Index: src/pathops/SkDQuadIntersection.cpp |
diff --git a/src/pathops/SkDQuadIntersection.cpp b/src/pathops/SkDQuadIntersection.cpp |
new file mode 100644 |
index 0000000000000000000000000000000000000000..fcb9171f32f798c1b5b93808d3d80fa8dd3aee4e |
--- /dev/null |
+++ b/src/pathops/SkDQuadIntersection.cpp |
@@ -0,0 +1,617 @@ |
+// Another approach is to start with the implicit form of one curve and solve |
+// (seek implicit coefficients in QuadraticParameter.cpp |
+// by substituting in the parametric form of the other. |
+// The downside of this approach is that early rejects are difficult to come by. |
+// http://planetmath.org/encyclopedia/GaloisTheoreticDerivationOfTheQuarticFormula.html#step |
+ |
+#include "SkDQuadImplicit.h" |
+#include "SkIntersections.h" |
+#include "SkPathOpsLine.h" |
+#include "SkQuarticRoot.h" |
+#include "SkTArray.h" |
+#include "SkTSort.h" |
+ |
+/* given the implicit form 0 = Ax^2 + Bxy + Cy^2 + Dx + Ey + F |
+ * and given x = at^2 + bt + c (the parameterized form) |
+ * y = dt^2 + et + f |
+ * then |
+ * 0 = A(at^2+bt+c)(at^2+bt+c)+B(at^2+bt+c)(dt^2+et+f)+C(dt^2+et+f)(dt^2+et+f)+D(at^2+bt+c)+E(dt^2+et+f)+F |
+ */ |
+ |
+static int findRoots(const SkDQuadImplicit& i, const SkDQuad& quad, double roots[4], |
+ bool oneHint, bool flip, int firstCubicRoot) { |
+ SkDQuad flipped; |
+ const SkDQuad& q = flip ? (flipped = quad.flip()) : quad; |
+ double a, b, c; |
+ SkDQuad::SetABC(&q[0].fX, &a, &b, &c); |
+ double d, e, f; |
+ SkDQuad::SetABC(&q[0].fY, &d, &e, &f); |
+ const double t4 = i.x2() * a * a |
+ + i.xy() * a * d |
+ + i.y2() * d * d; |
+ const double t3 = 2 * i.x2() * a * b |
+ + i.xy() * (a * e + b * d) |
+ + 2 * i.y2() * d * e; |
+ const double t2 = i.x2() * (b * b + 2 * a * c) |
+ + i.xy() * (c * d + b * e + a * f) |
+ + i.y2() * (e * e + 2 * d * f) |
+ + i.x() * a |
+ + i.y() * d; |
+ const double t1 = 2 * i.x2() * b * c |
+ + i.xy() * (c * e + b * f) |
+ + 2 * i.y2() * e * f |
+ + i.x() * b |
+ + i.y() * e; |
+ const double t0 = i.x2() * c * c |
+ + i.xy() * c * f |
+ + i.y2() * f * f |
+ + i.x() * c |
+ + i.y() * f |
+ + i.c(); |
+ int rootCount = SkReducedQuarticRoots(t4, t3, t2, t1, t0, oneHint, roots); |
+ if (rootCount < 0) { |
+ rootCount = SkQuarticRootsReal(firstCubicRoot, t4, t3, t2, t1, t0, roots); |
+ } |
+ if (flip) { |
+ for (int index = 0; index < rootCount; ++index) { |
+ roots[index] = 1 - roots[index]; |
+ } |
+ } |
+ return rootCount; |
+} |
+ |
+static int addValidRoots(const double roots[4], const int count, double valid[4]) { |
+ int result = 0; |
+ int index; |
+ for (index = 0; index < count; ++index) { |
+ if (!approximately_zero_or_more(roots[index]) || !approximately_one_or_less(roots[index])) { |
+ continue; |
+ } |
+ double t = 1 - roots[index]; |
+ if (approximately_less_than_zero(t)) { |
+ t = 0; |
+ } else if (approximately_greater_than_one(t)) { |
