| Index: src/pathops/SkPathOpsCubic.cpp
|
| diff --git a/src/pathops/SkPathOpsCubic.cpp b/src/pathops/SkPathOpsCubic.cpp
|
| index 9d70d58ec15d7a5219637e2eff3f7b869b9f2b59..d4a5898a1d16a60e521c14baf66b702cd02faa0f 100644
|
| --- a/src/pathops/SkPathOpsCubic.cpp
|
| +++ b/src/pathops/SkPathOpsCubic.cpp
|
| @@ -4,6 +4,7 @@
|
| * Use of this source code is governed by a BSD-style license that can be
|
| * found in the LICENSE file.
|
| */
|
| +#include "SkGeometry.h"
|
| #include "SkLineParameters.h"
|
| #include "SkPathOpsCubic.h"
|
| #include "SkPathOpsLine.h"
|
| @@ -26,8 +27,8 @@ double SkDCubic::binarySearch(double min, double max, double axisIntercept,
|
| double priorT = t - step;
|
| SkASSERT(priorT >= min);
|
| SkDPoint lessPt = ptAtT(priorT);
|
| - if (approximately_equal(lessPt.fX, cubicAtT.fX)
|
| - && approximately_equal(lessPt.fY, cubicAtT.fY)) {
|
| + if (approximately_equal_half(lessPt.fX, cubicAtT.fX)
|
| + && approximately_equal_half(lessPt.fY, cubicAtT.fY)) {
|
| return -1; // binary search found no point at this axis intercept
|
| }
|
| double lessDist = (&lessPt.fX)[xAxis] - axisIntercept;
|
| @@ -41,10 +42,12 @@ double SkDCubic::binarySearch(double min, double max, double axisIntercept,
|
| t = priorT;
|
| } else {
|
| double nextT = t + lastStep;
|
| - SkASSERT(nextT <= max);
|
| + if (nextT > max) {
|
| + return -1;
|
| + }
|
| SkDPoint morePt = ptAtT(nextT);
|
| - if (approximately_equal(morePt.fX, cubicAtT.fX)
|
| - && approximately_equal(morePt.fY, cubicAtT.fY)) {
|
| + if (approximately_equal_half(morePt.fX, cubicAtT.fX)
|
| + && approximately_equal_half(morePt.fY, cubicAtT.fY)) {
|
| return -1; // binary search found no point at this axis intercept
|
| }
|
| double moreDist = (&morePt.fX)[xAxis] - axisIntercept;
|
| @@ -88,35 +91,6 @@ void SkDCubic::Coefficients(const double* src, double* A, double* B, double* C,
|
| *C -= 3 * *D; // C = -3*a + 3*b
|
| }
|
|
|
| -bool SkDCubic::controlsContainedByEnds() const {
|
| - SkDVector startTan = fPts[1] - fPts[0];
|
| - if (startTan.fX == 0 && startTan.fY == 0) {
|
| - startTan = fPts[2] - fPts[0];
|
| - }
|
| - SkDVector endTan = fPts[2] - fPts[3];
|
| - if (endTan.fX == 0 && endTan.fY == 0) {
|
| - endTan = fPts[1] - fPts[3];
|
| - }
|
| - if (startTan.dot(endTan) >= 0) {
|
| - return false;
|
| - }
|
| - SkDLine startEdge = {{fPts[0], fPts[0]}};
|
| - startEdge[1].fX -= startTan.fY;
|
| - startEdge[1].fY += startTan.fX;
|
| - SkDLine endEdge = {{fPts[3], fPts[3]}};
|
| - endEdge[1].fX -= endTan.fY;
|
| - endEdge[1].fY += endTan.fX;
|
| - double leftStart1 = startEdge.isLeft(fPts[1]);
|
| - if (leftStart1 * startEdge.isLeft(fPts[2]) < 0) {
|
| - return false;
|
| - }
|
| - double leftEnd1 = endEdge.isLeft(fPts[1]);
|
| - if (leftEnd1 * endEdge.isLeft(fPts[2]) < 0) {
|
| - return false;
|
| - }
|
| - return leftStart1 * leftEnd1 >= 0;
|
| -}
|
| -
|
| bool SkDCubic::endsAreExtremaInXOrY() const {
|
| return (between(fPts[0].fX, fPts[1].fX, fPts[3].fX)
|
| && between(fPts[0].fX, fPts[2].fX, fPts[3].fX))
|
| @@ -124,17 +98,120 @@ bool SkDCubic::endsAreExtremaInXOrY() const {
|
| && between(fPts[0].fY, fPts[2].fY, fPts[3].fY));
|
| }
|
|
|
| +// Do a quick reject by rotating all points relative to a line formed by
|
| +// a pair of one cubic's points. If the 2nd cubic's points
|
| +// are on the line or on the opposite side from the 1st cubic's 'odd man', the
|
| +// curves at most intersect at the endpoints.
