| Index: src/pathops/SkPathOpsConic.cpp
|
| diff --git a/src/pathops/SkPathOpsConic.cpp b/src/pathops/SkPathOpsConic.cpp
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..1b544e405f5eb3aae75350ed1ab2fd26237f7e89
|
| --- /dev/null
|
| +++ b/src/pathops/SkPathOpsConic.cpp
|
| @@ -0,0 +1,132 @@
|
| +/*
|
| + * Copyright 2015 Google Inc.
|
| + *
|
| + * Use of this source code is governed by a BSD-style license that can be
|
| + * found in the LICENSE file.
|
| + */
|
| +#include "SkIntersections.h"
|
| +#include "SkLineParameters.h"
|
| +#include "SkPathOpsConic.h"
|
| +#include "SkPathOpsCubic.h"
|
| +#include "SkPathOpsQuad.h"
|
| +
|
| +// cribbed from the float version in SkGeometry.cpp
|
| +static void conic_deriv_coeff(const double src[],
|
| + SkScalar w,
|
| + double coeff[3]) {
|
| + const double P20 = src[4] - src[0];
|
| + const double P10 = src[2] - src[0];
|
| + const double wP10 = w * P10;
|
| + coeff[0] = w * P20 - P20;
|
| + coeff[1] = P20 - 2 * wP10;
|
| + coeff[2] = wP10;
|
| +}
|
| +
|
| +static double conic_eval_tan(const double coord[], SkScalar w, double t) {
|
| + double coeff[3];
|
| + conic_deriv_coeff(coord, w, coeff);
|
| + return t * (t * coeff[0] + coeff[1]) + coeff[2];
|
| +}
|
| +
|
| +int SkDConic::FindExtrema(const double src[], SkScalar w, double t[1]) {
|
| + double coeff[3];
|
| + conic_deriv_coeff(src, w, coeff);
|
| +
|
| + double tValues[2];
|
| + int roots = SkDQuad::RootsValidT(coeff[0], coeff[1], coeff[2], tValues);
|
| + SkASSERT(0 == roots || 1 == roots);
|
| +
|
| + if (1 == roots) {
|
| + t[0] = tValues[0];
|
| + return 1;
|
| + }
|
| + return 0;
|
| +}
|
| +
|
| +SkDVector SkDConic::dxdyAtT(double t) const {
|
| + SkDVector result = {
|
| + conic_eval_tan(&fPts[0].fX, fWeight, t),
|
| + conic_eval_tan(&fPts[0].fY, fWeight, t)
|
| + };
|
| + return result;
|
| +}
|
| +
|
| +static double conic_eval_numerator(const double src[], SkScalar w, double t) {
|
| + SkASSERT(src);
|
| + SkASSERT(t >= 0 && t <= 1);
|
| + double src2w = src[2] * w;
|
| + double C = src[0];
|
| + double A = src[4] - 2 * src2w + C;
|
| + double B = 2 * (src2w - C);
|
| + return (A * t + B) * t + C;
|
| +}
|
| +
|
| +
|
| +static double conic_eval_denominator(SkScalar w, double t) {
|
| + double B = 2 * (w - 1);
|
| + double C = 1;
|
| + double A = -B;
|
| + return (A * t + B) * t + C;
|
| +}
|
| +
|
| +bool SkDConic::hullIntersects(const SkDCubic& cubic, bool* isLinear) const {
|
| + return cubic.hullIntersects(*this, isLinear);
|
| +}
|
| +
|
| +SkDPoint SkDConic::ptAtT(double t) const {
|
| + double denominator = conic_eval_denominator(fWeight, t);
|
| + SkDPoint result = {
|
| + conic_eval_numerator(&fPts[0].fX, fWeight, t) / denominator,
|
| + conic_eval_numerator(&fPts[0].fY, fWeight, t) / denominator
|
| + };
|
| + return result;
|
| +}
|
| +
|
| +SkDPoint SkDConic::top(double startT, double endT) const {
|
| + SkDConic sub = subDivide(startT, endT);
|
| + SkDPoint topPt = sub[0];
|
| + if (topPt.fY > sub[2].fY || (topPt.fY == sub[2].fY && topPt.fX > sub[2].fX)) {
|
| + topPt = sub[2];
|
| + }
|
| + if (!between(sub[0].fY, sub[1].fY, sub[2].fY)) {
|
| + double extremeT;
|
| + if (FindExtrema(&sub[0].fY, sub.fWeight, &extremeT)) {
|
| + extremeT = startT + (endT - startT) * extremeT;
|
| + SkDPoint test = ptAtT(extremeT);
|
| + if (topPt.fY > test.fY || (topPt.fY == test.fY && topPt.fX > test.fX)) {
|
| + topPt = test;
|
| + }
|
| + }
|
| + }
|
| + return topPt;
|
| +}
|
| +
|
| +/* see quad subdivide for rationale */
|
| +SkDConic SkDConic::subDivide(double t1, double t2) const {
|
| + double ax = conic_eval_numerator(&fPts[0].fX, fWeight, t1);
|
| + double ay = conic_eval_numerator(&fPts[0].fY, fWeight, t1);
|
| + double az = conic_eval_denominator(fWeight, t1);
|
| + double midT = (t1 + t2) / 2;
|
| + double dx = conic_eval_numerator(&fPts[0].fX, fWeight, midT);
|
| + double dy = conic_eval_numerator(&fPts[0].fY, fWeight, midT);
|
| + double dz = conic_eval_denominator(fWeight, midT);
|
| + double cx = conic_eval_numerator(&fPts[0].fX, fWeight, t2);
|
| + double cy = conic_eval_numerator(&fPts[0].fY, fWeight, t2);
|
| + double cz = conic_eval_denominator(fWeight, t2);
|
| + double bx = 2 * dx - (ax + cx) / 2;
|
| + double by = 2 * dy - (ay + cy) / 2;
|
| + double bz = 2 * dz - (az + cz) / 2;
|
| + double dt = t2 - t1;
|
| + double dt_1 = 1 - dt;
|
| + SkScalar w = SkDoubleToScalar((1 + dt * (fWeight - 1))
|
| + / sqrt(dt * dt + 2 * dt * dt_1 * fWeight + dt_1 * dt_1));
|
| + SkDConic dst = {{{{ax / az, ay / az}, {bx / bz, by / bz}, {cx / cz, cy / cz}}}, w };
|
| + return dst;
|
| +}
|
| +
|
| +SkDPoint SkDConic::subDivide(const SkDPoint& a, const SkDPoint& c, double t1, double t2,
|
| + SkScalar* weight) const {
|
| + SkDConic chopped = this->subDivide(t1, t2);
|
| + *weight = chopped.fWeight;
|
| + return chopped[1];
|
| +}
|
|
|