE_CODES);
|
| +}
|
| +
|
| +double VP8LHistogramEstimateBits(const VP8LHistogram* const p) {
|
| + return HistogramEstimateBitsHeader(p) + VP8LHistogramEstimateBitsBulk(p);
|
| +}
|
| +
|
| +static void HistogramBuildImage(int xsize, int histo_bits,
|
| + const VP8LBackwardRefs* const backward_refs,
|
| + VP8LHistogramSet* const image) {
|
| + int i;
|
| + int x = 0, y = 0;
|
| + const int histo_xsize = VP8LSubSampleSize(xsize, histo_bits);
|
| + VP8LHistogram** const histograms = image->histograms;
|
| + assert(histo_bits > 0);
|
| + for (i = 0; i < backward_refs->size; ++i) {
|
| + const PixOrCopy* const v = &backward_refs->refs[i];
|
| + const int ix = (y >> histo_bits) * histo_xsize + (x >> histo_bits);
|
| + VP8LHistogramAddSinglePixOrCopy(histograms[ix], v);
|
| + x += PixOrCopyLength(v);
|
| + while (x >= xsize) {
|
| + x -= xsize;
|
| + ++y;
|
| + }
|
| + }
|
| +}
|
| +
|
| +static uint32_t MyRand(uint32_t *seed) {
|
| + *seed *= 16807U;
|
| + if (*seed == 0) {
|
| + *seed = 1;
|
| + }
|
| + return *seed;
|
| +}
|
| +
|
| +static int HistogramCombine(const VP8LHistogramSet* const in,
|
| + VP8LHistogramSet* const out, int num_pairs) {
|
| + int ok = 0;
|
| + int i, iter;
|
| + uint32_t seed = 0;
|
| + int tries_with_no_success = 0;
|
| + const int min_cluster_size = 2;
|
| + int out_size = in->size;
|
| + const int outer_iters = in->size * 3;
|
| + VP8LHistogram* const histos = (VP8LHistogram*)malloc(2 * sizeof(*histos));
|
| + VP8LHistogram* cur_combo = histos + 0; // trial merged histogram
|
| + VP8LHistogram* best_combo = histos + 1; // best merged histogram so far
|
| + if (histos == NULL) goto End;
|
| +
|
| + // Copy histograms from in[] to out[].
|
| + assert(in->size <= out->size);
|
| + for (i = 0; i < in->size; ++i) {
|
| + in->histograms[i]->bit_cost_ = VP8LHistogramEstimateBits(in->histograms[i]);
|
| + *out->histograms[i] = *in->histograms[i];
|
| + }
|
| +
|
| + // Collapse similar histograms in 'out'.
|
| + for (iter = 0; iter < outer_iters && out_size >= min_cluster_size; ++iter) {
|
| + // We pick the best pair to be combined out of 'inner_iters' pairs.
|
| + double best_cost_diff = 0.;
|
| + int best_idx1 = 0, best_idx2 = 1;
|
| + int j;
|
| + seed += iter;
|
| + for (j = 0; j < num_pairs; ++j) {
|
| + double curr_cost_diff;
|
| + // Choose two histograms at random and try to combine them.
|
| + const uint32_t idx1 = MyRand(&seed) % out_size;
|
| + const uint32_t tmp = ((j & 7) + 1) % (out_size - 1);
|
| + const uint32_t diff = (tmp < 3) ? tmp : MyRand(&seed) % (out_size - 1);
|
| + const uint32_t idx2 = (idx1 + diff + 1) % out_size;
|
| + if (idx1 == idx2) {
|
| + continue;
|
| + }
|
| + *cur_combo = *out->histograms[idx1];
|
| + VP8LHistogramAdd(cur_combo, out->histograms[idx2]);
|
| + cur_combo->bit_cost_ = VP8LHistogramEstimateBits(cur_combo);
|
| + // Calculate cost reduction on combining.
|
| + curr_cost_diff = cur_combo->bit_cost_
|
| + - out->histograms[idx1]->bit_cost_
|
| + - out->histograms[idx2]->bit_cost_;
|
| + if (best_cost_diff > curr_cost_diff) { // found a better pair?