+ t = 1; |
+ } |
+ SkASSERT(t >= 0 && t <= 1); |
+ valid[result++] = t; |
+ } |
+ return result; |
+} |
+ |
+static bool only_end_pts_in_common(const SkDQuad& q1, const SkDQuad& q2) { |
+// the idea here is to see at minimum do a quick reject by rotating all points |
+// to either side of the line formed by connecting the endpoints |
+// if the opposite curves points are on the line or on the other side, the |
+// curves at most intersect at the endpoints |
+ for (int oddMan = 0; oddMan < 3; ++oddMan) { |
+ const SkDPoint* endPt[2]; |
+ for (int opp = 1; opp < 3; ++opp) { |
+ int end = oddMan ^ opp; // choose a value not equal to oddMan |
+ if (3 == end) { // and correct so that largest value is 1 or 2 |
+ end = opp; |
+ } |
+ endPt[opp - 1] = &q1[end]; |
+ } |
+ double origX = endPt[0]->fX; |
+ double origY = endPt[0]->fY; |
+ double adj = endPt[1]->fX - origX; |
+ double opp = endPt[1]->fY - origY; |
+ double sign = (q1[oddMan].fY - origY) * adj - (q1[oddMan].fX - origX) * opp; |
+ if (approximately_zero(sign)) { |
+ goto tryNextHalfPlane; |
+ } |
+ for (int n = 0; n < 3; ++n) { |
+ double test = (q2[n].fY - origY) * adj - (q2[n].fX - origX) * opp; |
+ if (test * sign > 0 && !precisely_zero(test)) { |
+ goto tryNextHalfPlane; |
+ } |
+ } |
+ return true; |
+tryNextHalfPlane: |
+ ; |
+ } |
+ return false; |
+} |
+ |
+// returns false if there's more than one intercept or the intercept doesn't match the point |
+// returns true if the intercept was successfully added or if the |
+// original quads need to be subdivided |
+static bool add_intercept(const SkDQuad& q1, const SkDQuad& q2, double tMin, double tMax, |
+ SkIntersections* i, bool* subDivide) { |
+ double tMid = (tMin + tMax) / 2; |
+ SkDPoint mid = q2.ptAtT(tMid); |
+ SkDLine line; |
+ line[0] = line[1] = mid; |
+ SkDVector dxdy = q2.dxdyAtT(tMid); |
+ line[0] -= dxdy; |
+ line[1] += dxdy; |
+ SkIntersections rootTs; |
+ rootTs.allowNear(false); |
+ int roots = rootTs.intersect(q1, line); |
+ if (roots == 0) { |
+ if (subDivide) { |
+ *subDivide = true; |
+ } |
+ return true; |
+ } |
+ if (roots == 2) { |
+ return false; |
+ } |
+ SkDPoint pt2 = q1.ptAtT(rootTs[0][0]); |
+ if (!pt2.approximatelyEqual(mid)) { |
+ return false; |
+ } |
+ i->insertSwap(rootTs[0][0], tMid, pt2); |
+ return true; |
+} |
+ |
+static bool is_linear_inner(const SkDQuad& q1, double t1s, double t1e, const SkDQuad& q2, |
+ double t2s, double t2e, SkIntersections* i, bool* subDivide) { |
+ SkDQuad hull = q1.subDivide(t1s, t1e); |
+ SkDLine line = {{hull[2], hull[0]}}; |
+ const SkDLine* testLines[] = { &line, (const SkDLine*) &hull[0], (const SkDLine*) &hull[1] }; |
+ const size_t kTestCount = SK_ARRAY_COUNT(testLines); |
+ SkSTArray<kTestCount * 2, double, true> tsFound; |
+ for (size_t index = 0; index < kTestCount; ++index) { |
