OLD | NEW |
| (Empty) |
1 // from http://tog.acm.org/resources/GraphicsGems/gems/Roots3And4.c | |
2 /* | |
3 * Roots3And4.c | |
4 * | |
5 * Utility functions to find cubic and quartic roots, | |
6 * coefficients are passed like this: | |
7 * | |
8 * c[0] + c[1]*x + c[2]*x^2 + c[3]*x^3 + c[4]*x^4 = 0 | |
9 * | |
10 * The functions return the number of non-complex roots and | |
11 * put the values into the s array. | |
12 * | |
13 * Author: Jochen Schwarze (schwarze@isa.de) | |
14 * | |
15 * Jan 26, 1990 Version for Graphics Gems | |
16 * Oct 11, 1990 Fixed sign problem for negative q's in SolveQuartic | |
17 * (reported by Mark Podlipec), | |
18 * Old-style function definitions, | |
19 * IsZero() as a macro | |
20 * Nov 23, 1990 Some systems do not declare acos() and cbrt() in | |
21 * <math.h>, though the functions exist in the library. | |
22 * If large coefficients are used, EQN_EPS should be | |
23 * reduced considerably (e.g. to 1E-30), results will be | |
24 * correct but multiple roots might be reported more | |
25 * than once. | |
26 */ | |
27 | |
28 #include "SkPathOpsCubic.h" | |
29 #include "SkPathOpsQuad.h" | |
30 #include "SkQuarticRoot.h" | |
31 | |
32 int SkReducedQuarticRoots(const double t4, const double t3, const double t2, con
st double t1, | |
33 const double t0, const bool oneHint, double roots[4]) { | |
34 #ifdef SK_DEBUG | |
35 // create a string mathematica understands | |
36 // GDB set print repe 15 # if repeated digits is a bother | |
37 // set print elements 400 # if line doesn't fit | |
38 char str[1024]; | |
39 sk_bzero(str, sizeof(str)); | |
40 SK_SNPRINTF(str, sizeof(str), | |
41 "Solve[%1.19g x^4 + %1.19g x^3 + %1.19g x^2 + %1.19g x + %1.19g == 0
, x]", | |
42 t4, t3, t2, t1, t0); | |
43 SkPathOpsDebug::MathematicaIze(str, sizeof(str)); | |
44 #if ONE_OFF_DEBUG && ONE_OFF_DEBUG_MATHEMATICA | |
45 SkDebugf("%s\n", str); | |
46 #endif | |
47 #endif | |
48 if (approximately_zero_when_compared_to(t4, t0) // 0 is one root | |
49 && approximately_zero_when_compared_to(t4, t1) | |
50 && approximately_zero_when_compared_to(t4, t2)) { | |
51 if (approximately_zero_when_compared_to(t3, t0) | |
52 && approximately_zero_when_compared_to(t3, t1) | |
53 && approximately_zero_when_compared_to(t3, t2)) { | |
54 return SkDQuad::RootsReal(t2, t1, t0, roots); | |
55 } | |
56 if (approximately_zero_when_compared_to(t4, t3)) { | |
57 return SkDCubic::RootsReal(t3, t2, t1, t0, roots); | |
58 } | |
59 } | |
60 if ((approximately_zero_when_compared_to(t0, t1) || approximately_zero(t1))
// 0 is one root | |
61 // && approximately_zero_when_compared_to(t0, t2) | |
62 && approximately_zero_when_compared_to(t0, t3) | |
63 && approximately_zero_when_compared_to(t0, t4)) { | |
64 int num = SkDCubic::RootsReal(t4, t3, t2, t1, roots); | |
65 for (int i = 0; i < num; ++i) { | |
66 if (approximately_zero(roots[i])) { | |
67 return num; | |
68 } | |
69 } | |
70 roots[num++] = 0; | |
71 return num; | |
72 } | |
73 if (oneHint) { | |
74 SkASSERT(approximately_zero_double(t4 + t3 + t2 + t1 + t0) || | |
