Index: src/pathops/SkQuarticRoot.cpp |
diff --git a/src/pathops/SkQuarticRoot.cpp b/src/pathops/SkQuarticRoot.cpp |
deleted file mode 100644 |
index f9a7bf517990bc8cd9fdb72b3b8db1be9daa5fdf..0000000000000000000000000000000000000000 |
--- a/src/pathops/SkQuarticRoot.cpp |
+++ /dev/null |
@@ -1,168 +0,0 @@ |
-// from http://tog.acm.org/resources/GraphicsGems/gems/Roots3And4.c |
-/* |
- * Roots3And4.c |
- * |
- * Utility functions to find cubic and quartic roots, |
- * coefficients are passed like this: |
- * |
- * c[0] + c[1]*x + c[2]*x^2 + c[3]*x^3 + c[4]*x^4 = 0 |
- * |
- * The functions return the number of non-complex roots and |
- * put the values into the s array. |
- * |
- * Author: Jochen Schwarze (schwarze@isa.de) |
- * |
- * Jan 26, 1990 Version for Graphics Gems |
- * Oct 11, 1990 Fixed sign problem for negative q's in SolveQuartic |
- * (reported by Mark Podlipec), |
- * Old-style function definitions, |
- * IsZero() as a macro |
- * Nov 23, 1990 Some systems do not declare acos() and cbrt() in |
- * <math.h>, though the functions exist in the library. |
- * If large coefficients are used, EQN_EPS should be |
- * reduced considerably (e.g. to 1E-30), results will be |
- * correct but multiple roots might be reported more |
- * than once. |
- */ |
- |
-#include "SkPathOpsCubic.h" |
-#include "SkPathOpsQuad.h" |
-#include "SkQuarticRoot.h" |
- |
-int SkReducedQuarticRoots(const double t4, const double t3, const double t2, const double t1, |
- const double t0, const bool oneHint, double roots[4]) { |
-#ifdef SK_DEBUG |
- // create a string mathematica understands |
- // GDB set print repe 15 # if repeated digits is a bother |
- // set print elements 400 # if line doesn't fit |
- char str[1024]; |
- sk_bzero(str, sizeof(str)); |
- SK_SNPRINTF(str, sizeof(str), |
- "Solve[%1.19g x^4 + %1.19g x^3 + %1.19g x^2 + %1.19g x + %1.19g == 0, x]", |
- t4, t3, t2, t1, t0); |
- SkPathOpsDebug::MathematicaIze(str, sizeof(str)); |
-#if ONE_OFF_DEBUG && ONE_OFF_DEBUG_MATHEMATICA |
- SkDebugf("%s\n", str); |
-#endif |
-#endif |
- if (approximately_zero_when_compared_to(t4, t0) // 0 is one root |
- && approximately_zero_when_compared_to(t4, t1) |
- && approximately_zero_when_compared_to(t4, t2)) { |
- if (approximately_zero_when_compared_to(t3, t0) |
- && approximately_zero_when_compared_to(t3, t1) |
- && approximately_zero_when_compared_to(t3, t2)) { |
- return SkDQuad::RootsReal(t2, t1, t0, roots); |
- } |
- if (approximately_zero_when_compared_to(t4, t3)) { |
- return SkDCubic::RootsReal(t3, t2, t1, t0, roots); |
- } |
- } |
- if ((approximately_zero_when_compared_to(t0, t1) || approximately_zero(t1)) // 0 is one root |
- // && approximately_zero_when_compared_to(t0, t2) |
- && approximately_zero_when_compared_to(t0, t3) |
- && approximately_zero_when_compared_to(t0, t4)) { |
- int num = SkDCubic::RootsReal(t4, t3, t2, t1, roots); |
- for (int i = 0; i < num; ++i) { |
- if (approximately_zero(roots[i])) { |
- return num; |
- } |
- } |
- roots[num++] = 0; |
- return num; |
- } |
- if (oneHint) { |
- SkASSERT(approximately_zero_double(t4 + t3 + t2 + t1 + t0) || |
- approximately_zero_when_compared_to(t4 + t3 + t2 + t1 + t0, // 1 is one root |
- SkTMax(fabs(t4), SkTMax(fabs(t3), SkTMax(fabs(t2), SkTMax(fabs(t1), fabs(t0))))))); |
- // note that -C == A + B + D + E |
- int num = SkDCubic::RootsReal(t4, t4 + t3, -(t1 + t0), -t0, roots); |
- for (int i = 0; i < num; ++i) { |
- if (approximately_equal(roots[i], 1)) { |
- return num; |
- } |
- } |
- roots[num++] = 1; |
- return num; |
- } |
- return -1; |
-} |
- |
-int SkQuarticRootsReal(int firstCubicRoot, const double A, const double B, const double C, |
- const double D, const double E, double s[4]) { |
- double u, v; |
- /* normal form: x^4 + Ax^3 + Bx^2 + Cx + D = 0 */ |
- const double invA = 1 / A; |
- const double a = B * invA; |
- const double b = C * invA; |
- const double c = D * invA; |
- const double d = E * invA; |
- /* substitute x = y - a/4 to eliminate cubic term: |
- x^4 + px^2 + qx + r = 0 */ |
- const double a2 = a * a; |
- const double p = -3 * a2 / 8 + b; |
- const double q = a2 * a / 8 - a * b / 2 + c; |
- const double r = -3 * a2 * a2 / 256 + a2 * b / 16 - a * c / 4 + d; |
- int num; |
- double largest = SkTMax(fabs(p), fabs(q)); |
- if (approximately_zero_when_compared_to(r, largest)) { |
- /* no absolute term: y(y^3 + py + q) = 0 */ |
- num = SkDCubic::RootsReal(1, 0, p, q, s); |
- s[num++] = 0; |
- } else { |
- /* solve the resolvent cubic ... */ |
- double cubicRoots[3]; |
- int roots = SkDCubic::RootsReal(1, -p / 2, -r, r * p / 2 - q * q / 8, cubicRoots); |
- int index; |
- /* ... and take one real solution ... */ |
- double z; |
- num = 0; |
- int num2 = 0; |
- for (index = firstCubicRoot; index < roots; ++index) { |
- z = cubicRoots[index]; |
- /* ... to build two quadric equations */ |
- u = z * z - r; |
- v = 2 * z - p; |
- if (approximately_zero_squared(u)) { |
- u = 0; |
- } else if (u > 0) { |
- u = sqrt(u); |
- } else { |
- continue; |
- } |
- if (approximately_zero_squared(v)) { |
- v = 0; |
- } else if (v > 0) { |
- v = sqrt(v); |
- } else { |
- continue; |
- } |
- num = SkDQuad::RootsReal(1, q < 0 ? -v : v, z - u, s); |
- num2 = SkDQuad::RootsReal(1, q < 0 ? v : -v, z + u, s + num); |
- if (!((num | num2) & 1)) { |
- break; // prefer solutions without single quad roots |
- } |
- } |
- num += num2; |
- if (!num) { |
- return 0; // no valid cubic root |
- } |
- } |
- /* resubstitute */ |
- const double sub = a / 4; |
- for (int i = 0; i < num; ++i) { |
- s[i] -= sub; |
- } |
- // eliminate duplicates |
- for (int i = 0; i < num - 1; ++i) { |
- for (int j = i + 1; j < num; ) { |
- if (AlmostDequalUlps(s[i], s[j])) { |
- if (j < --num) { |
- s[j] = s[num]; |
- } |
- } else { |
- ++j; |
- } |
- } |
- } |
- return num; |
-} |