+ SkIntersections rootTs; |
+ rootTs.allowNear(false); |
+ int roots = rootTs.intersect(q2, *testLines[index]); |
+ for (int idx2 = 0; idx2 < roots; ++idx2) { |
+ double t = rootTs[0][idx2]; |
+#if 0 // def SK_DEBUG // FIXME : accurate for error = 16, error of 17.5 seen |
+// {{{136.08723965397621, 1648.2814535211637}, {593.49031197259478, 1190.8784277439891}, {593.49031197259478, 544.0128173828125}}} |
+// {{{-968.181396484375, 544.0128173828125}, {592.2825927734375, 870.552490234375}, {593.435302734375, 557.8828125}}} |
+ |
+ SkDPoint qPt = q2.ptAtT(t); |
+ SkDPoint lPt = testLines[index]->ptAtT(rootTs[1][idx2]); |
+ SkASSERT(qPt.approximatelyDEqual(lPt)); |
+#endif |
+ if (approximately_negative(t - t2s) || approximately_positive(t - t2e)) { |
+ continue; |
+ } |
+ tsFound.push_back(rootTs[0][idx2]); |
+ } |
+ } |
+ int tCount = tsFound.count(); |
+ if (tCount <= 0) { |
+ return true; |
+ } |
+ double tMin, tMax; |
+ if (tCount == 1) { |
+ tMin = tMax = tsFound[0]; |
+ } else { |
+ SkASSERT(tCount > 1); |
+ SkTQSort<double>(tsFound.begin(), tsFound.end() - 1); |
+ tMin = tsFound[0]; |
+ tMax = tsFound[tsFound.count() - 1]; |
+ } |
+ SkDPoint end = q2.ptAtT(t2s); |
+ bool startInTriangle = hull.pointInHull(end); |
+ if (startInTriangle) { |
+ tMin = t2s; |
+ } |
+ end = q2.ptAtT(t2e); |
+ bool endInTriangle = hull.pointInHull(end); |
+ if (endInTriangle) { |
+ tMax = t2e; |
+ } |
+ int split = 0; |
+ SkDVector dxy1, dxy2; |
+ if (tMin != tMax || tCount > 2) { |
+ dxy2 = q2.dxdyAtT(tMin); |
+ for (int index = 1; index < tCount; ++index) { |
+ dxy1 = dxy2; |
+ dxy2 = q2.dxdyAtT(tsFound[index]); |
+ double dot = dxy1.dot(dxy2); |
+ if (dot < 0) { |
+ split = index - 1; |
+ break; |
+ } |
+ } |
+ } |
+ if (split == 0) { // there's one point |
+ if (add_intercept(q1, q2, tMin, tMax, i, subDivide)) { |
+ return true; |
+ } |
+ i->swap(); |
+ return is_linear_inner(q2, tMin, tMax, q1, t1s, t1e, i, subDivide); |
+ } |
+ // At this point, we have two ranges of t values -- treat each separately at the split |
+ bool result; |
+ if (add_intercept(q1, q2, tMin, tsFound[split - 1], i, subDivide)) { |
+ result = true; |
+ } else { |
+ i->swap(); |
+ result = is_linear_inner(q2, tMin, tsFound[split - 1], q1, t1s, t1e, i, subDivide); |
+ } |
+ if (add_intercept(q1, q2, tsFound[split], tMax, i, subDivide)) { |
+ result = true; |
+ } else { |
+ i->swap(); |
+ result |= is_linear_inner(q2, tsFound[split], tMax, q1, t1s, t1e, i, subDivide); |
+ } |
+ return result; |
+} |
+ |
+static double flat_measure(const SkDQuad& q) { |
+ SkDVector mid = q[1] - q[0]; |
+ SkDVector dxy = q[2] - q[0]; |
+ double length = dxy.length(); // OPTIMIZE: get rid of sqrt |
+ return fabs(mid.cross(dxy) / length); |
+} |
+ |
+// FIXME ? should this measure both and then use the quad that is the flattest as the line? |