|
| + { // swap cur/best combo histograms
|
| + VP8LHistogram* const tmp_histo = cur_combo;
|
| + cur_combo = best_combo;
|
| + best_combo = tmp_histo;
|
| + }
|
| + best_cost_diff = curr_cost_diff;
|
| + best_idx1 = idx1;
|
| + best_idx2 = idx2;
|
| + }
|
| + }
|
| +
|
| + if (best_cost_diff < 0.0) {
|
| + *out->histograms[best_idx1] = *best_combo;
|
| + // swap best_idx2 slot with last one (which is now unused)
|
| + --out_size;
|
| + if (best_idx2 != out_size) {
|
| + out->histograms[best_idx2] = out->histograms[out_size];
|
| + out->histograms[out_size] = NULL; // just for sanity check.
|
| + }
|
| + tries_with_no_success = 0;
|
| + }
|
| + if (++tries_with_no_success >= 50) {
|
| + break;
|
| + }
|
| + }
|
| + out->size = out_size;
|
| + ok = 1;
|
| +
|
| + End:
|
| + free(histos);
|
| + return ok;
|
| +}
|
| +
|
| +// -----------------------------------------------------------------------------
|
| +// Histogram refinement
|
| +
|
| +// What is the bit cost of moving square_histogram from
|
| +// cur_symbol to candidate_symbol.
|
| +// TODO(skal): we don't really need to copy the histogram and Add(). Instead
|
| +// we just need VP8LDualHistogramEstimateBits(A, B) estimation function.
|
| +static double HistogramDistance(const VP8LHistogram* const square_histogram,
|
| + const VP8LHistogram* const candidate) {
|
| + const double previous_bit_cost = candidate->bit_cost_;
|
| + double new_bit_cost;
|
| + VP8LHistogram modified_histo;
|
| + modified_histo = *candidate;
|
| + VP8LHistogramAdd(&modified_histo, square_histogram);
|
| + new_bit_cost = VP8LHistogramEstimateBits(&modified_histo);
|
| +
|
| + return new_bit_cost - previous_bit_cost;
|
| +}
|
| +
|
| +// Find the best 'out' histogram for each of the 'in' histograms.
|
| +// Note: we assume that out[]->bit_cost_ is already up-to-date.
|
| +static void HistogramRemap(const VP8LHistogramSet* const in,
|
| + const VP8LHistogramSet* const out,
|
| + uint16_t* const symbols) {
|
| + int i;
|
| + for (i = 0; i < in->size; ++i) {
|
| + int best_out = 0;
|
| + double best_bits = HistogramDistance(in->histograms[i], out->histograms[0]);
|
| + int k;
|
| + for (k = 1; k < out->size; ++k) {
|
| + const double cur_bits =
|
| + HistogramDistance(in->histograms[i], out->histograms[k]);
|
| + if (cur_bits < best_bits) {
|
| + best_bits = cur_bits;
|
| + best_out = k;
|
| + }
|
| + }
|
| + symbols[i] = best_out;
|
| + }
|
| +
|
| + // Recompute each out based on raw and symbols.
|
| + for (i = 0; i < out->size; ++i) {
|
| + HistogramClear(out->histograms[i]);
|
| + }
|
| + for (i = 0; i < in->size; ++i) {
|
| + VP8LHistogramAdd(out->histograms[symbols[i]], in->histograms[i]);
|
| + }
|
| +}
|
| +
|
| +int VP8LGetHistoImageSymbols(int xsize, int ysize,
|
| + const VP8LBackwardRefs* const refs,
|
| + int quality, int histo_bits, int cache_bits,
|
| + VP8LHistogramSet* const image_in,
|
| + uint16_t* const histogram_symbols) {
|
| + int ok = 0;
|
| + const int histo_xsize = histo_bits ? VP8LSubSampleSize(xsize, histo_bits) : 1;
|
| + const int histo_ysize = histo_bits ? VP8LSubSampleSize(ysize, histo_bits) : 1;
|
| + const int num_histo_pairs = 10 + quality / 2; // For HistogramCombine().
|
| + const int histo_image_raw_size = histo_xsize * histo_ysize;
|
| + VP8LHistogramSet* const image_out =
|
| + VP8LAllocateHistogramSet(histo_image_raw_size, cache_bits);
|
| + if (image_out == NULL) return 0;
|
| +
|
| + // Build histogram image.
|
| + HistogramBuildImage(xsize, histo_bits, refs, image_out);
|
| + // Collapse similar histograms.
|
| + if (!HistogramCombine(image_out, image_in, num_histo_pairs)) {
|
| + goto Error;
|
| + }
|
| + // Find the optimal map from original histograms to the final ones.
|
| + HistogramRemap(image_out, image_in, histogram_symbols);
|
| + ok = 1;
|
| +
|
| +Error:
|
| + free(image_out);
|
| + return ok;
|
| +}
|
|
|