|
| +/* if returning true, check contains true if cubic's hull collapsed, making the cubic linear
|
| + if returning false, check contains true if the the cubic pair have only the end point in common
|
| +*/
|
| +bool SkDCubic::hullIntersects(const SkDCubic& c2, bool* isLinear) const {
|
| + bool linear = true;
|
| + char hullOrder[4];
|
| + int hullCount = convexHull(hullOrder);
|
| + int end1 = hullOrder[0];
|
| + int hullIndex = 0;
|
| + const SkDPoint* endPt[2];
|
| + endPt[0] = &fPts[end1];
|
| + do {
|
| + hullIndex = (hullIndex + 1) % hullCount;
|
| + int end2 = hullOrder[hullIndex];
|
| + endPt[1] = &fPts[end2];
|
| + double origX = endPt[0]->fX;
|
| + double origY = endPt[0]->fY;
|
| + double adj = endPt[1]->fX - origX;
|
| + double opp = endPt[1]->fY - origY;
|
| + int oddManMask = other_two(end1, end2);
|
| + int oddMan = end1 ^ oddManMask;
|
| + double sign = (fPts[oddMan].fY - origY) * adj - (fPts[oddMan].fX - origX) * opp;
|
| + int oddMan2 = end2 ^ oddManMask;
|
| + double sign2 = (fPts[oddMan2].fY - origY) * adj - (fPts[oddMan2].fX - origX) * opp;
|
| + if (sign * sign2 < 0) {
|
| + continue;
|
| + }
|
| + if (approximately_zero(sign)) {
|
| + sign = sign2;
|
| + if (approximately_zero(sign)) {
|
| + continue;
|
| + }
|
| + }
|
| + linear = false;
|
| + bool foundOutlier = false;
|
| + for (int n = 0; n < kPointCount; ++n) {
|
| + double test = (c2[n].fY - origY) * adj - (c2[n].fX - origX) * opp;
|
| + if (test * sign > 0 && !precisely_zero(test)) {
|
| + foundOutlier = true;
|
| + break;
|
| + }
|
| + }
|
| + if (!foundOutlier) {
|
| + return false;
|
| + }
|
| + endPt[0] = endPt[1];
|
| + end1 = end2;
|
| + } while (hullIndex);
|
| + *isLinear = linear;
|
| + return true;
|
| +}
|
| +
|
| bool SkDCubic::isLinear(int startIndex, int endIndex) const {
|
| SkLineParameters lineParameters;
|
| lineParameters.cubicEndPoints(*this, startIndex, endIndex);
|
| // FIXME: maybe it's possible to avoid this and compare non-normalized
|
| lineParameters.normalize();
|
| + double tiniest = SkTMin(SkTMin(SkTMin(SkTMin(SkTMin(SkTMin(SkTMin(fPts[0].fX, fPts[0].fY),
|
| + fPts[1].fX), fPts[1].fY), fPts[2].fX), fPts[2].fY), fPts[3].fX), fPts[3].fY);
|
| + double largest = SkTMax(SkTMax(SkTMax(SkTMax(SkTMax(SkTMax(SkTMax(fPts[0].fX, fPts[0].fY),
|
| + fPts[1].fX), fPts[1].fY), fPts[2].fX), fPts[2].fY), fPts[3].fX), fPts[3].fY);
|
| + largest = SkTMax(largest, -tiniest);
|
| double distance = lineParameters.controlPtDistance(*this, 1);
|
| - if (!approximately_zero(distance)) {
|
| + if (!approximately_zero_when_compared_to(distance, largest)) {
|
| return false;
|
| }
|
| distance = lineParameters.controlPtDistance(*this, 2);
|
| - return approximately_zero(distance);
|
| + return approximately_zero_when_compared_to(distance, largest);
|
| +}
|
| +
|
| +bool SkDCubic::ComplexBreak(const SkPoint pointsPtr[4], SkScalar* t) {
|
| + SkScalar d[3];
|
| + SkCubicType cubicType = SkClassifyCubic(pointsPtr, d);
|
| + if (cubicType == kLoop_SkCubicType) {
|
| + // crib code from gpu path utils that finds t values where loop self-intersects
|
| + // use it to find mid of t values which should be a friendly place to chop
|
| + SkScalar tempSqrt = SkScalarSqrt(4.f * d[0] * d[2] - 3.f * d[1] * d[1]);
|
| + SkScalar ls = d[1] - tempSqrt;
|
| + SkScalar lt = 2.f * d[0];
|
| + SkScalar ms = d[1] + tempSqrt;
|
| + SkScalar mt = 2.f * d[0];
|
| + if (between(0, ls, lt) || between(0, ms, mt)) {
|
| + ls = ls / lt;
|
| + ms = ms / mt;
|
| + SkScalar smaller = SkTMax(0.f, SkTMin(ls, ms));
|
| + SkScalar larger = SkTMin(1.f, SkTMax(ls, ms));
|
| + *t = (smaller + larger) / 2;