+static bool is_linear(const SkDQuad& q1, const SkDQuad& q2, SkIntersections* i) { |
+ if (i->flatMeasure()) { |
+ // for backward compatibility, use the old method when called from cubics |
+ // FIXME: figure out how to fix cubics when it calls the new path |
+ double measure = flat_measure(q1); |
+ // OPTIMIZE: (get rid of sqrt) use approximately_zero |
+ if (!approximately_zero_sqrt(measure)) { // approximately_zero_sqrt |
+ return false; |
+ } |
+ } else { |
+ if (!q1.isLinear(0, 2)) { |
+ return false; |
+ } |
+ } |
+ return is_linear_inner(q1, 0, 1, q2, 0, 1, i, NULL); |
+} |
+ |
+// FIXME: if flat measure is sufficiently large, then probably the quartic solution failed |
+// avoid imprecision incurred with chopAt |
+static void relaxed_is_linear(const SkDQuad* q1, double s1, double e1, const SkDQuad* q2, |
+ double s2, double e2, SkIntersections* i) { |
+ double m1 = flat_measure(*q1); |
+ double m2 = flat_measure(*q2); |
+ i->reset(); |
+ const SkDQuad* rounder, *flatter; |
+ double sf, midf, ef, sr, er; |
+ if (m2 < m1) { |
+ rounder = q1; |
+ sr = s1; |
+ er = e1; |
+ flatter = q2; |
+ sf = s2; |
+ midf = (s2 + e2) / 2; |
+ ef = e2; |
+ } else { |
+ rounder = q2; |
+ sr = s2; |
+ er = e2; |
+ flatter = q1; |
+ sf = s1; |
+ midf = (s1 + e1) / 2; |
+ ef = e1; |
+ } |
+ bool subDivide = false; |
+ is_linear_inner(*flatter, sf, ef, *rounder, sr, er, i, &subDivide); |
+ if (subDivide) { |
+ relaxed_is_linear(flatter, sf, midf, rounder, sr, er, i); |
+ relaxed_is_linear(flatter, midf, ef, rounder, sr, er, i); |
+ } |
+ if (m2 < m1) { |
+ i->swapPts(); |
+ } |
+} |
+ |
+// each time through the loop, this computes values it had from the last loop |
+// if i == j == 1, the center values are still good |
+// otherwise, for i != 1 or j != 1, four of the values are still good |
+// and if i == 1 ^ j == 1, an additional value is good |
+static bool binary_search(const SkDQuad& quad1, const SkDQuad& quad2, double* t1Seed, |
+ double* t2Seed, SkDPoint* pt) { |
+ double tStep = ROUGH_EPSILON; |
+ SkDPoint t1[3], t2[3]; |
+ int calcMask = ~0; |
+ do { |
+ if (calcMask & (1 << 1)) t1[1] = quad1.ptAtT(*t1Seed); |
+ if (calcMask & (1 << 4)) t2[1] = quad2.ptAtT(*t2Seed); |
+ if (t1[1].approximatelyEqual(t2[1])) { |
+ *pt = t1[1]; |
+ #if ONE_OFF_DEBUG |
+ SkDebugf("%s t1=%1.9g t2=%1.9g (%1.9g,%1.9g) == (%1.9g,%1.9g)\n", __FUNCTION__, |
+ t1Seed, t2Seed, t1[1].fX, t1[1].fY, t2[1].fX, t2[1].fY); |
+ #endif |
+ if (*t1Seed < 0) { |
+ *t1Seed = 0; |
+ } else if (*t1Seed > 1) { |
+ *t1Seed = 1; |
+ } |
+ if (*t2Seed < 0) { |
+ *t2Seed = 0; |
+ } else if (*t2Seed > 1) { |
+ *t2Seed = 1; |
+ } |
+ return true; |
+ } |
+ if (calcMask & (1 << 0)) t1[0] = quad1.ptAtT(SkTMax(0., *t1Seed - tStep)); |
+ if (calcMask & (1 << 2)) t1[2] = quad1.ptAtT(SkTMin(1., *t1Seed + tStep)); |
+ if (calcMask & (1 << 3)) t2[0] = quad2.ptAtT(SkTMax(0., *t2Seed - tStep)); |