75 approximately_zero_when_compared_to(t4 + t3 + t2 + t1 + t0, //
1 is one root | |
76 SkTMax(fabs(t4), SkTMax(fabs(t3), SkTMax(fabs(t2), SkTMax(fabs(t
1), fabs(t0))))))); | |
77 // note that -C == A + B + D + E | |
78 int num = SkDCubic::RootsReal(t4, t4 + t3, -(t1 + t0), -t0, roots); | |
79 for (int i = 0; i < num; ++i) { | |
80 if (approximately_equal(roots[i], 1)) { | |
81 return num; | |
82 } | |
83 } | |
84 roots[num++] = 1; | |
85 return num; | |
86 } | |
87 return -1; | |
88 } | |
89 | |
90 int SkQuarticRootsReal(int firstCubicRoot, const double A, const double B, const
double C, | |
91 const double D, const double E, double s[4]) { | |
92 double u, v; | |
93 /* normal form: x^4 + Ax^3 + Bx^2 + Cx + D = 0 */ | |
94 const double invA = 1 / A; | |
95 const double a = B * invA; | |
96 const double b = C * invA; | |
97 const double c = D * invA; | |
98 const double d = E * invA; | |
99 /* substitute x = y - a/4 to eliminate cubic term: | |
100 x^4 + px^2 + qx + r = 0 */ | |
101 const double a2 = a * a; | |
102 const double p = -3 * a2 / 8 + b; | |
103 const double q = a2 * a / 8 - a * b / 2 + c; | |
104 const double r = -3 * a2 * a2 / 256 + a2 * b / 16 - a * c / 4 + d; | |
105 int num; | |
106 double largest = SkTMax(fabs(p), fabs(q)); | |
107 if (approximately_zero_when_compared_to(r, largest)) { | |
108 /* no absolute term: y(y^3 + py + q) = 0 */ | |
109 num = SkDCubic::RootsReal(1, 0, p, q, s); | |
110 s[num++] = 0; | |
111 } else { | |
112 /* solve the resolvent cubic ... */ | |
113 double cubicRoots[3]; | |
114 int roots = SkDCubic::RootsReal(1, -p / 2, -r, r * p / 2 - q * q / 8, cu
bicRoots); | |
115 int index; | |
116 /* ... and take one real solution ... */ | |
117 double z; | |
118 num = 0; | |
119 int num2 = 0; | |
120 for (index = firstCubicRoot; index < roots; ++index) { | |
121 z = cubicRoots[index]; | |
122 /* ... to build two quadric equations */ | |
123 u = z * z - r; | |
124 v = 2 * z - p; | |
125 if (approximately_zero_squared(u)) { | |
126 u = 0; | |
127 } else if (u > 0) { | |
128 u = sqrt(u); | |
129 } else { | |
130 continue; | |
131 } | |
132 if (approximately_zero_squared(v)) { | |
133 v = 0; | |
134 } else if (v > 0) { | |
135 v = sqrt(v); | |
136 } else { | |
137 continue; | |
138 } | |
139 num = SkDQuad::RootsReal(1, q < 0 ? -v : v, z - u, s); | |
140 num2 = SkDQuad::RootsReal(1, q < 0 ? v : -v, z + u, s + num); | |
141 if (!((num | num2) & 1)) { | |
142 break; // prefer solutions without single quad roots | |
143 } | |
144 } | |
145 num += num2; | |
146 if (!num) { | |
147 return 0; // no valid cubic root | |
148 } | |
149 } | |
150 /* resubstitute */ | |
151 const double sub = a / 4; | |
152 for (int i = 0; i < num; ++i) { | |
153 s[i] -= sub; | |
154 } | |
155 // eliminate duplicates | |
156 for (int i = 0; i < num - 1; ++i) { | |
157 for (int j = i + 1; j < num; ) { | |
158 if (AlmostDequalUlps(s[i], s[j])) { | |
159 if (j < --num) { | |
160 s[j] = s[num]; | |
161 } | |
162 } else { | |
163 ++j; | |
164 } | |
165 } | |
166 } | |
167 return num; | |
168 } | |
OLD | NEW |