|
| + return *t > 0 && *t < 1;
|
| + }
|
| + } else if (cubicType == kSerpentine_SkCubicType) {
|
| + SkDCubic cubic;
|
| + cubic.set(pointsPtr);
|
| + double inflectionTs[2];
|
| + int infTCount = cubic.findInflections(inflectionTs);
|
| + if (infTCount == 2) {
|
| + double maxCurvature[3];
|
| + int roots = cubic.findMaxCurvature(maxCurvature);
|
| + for (int index = 0; index < roots; ++index) {
|
| + if (between(inflectionTs[0], maxCurvature[index], inflectionTs[1])) {
|
| + *t = maxCurvature[index];
|
| + return true;
|
| + }
|
| + }
|
| + } else if (infTCount == 1) {
|
| + *t = inflectionTs[0];
|
| + return *t > 0 && *t < 1;
|
| + }
|
| + return false;
|
| + }
|
| + return false;
|
| }
|
|
|
| bool SkDCubic::monotonicInY() const {
|
| @@ -142,6 +219,13 @@ bool SkDCubic::monotonicInY() const {
|
| && between(fPts[0].fY, fPts[2].fY, fPts[3].fY);
|
| }
|
|
|
| +void SkDCubic::otherPts(int index, const SkDPoint* o1Pts[kPointCount - 1]) const {
|
| + int offset = (int) !SkToBool(index);
|
| + o1Pts[0] = &fPts[offset];
|
| + o1Pts[1] = &fPts[++offset];
|
| + o1Pts[2] = &fPts[++offset];
|
| +}
|
| +
|
| int SkDCubic::searchRoots(double extremeTs[6], int extrema, double axisIntercept,
|
| SearchAxis xAxis, double* validRoots) const {
|
| extrema += findInflections(&extremeTs[extrema]);
|
| @@ -163,26 +247,6 @@ int SkDCubic::searchRoots(double extremeTs[6], int extrema, double axisIntercept
|
| return validCount;
|
| }
|
|
|
| -bool SkDCubic::serpentine() const {
|
| -#if 0 // FIXME: enabling this fixes cubicOp114 but breaks cubicOp58d and cubicOp53d
|
| - double tValues[2];
|
| - // OPTIMIZATION : another case where caching the present of cubic inflections would be useful
|
| - return findInflections(tValues) > 1;
|
| -#endif
|
| - if (!controlsContainedByEnds()) {
|
| - return false;
|
| - }
|
| - double wiggle = (fPts[0].fX - fPts[2].fX) * (fPts[0].fY + fPts[2].fY);
|
| - for (int idx = 0; idx < 2; ++idx) {
|
| - wiggle += (fPts[idx + 1].fX - fPts[idx].fX) * (fPts[idx + 1].fY + fPts[idx].fY);
|
| - }
|
| - double waggle = (fPts[1].fX - fPts[3].fX) * (fPts[1].fY + fPts[3].fY);
|
| - for (int idx = 1; idx < 3; ++idx) {
|
| - waggle += (fPts[idx + 1].fX - fPts[idx].fX) * (fPts[idx + 1].fY + fPts[idx].fY);
|
| - }
|
| - return wiggle * waggle < 0;
|
| -}
|
| -
|
| // cubic roots
|
|
|
| static const double PI = 3.141592653589793;
|
| @@ -505,25 +569,10 @@ void SkDCubic::align(int endIndex, int ctrlIndex, SkDPoint* dstPt) const {
|
| void SkDCubic::subDivide(const SkDPoint& a, const SkDPoint& d,
|
| double t1, double t2, SkDPoint dst[2]) const {
|
| SkASSERT(t1 != t2);
|
| -#if 0
|
| - double ex = interp_cubic_coords(&fPts[0].fX, (t1 * 2 + t2) / 3);
|
| - double ey = interp_cubic_coords(&fPts[0].fY, (t1 * 2 + t2) / 3);
|
| - double fx = interp_cubic_coords(&fPts[0].fX, (t1 + t2 * 2) / 3);
|
| - double fy = interp_cubic_coords(&fPts[0].fY, (t1 + t2 * 2) / 3);
|
| - double mx = ex * 27 - a.fX * 8 - d.fX;
|
| - double my = ey * 27 - a.fY * 8 - d.fY;
|
| - double nx = fx * 27 - a.fX - d.fX * 8;
|
| - double ny = fy * 27 - a.fY - d.fY * 8;
|
| - /* bx = */ dst[0].fX = (mx * 2 - nx) / 18;
|
| - /* by = */ dst[0].fY = (my * 2 - ny) / 18;
|
| - /* cx = */ dst[1].fX = (nx * 2 - mx) / 18;
|
| - /* cy = */ dst[1].fY = (ny * 2 - my) / 18;
|
| -#else
|
| // this approach assumes that the control points computed directly are accurate enough
|
| SkDCubic sub = subDivide(t1, t2);
|
| dst[0] = sub[1] + (a - sub[0]);
|
| dst[1] = sub[2] + (d - sub[3]);
|
| -#endif
|
| if (t1 == 0 || t2 == 0) {
|
| align(0, 1, t1 == 0 ? &dst[0] : &dst[1]);
|
| }
|
|
|