+ if (calcMask & (1 << 5)) t2[2] = quad2.ptAtT(SkTMin(1., *t2Seed + tStep)); |
+ double dist[3][3]; |
+ // OPTIMIZE: using calcMask value permits skipping some distance calcuations |
+ // if prior loop's results are moved to correct slot for reuse |
+ dist[1][1] = t1[1].distanceSquared(t2[1]); |
+ int best_i = 1, best_j = 1; |
+ for (int i = 0; i < 3; ++i) { |
+ for (int j = 0; j < 3; ++j) { |
+ if (i == 1 && j == 1) { |
+ continue; |
+ } |
+ dist[i][j] = t1[i].distanceSquared(t2[j]); |
+ if (dist[best_i][best_j] > dist[i][j]) { |
+ best_i = i; |
+ best_j = j; |
+ } |
+ } |
+ } |
+ if (best_i == 1 && best_j == 1) { |
+ tStep /= 2; |
+ if (tStep < FLT_EPSILON_HALF) { |
+ break; |
+ } |
+ calcMask = (1 << 0) | (1 << 2) | (1 << 3) | (1 << 5); |
+ continue; |
+ } |
+ if (best_i == 0) { |
+ *t1Seed -= tStep; |
+ t1[2] = t1[1]; |
+ t1[1] = t1[0]; |
+ calcMask = 1 << 0; |
+ } else if (best_i == 2) { |
+ *t1Seed += tStep; |
+ t1[0] = t1[1]; |
+ t1[1] = t1[2]; |
+ calcMask = 1 << 2; |
+ } else { |
+ calcMask = 0; |
+ } |
+ if (best_j == 0) { |
+ *t2Seed -= tStep; |
+ t2[2] = t2[1]; |
+ t2[1] = t2[0]; |
+ calcMask |= 1 << 3; |
+ } else if (best_j == 2) { |
+ *t2Seed += tStep; |
+ t2[0] = t2[1]; |
+ t2[1] = t2[2]; |
+ calcMask |= 1 << 5; |
+ } |
+ } while (true); |
+#if ONE_OFF_DEBUG |
+ SkDebugf("%s t1=%1.9g t2=%1.9g (%1.9g,%1.9g) != (%1.9g,%1.9g) %s\n", __FUNCTION__, |
+ t1Seed, t2Seed, t1[1].fX, t1[1].fY, t1[2].fX, t1[2].fY); |
+#endif |
+ return false; |
+} |
+ |
+static void lookNearEnd(const SkDQuad& q1, const SkDQuad& q2, int testT, |
+ const SkIntersections& orig, bool swap, SkIntersections* i) { |
+ if (orig.used() == 1 && orig[!swap][0] == testT) { |
+ return; |
+ } |
+ if (orig.used() == 2 && orig[!swap][1] == testT) { |
+ return; |
+ } |
+ SkDLine tmpLine; |
+ int testTIndex = testT << 1; |
+ tmpLine[0] = tmpLine[1] = q2[testTIndex]; |
+ tmpLine[1].fX += q2[1].fY - q2[testTIndex].fY; |
+ tmpLine[1].fY -= q2[1].fX - q2[testTIndex].fX; |
+ SkIntersections impTs; |
+ impTs.intersectRay(q1, tmpLine); |
+ for (int index = 0; index < impTs.used(); ++index) { |
+ SkDPoint realPt = impTs.pt(index); |
+ if (!tmpLine[0].approximatelyPEqual(realPt)) { |
+ continue; |
+ } |
+ if (swap) { |
+ i->insert(testT, impTs[0][index], tmpLine[0]); |
+ } else { |
+ i->insert(impTs[0][index], testT, tmpLine[0]); |
+ } |
+ } |
+} |
+ |
+int SkIntersections::intersect(const SkDQuad& q1, const SkDQuad& q2) { |
+ fMax = 4; |
+ bool exactMatch = false; |
+ // if the quads share an end point, check to see if they overlap |
+ for (int i1 = 0; i1 < 3; i1 += 2) { |
+ for (int i2 = 0; i2 < 3; i2 += 2) { |
+ if (q1[i1].asSkPoint() == q2[i2].asSkPoint()) { |
+ insert(i1 >> 1, i2 >> 1, q1[i1]); |
+ exactMatch = true; |
+ } |
+ } |
+ } |
+ SkASSERT(fUsed < 3); |
+ if (only_end_pts_in_common(q1, q2)) { |
+ return fUsed; |
+ } |
