Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(295)

Side by Side Diff: src/pathops/SkPathOpsConic.cpp

Issue 1037953004: add conics to path ops (Closed) Base URL: https://skia.googlesource.com/skia.git@master
Patch Set: fix linux build Created 5 years, 8 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
OLDNEW
(Empty)
1 /*
2 * Copyright 2015 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7 #include "SkIntersections.h"
8 #include "SkLineParameters.h"
9 #include "SkPathOpsConic.h"
10 #include "SkPathOpsCubic.h"
11 #include "SkPathOpsQuad.h"
12
13 // cribbed from the float version in SkGeometry.cpp
14 static void conic_deriv_coeff(const double src[],
15 SkScalar w,
16 double coeff[3]) {
17 const double P20 = src[4] - src[0];
18 const double P10 = src[2] - src[0];
19 const double wP10 = w * P10;
20 coeff[0] = w * P20 - P20;
21 coeff[1] = P20 - 2 * wP10;
22 coeff[2] = wP10;
23 }
24
25 static double conic_eval_tan(const double coord[], SkScalar w, double t) {
26 double coeff[3];
27 conic_deriv_coeff(coord, w, coeff);
28 return t * (t * coeff[0] + coeff[1]) + coeff[2];
29 }
30
31 int SkDConic::FindExtrema(const double src[], SkScalar w, double t[1]) {
32 double coeff[3];
33 conic_deriv_coeff(src, w, coeff);
34
35 double tValues[2];
36 int roots = SkDQuad::RootsValidT(coeff[0], coeff[1], coeff[2], tValues);
37 SkASSERT(0 == roots || 1 == roots);
38
39 if (1 == roots) {
40 t[0] = tValues[0];
41 return 1;
42 }
43 return 0;
44 }
45
46 SkDVector SkDConic::dxdyAtT(double t) const {
47 SkDVector result = {
48 conic_eval_tan(&fPts[0].fX, fWeight, t),
49 conic_eval_tan(&fPts[0].fY, fWeight, t)
50 };
51 return result;
52 }
53
54 static double conic_eval_numerator(const double src[], SkScalar w, double t) {
55 SkASSERT(src);
56 SkASSERT(t >= 0 && t <= 1);
57 double src2w = src[2] * w;
58 double C = src[0];
59 double A = src[4] - 2 * src2w + C;
60 double B = 2 * (src2w - C);
61 return (A * t + B) * t + C;
62 }
63
64
65 static double conic_eval_denominator(SkScalar w, double t) {
66 double B = 2 * (w - 1);
67 double C = 1;
68 double A = -B;
69 return (A * t + B) * t + C;
70 }
71
72 bool SkDConic::hullIntersects(const SkDCubic& cubic, bool* isLinear) const {
73 return cubic.hullIntersects(*this, isLinear);
74 }
75
76 SkDPoint SkDConic::ptAtT(double t) const {
77 double denominator = conic_eval_denominator(fWeight, t);
78 SkDPoint result = {
79 conic_eval_numerator(&fPts[0].fX, fWeight, t) / denominator,
80 conic_eval_numerator(&fPts[0].fY, fWeight, t) / denominator
81 };
82 return result;
83 }
84
85 SkDPoint SkDConic::top(double startT, double endT) const {
86 SkDConic sub = subDivide(startT, endT);
87 SkDPoint topPt = sub[0];
88 if (topPt.fY > sub[2].fY || (topPt.fY == sub[2].fY && topPt.fX > sub[2].fX)) {
89 topPt = sub[2];
90 }
91 if (!between(sub[0].fY, sub[1].fY, sub[2].fY)) {
92 double extremeT;
93 if (FindExtrema(&sub[0].fY, sub.fWeight, &extremeT)) {
94 extremeT = startT + (endT - startT) * extremeT;
95 SkDPoint test = ptAtT(extremeT);
96 if (topPt.fY > test.fY || (topPt.fY == test.fY && topPt.fX > test.fX )) {
97 topPt = test;
98 }
99 }
100 }
101 return topPt;
102 }
103
104 /* see quad subdivide for rationale */
105 SkDConic SkDConic::subDivide(double t1, double t2) const {
106 double ax = conic_eval_numerator(&fPts[0].fX, fWeight, t1);
107 double ay = conic_eval_numerator(&fPts[0].fY, fWeight, t1);
108 double az = conic_eval_denominator(fWeight, t1);
109 double midT = (t1 + t2) / 2;
110 double dx = conic_eval_numerator(&fPts[0].fX, fWeight, midT);
111 double dy = conic_eval_numerator(&fPts[0].fY, fWeight, midT);
112 double dz = conic_eval_denominator(fWeight, midT);
113 double cx = conic_eval_numerator(&fPts[0].fX, fWeight, t2);
114 double cy = conic_eval_numerator(&fPts[0].fY, fWeight, t2);
115 double cz = conic_eval_denominator(fWeight, t2);
116 double bx = 2 * dx - (ax + cx) / 2;
117 double by = 2 * dy - (ay + cy) / 2;
118 double bz = 2 * dz - (az + cz) / 2;
119 double dt = t2 - t1;
120 double dt_1 = 1 - dt;
121 SkScalar w = SkDoubleToScalar((1 + dt * (fWeight - 1))
122 / sqrt(dt * dt + 2 * dt * dt_1 * fWeight + dt_1 * dt_1));
123 SkDConic dst = {{{{ax / az, ay / az}, {bx / bz, by / bz}, {cx / cz, cy / cz} }}, w };
124 return dst;
125 }
126
127 SkDPoint SkDConic::subDivide(const SkDPoint& a, const SkDPoint& c, double t1, do uble t2,
128 SkScalar* weight) const {
129 SkDConic chopped = this->subDivide(t1, t2);
130 *weight = chopped.fWeight;
131 return chopped[1];
132 }
OLDNEW

Powered by Google App Engine
This is Rietveld 408576698