Index: src/pathops/SkPathOpsCubic.h |
diff --git a/src/pathops/SkPathOpsCubic.h b/src/pathops/SkPathOpsCubic.h |
index 1037cae4f759f94e5c01a3bd3784a44c16ceb3d5..9932e1d1bc300917783e4aa9416dad6f938dbf54 100644 |
--- a/src/pathops/SkPathOpsCubic.h |
+++ b/src/pathops/SkPathOpsCubic.h |
@@ -10,7 +10,6 @@ |
#include "SkPath.h" |
#include "SkPathOpsPoint.h" |
-#include "SkTArray.h" |
struct SkDCubicPair { |
const SkDCubic& first() const { return (const SkDCubic&) pts[0]; } |
@@ -19,13 +18,33 @@ struct SkDCubicPair { |
}; |
struct SkDCubic { |
+ static const int kPointCount = 4; |
+ static const int kPointLast = kPointCount - 1; |
+ static const int kMaxIntersections = 9; |
+ |
enum SearchAxis { |
kXAxis, |
kYAxis |
}; |
- const SkDPoint& operator[](int n) const { SkASSERT(n >= 0 && n < 4); return fPts[n]; } |
- SkDPoint& operator[](int n) { SkASSERT(n >= 0 && n < 4); return fPts[n]; } |
+ bool collapsed() const { |
+ return fPts[0].approximatelyEqual(fPts[1]) && fPts[0].approximatelyEqual(fPts[2]) |
+ && fPts[0].approximatelyEqual(fPts[3]); |
+ } |
+ |
+ bool controlsInside() const { |
+ SkDVector v01 = fPts[0] - fPts[1]; |
+ SkDVector v02 = fPts[0] - fPts[2]; |
+ SkDVector v03 = fPts[0] - fPts[3]; |
+ SkDVector v13 = fPts[1] - fPts[3]; |
+ SkDVector v23 = fPts[2] - fPts[3]; |
+ return v03.dot(v01) > 0 && v03.dot(v02) > 0 && v03.dot(v13) > 0 && v03.dot(v23) > 0; |
+ } |
+ |
+ static bool IsCubic() { return true; } |
+ |
+ const SkDPoint& operator[](int n) const { SkASSERT(n >= 0 && n < kPointCount); return fPts[n]; } |
+ SkDPoint& operator[](int n) { SkASSERT(n >= 0 && n < kPointCount); return fPts[n]; } |
void align(int endIndex, int ctrlIndex, SkDPoint* dstPt) const; |
double binarySearch(double min, double max, double axisIntercept, SearchAxis xAxis) const; |
@@ -33,30 +52,35 @@ struct SkDCubic { |
SkDCubicPair chopAt(double t) const; |
bool clockwise() const; |
static void Coefficients(const double* cubic, double* A, double* B, double* C, double* D); |
- bool controlsContainedByEnds() const; |
+ static bool ComplexBreak(const SkPoint pts[4], SkScalar* t); |
+ int convexHull(char order[kPointCount]) const; |
+ void dump() const; // callable from the debugger when the implementation code is linked in |
+ void dumpID(int id) const; |
+ void dumpInner() const; |
SkDVector dxdyAtT(double t) const; |
bool endsAreExtremaInXOrY() const; |
static int FindExtrema(double a, double b, double c, double d, double tValue[2]); |
int findInflections(double tValues[2]) const; |
- static int FindInflections(const SkPoint a[4], double tValues[2]) { |
+ static int FindInflections(const SkPoint a[kPointCount], double tValues[2]) { |
SkDCubic cubic; |
cubic.set(a); |
return cubic.findInflections(tValues); |
} |
int findMaxCurvature(double tValues[]) const; |
+ bool hullIntersects(const SkDCubic& c2, bool* isLinear) const; |
bool isLinear(int startIndex, int endIndex) const; |
bool monotonicInY() const; |
+ void otherPts(int index, const SkDPoint* o1Pts[kPointCount - 1]) const; |
SkDPoint ptAtT(double t) const; |
static int RootsReal(double A, double B, double C, double D, double t[3]); |
static int RootsValidT(const double A, const double B, const double C, double D, double s[3]); |
int searchRoots(double extremes[6], int extrema, double axisIntercept, |
SearchAxis xAxis, double* validRoots) const; |
- bool serpentine() const; |
- void set(const SkPoint pts[4]) { |
+ void set(const SkPoint pts[kPointCount]) { |
fPts[0] = pts[0]; |
fPts[1] = pts[1]; |
fPts[2] = pts[2]; |
@@ -65,7 +89,7 @@ struct SkDCubic { |
SkDCubic subDivide(double t1, double t2) const; |
- static SkDCubic SubDivide(const SkPoint a[4], double t1, double t2) { |
+ static SkDCubic SubDivide(const SkPoint a[kPointCount], double t1, double t2) { |
SkDCubic cubic; |
cubic.set(a); |
return cubic.subDivide(t1, t2); |
@@ -73,7 +97,7 @@ struct SkDCubic { |
void subDivide(const SkDPoint& a, const SkDPoint& d, double t1, double t2, SkDPoint p[2]) const; |
- static void SubDivide(const SkPoint pts[4], const SkDPoint& a, const SkDPoint& d, double t1, |
+ static void SubDivide(const SkPoint pts[kPointCount], const SkDPoint& a, const SkDPoint& d, double t1, |
double t2, SkDPoint p[2]) { |
SkDCubic cubic; |
cubic.set(pts); |
@@ -81,16 +105,29 @@ struct SkDCubic { |
} |
SkDPoint top(double startT, double endT) const; |
- void toQuadraticTs(double precision, SkTArray<double, true>* ts) const; |
SkDQuad toQuad() const; |
- // utilities callable by the user from the debugger when the implementation code is linked in |
- void dump() const; |
- void dumpNumber() const; |
- |
static const int gPrecisionUnit; |
- SkDPoint fPts[4]; |
+ SkDPoint fPts[kPointCount]; |
}; |
+/* Given the set [0, 1, 2, 3], and two of the four members, compute an XOR mask |
+ that computes the other two. Note that: |
+ |
+ one ^ two == 3 for (0, 3), (1, 2) |
+ one ^ two < 3 for (0, 1), (0, 2), (1, 3), (2, 3) |
+ 3 - (one ^ two) is either 0, 1, or 2 |
+ 1 >> (3 - (one ^ two)) is either 0 or 1 |
+thus: |
+ returned == 2 for (0, 3), (1, 2) |
+ returned == 3 for (0, 1), (0, 2), (1, 3), (2, 3) |
+given that: |
+ (0, 3) ^ 2 -> (2, 1) (1, 2) ^ 2 -> (3, 0) |
+ (0, 1) ^ 3 -> (3, 2) (0, 2) ^ 3 -> (3, 1) (1, 3) ^ 3 -> (2, 0) (2, 3) ^ 3 -> (1, 0) |
+*/ |
+inline int other_two(int one, int two) { |
+ return 1 >> (3 - (one ^ two)) ^ 3; |
+} |
+ |
#endif |