+ if (only_end_pts_in_common(q2, q1)) { |
+ return fUsed; |
+ } |
+ // see if either quad is really a line |
+ // FIXME: figure out why reduce step didn't find this earlier |
+ if (is_linear(q1, q2, this)) { |
+ return fUsed; |
+ } |
+ SkIntersections swapped; |
+ swapped.setMax(fMax); |
+ if (is_linear(q2, q1, &swapped)) { |
+ swapped.swapPts(); |
+ *this = swapped; |
+ return fUsed; |
+ } |
+ SkIntersections copyI(*this); |
+ lookNearEnd(q1, q2, 0, *this, false, ©I); |
+ lookNearEnd(q1, q2, 1, *this, false, ©I); |
+ lookNearEnd(q2, q1, 0, *this, true, ©I); |
+ lookNearEnd(q2, q1, 1, *this, true, ©I); |
+ int innerEqual = 0; |
+ if (copyI.fUsed >= 2) { |
+ SkASSERT(copyI.fUsed <= 4); |
+ double width = copyI[0][1] - copyI[0][0]; |
+ int midEnd = 1; |
+ for (int index = 2; index < copyI.fUsed; ++index) { |
+ double testWidth = copyI[0][index] - copyI[0][index - 1]; |
+ if (testWidth <= width) { |
+ continue; |
+ } |
+ midEnd = index; |
+ } |
+ for (int index = 0; index < 2; ++index) { |
+ double testT = (copyI[0][midEnd] * (index + 1) |
+ + copyI[0][midEnd - 1] * (2 - index)) / 3; |
+ SkDPoint testPt1 = q1.ptAtT(testT); |
+ testT = (copyI[1][midEnd] * (index + 1) + copyI[1][midEnd - 1] * (2 - index)) / 3; |
+ SkDPoint testPt2 = q2.ptAtT(testT); |
+ innerEqual += testPt1.approximatelyEqual(testPt2); |
+ } |
+ } |
+ bool expectCoincident = copyI.fUsed >= 2 && innerEqual == 2; |
+ if (expectCoincident) { |
+ reset(); |
+ insertCoincident(copyI[0][0], copyI[1][0], copyI.fPt[0]); |
+ int last = copyI.fUsed - 1; |
+ insertCoincident(copyI[0][last], copyI[1][last], copyI.fPt[last]); |
+ return fUsed; |
+ } |
+ SkDQuadImplicit i1(q1); |
+ SkDQuadImplicit i2(q2); |
+ int index; |
+ bool flip1 = q1[2] == q2[0]; |
+ bool flip2 = q1[0] == q2[2]; |
+ bool useCubic = q1[0] == q2[0]; |
+ double roots1[4]; |
+ int rootCount = findRoots(i2, q1, roots1, useCubic, flip1, 0); |
+ // OPTIMIZATION: could short circuit here if all roots are < 0 or > 1 |
+ double roots1Copy[4]; |
+ SkDEBUGCODE(sk_bzero(roots1Copy, sizeof(roots1Copy))); |
+ int r1Count = addValidRoots(roots1, rootCount, roots1Copy); |
+ SkDPoint pts1[4]; |
+ for (index = 0; index < r1Count; ++index) { |
+ pts1[index] = q1.ptAtT(roots1Copy[index]); |
+ } |
+ double roots2[4]; |
+ int rootCount2 = findRoots(i1, q2, roots2, useCubic, flip2, 0); |
+ double roots2Copy[4]; |
+ int r2Count = addValidRoots(roots2, rootCount2, roots2Copy); |
+ SkDPoint pts2[4]; |
+ for (index = 0; index < r2Count; ++index) { |
+ pts2[index] = q2.ptAtT(roots2Copy[index]); |
+ } |
+ bool triedBinary = false; |
+ if (r1Count == r2Count && r1Count <= 1) { |
+ if (r1Count == 1 && used() == 0) { |
+ if (pts1[0].approximatelyEqual(pts2[0])) { |
+ insert(roots1Copy[0], roots2Copy[0], pts1[0]); |
+ } else { |
+ // find intersection by chasing t |
+ triedBinary = true; |
+ if (binary_search(q1, q2, roots1Copy, roots2Copy, pts1)) { |
+ insert(roots1Copy[0], roots2Copy[0], pts1[0]); |
+ } |
+ } |
+ } |
+ return fUsed; |
+ } |
+ int closest[4]; |
+ double dist[4]; |
+ bool foundSomething = false; |
+ for (index = 0; index < r1Count; ++index) { |
+ dist[index] = DBL_MAX; |
+ closest[index] = -1; |
+ for (int ndex2 = 0; ndex2 < r2Count; ++ndex2) { |
+ if (!pts2[ndex2].approximatelyEqual(pts1[index])) { |
+ continue; |
+ } |
+ double dx = pts2[ndex2].fX - pts1[index].fX; |
+ double dy = pts2[ndex2].fY - pts1[index].fY; |
+ double distance = dx * dx + dy * dy; |
+ if (dist[index] <= distance) { |
+ continue; |
+ } |
+ for (int outer = 0; outer < index; ++outer) { |
+ if (closest[outer] != ndex2) { |
+ continue; |
+ } |
+ if (dist[outer] < distance) { |
+ goto next; |
+ } |
+ closest[outer] = -1; |
+ } |
+ dist[index] = distance; |
+ closest[index] = ndex2; |
+ foundSomething = true; |
+ next: |
+ ; |
+ } |
+ } |
+ if (r1Count && r2Count && !foundSomething) { |
+ if (exactMatch) { |
+ SkASSERT(fUsed > 0); |
+ return fUsed; |
+ } |
+ relaxed_is_linear(&q1, 0, 1, &q2, 0, 1, this); |
+ if (fUsed) { |
+ return fUsed; |
+ } |
+ // maybe the curves are nearly coincident |
+ if (!triedBinary && binary_search(q1, q2, roots1Copy, roots2Copy, pts1)) { |
+ insert(roots1Copy[0], roots2Copy[0], pts1[0]); |
+ } |
+ return fUsed; |
+ } |
+ int used = 0; |
+ do { |
+ double lowest = DBL_MAX; |
+ int lowestIndex = -1; |
+ for (index = 0; index < r1Count; ++index) { |
+ if (closest[index] < 0) { |
+ continue; |
+ } |
+ if (roots1Copy[index] < lowest) { |
+ lowestIndex = index; |
+ lowest = roots1Copy[index]; |
+ } |
+ } |
+ if (lowestIndex < 0) { |
+ break; |
+ } |
+ insert(roots1Copy[lowestIndex], roots2Copy[closest[lowestIndex]], |
+ pts1[lowestIndex]); |
+ closest[lowestIndex] = -1; |
+ } while (++used < r1Count); |
+ return fUsed; |
+} |
+ |
+void SkIntersections::alignQuadPts(const SkPoint q1[3], const SkPoint q2[3]) { |
+ for (int index = 0; index < used(); ++index) { |
+ const SkPoint result = pt(index).asSkPoint(); |
+ if (q1[0] == result || q1[2] == result || q2[0] == result || q2[2] == result) { |
+ continue; |
+ } |
+ if (SkDPoint::ApproximatelyEqual(q1[0], result)) { |
+ fPt[index].set(q1[0]); |
+// SkASSERT(way_roughly_zero(fT[0][index])); // this value can be bigger than way rough |
+ fT[0][index] = 0; |
+ } else if (SkDPoint::ApproximatelyEqual(q1[2], result)) { |
+ fPt[index].set(q1[2]); |
+// SkASSERT(way_roughly_equal(fT[0][index], 1)); |
+ fT[0][index] = 1; |
+ } |
+ if (SkDPoint::ApproximatelyEqual(q2[0], result)) { |
+ fPt[index].set(q2[0]); |
+// SkASSERT(way_roughly_zero(fT[1][index])); |
+ fT[1][index] = 0; |
+ } else if (SkDPoint::ApproximatelyEqual(q2[2], result)) { |
+ fPt[index].set(q2[2]); |
+// SkASSERT(way_roughly_equal(fT[1][index], 1)); |
+ fT[1][index] = 1; |
+ } |
+ } |
+} |