Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(1128)

Unified Diff: src/pathops/SkDQuadIntersection.cpp

Issue 1029993002: Revert of pathops version two (Closed) Base URL: https://skia.googlesource.com/skia.git@master
Patch Set: Created 5 years, 9 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
« no previous file with comments | « src/pathops/SkDQuadImplicit.cpp ('k') | src/pathops/SkDQuadLineIntersection.cpp » ('j') | no next file with comments »
Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Index: src/pathops/SkDQuadIntersection.cpp
diff --git a/src/pathops/SkDQuadIntersection.cpp b/src/pathops/SkDQuadIntersection.cpp
new file mode 100644
index 0000000000000000000000000000000000000000..fcb9171f32f798c1b5b93808d3d80fa8dd3aee4e
--- /dev/null
+++ b/src/pathops/SkDQuadIntersection.cpp
@@ -0,0 +1,617 @@
+// Another approach is to start with the implicit form of one curve and solve
+// (seek implicit coefficients in QuadraticParameter.cpp
+// by substituting in the parametric form of the other.
+// The downside of this approach is that early rejects are difficult to come by.
+// http://planetmath.org/encyclopedia/GaloisTheoreticDerivationOfTheQuarticFormula.html#step
+
+#include "SkDQuadImplicit.h"
+#include "SkIntersections.h"
+#include "SkPathOpsLine.h"
+#include "SkQuarticRoot.h"
+#include "SkTArray.h"
+#include "SkTSort.h"
+
+/* given the implicit form 0 = Ax^2 + Bxy + Cy^2 + Dx + Ey + F
+ * and given x = at^2 + bt + c (the parameterized form)
+ * y = dt^2 + et + f
+ * then
+ * 0 = A(at^2+bt+c)(at^2+bt+c)+B(at^2+bt+c)(dt^2+et+f)+C(dt^2+et+f)(dt^2+et+f)+D(at^2+bt+c)+E(dt^2+et+f)+F
+ */
+
+static int findRoots(const SkDQuadImplicit& i, const SkDQuad& quad, double roots[4],
+ bool oneHint, bool flip, int firstCubicRoot) {
+ SkDQuad flipped;
+ const SkDQuad& q = flip ? (flipped = quad.flip()) : quad;
+ double a, b, c;
+ SkDQuad::SetABC(&q[0].fX, &a, &b, &c);
+ double d, e, f;
+ SkDQuad::SetABC(&q[0].fY, &d, &e, &f);
+ const double t4 = i.x2() * a * a
+ + i.xy() * a * d
+ + i.y2() * d * d;
+ const double t3 = 2 * i.x2() * a * b
+ + i.xy() * (a * e + b * d)
+ + 2 * i.y2() * d * e;
+ const double t2 = i.x2() * (b * b + 2 * a * c)
+ + i.xy() * (c * d + b * e + a * f)
+ + i.y2() * (e * e + 2 * d * f)
+ + i.x() * a
+ + i.y() * d;
+ const double t1 = 2 * i.x2() * b * c
+ + i.xy() * (c * e + b * f)
+ + 2 * i.y2() * e * f
+ + i.x() * b
+ + i.y() * e;
+ const double t0 = i.x2() * c * c
+ + i.xy() * c * f
+ + i.y2() * f * f
+ + i.x() * c
+ + i.y() * f
+ + i.c();
+ int rootCount = SkReducedQuarticRoots(t4, t3, t2, t1, t0, oneHint, roots);
+ if (rootCount < 0) {
+ rootCount = SkQuarticRootsReal(firstCubicRoot, t4, t3, t2, t1, t0, roots);
+ }
+ if (flip) {
+ for (int index = 0; index < rootCount; ++index) {
+ roots[index] = 1 - roots[index];
+ }
+ }
+ return rootCount;
+}
+
+static int addValidRoots(const double roots[4], const int count, double valid[4]) {
+ int result = 0;
+ int index;
+ for (index = 0; index < count; ++index) {
+ if (!approximately_zero_or_more(roots[index]) || !approximately_one_or_less(roots[index])) {
+ continue;
+ }
+ double t = 1 - roots[index];
+ if (approximately_less_than_zero(t)) {
+ t = 0;
+ } else if (approximately_greater_than_one(t)) {
+ t = 1;
+ }
+ SkASSERT(t >= 0 && t <= 1);
+ valid[result++] = t;
+ }
+ return result;
+}
+
+static bool only_end_pts_in_common(const SkDQuad& q1, const SkDQuad& q2) {
+// the idea here is to see at minimum do a quick reject by rotating all points
+// to either side of the line formed by connecting the endpoints
+// if the opposite curves points are on the line or on the other side, the
+// curves at most intersect at the endpoints
+ for (int oddMan = 0; oddMan < 3; ++oddMan) {
+ const SkDPoint* endPt[2];
+ for (int opp = 1; opp < 3; ++opp) {
+ int end = oddMan ^ opp; // choose a value not equal to oddMan
+ if (3 == end) { // and correct so that largest value is 1 or 2
+ end = opp;
+ }
+ endPt[opp - 1] = &q1[end];
+ }
+ double origX = endPt[0]->fX;
+ double origY = endPt[0]->fY;
+ double adj = endPt[1]->fX - origX;
+ double opp = endPt[1]->fY - origY;
+ double sign = (q1[oddMan].fY - origY) * adj - (q1[oddMan].fX - origX) * opp;
+ if (approximately_zero(sign)) {
+ goto tryNextHalfPlane;
+ }
+ for (int n = 0; n < 3; ++n) {
+ double test = (q2[n].fY - origY) * adj - (q2[n].fX - origX) * opp;
+ if (test * sign > 0 && !precisely_zero(test)) {
+ goto tryNextHalfPlane;
+ }
+ }
+ return true;
+tryNextHalfPlane:
+ ;
+ }
+ return false;
+}
+
+// returns false if there's more than one intercept or the intercept doesn't match the point
+// returns true if the intercept was successfully added or if the
+// original quads need to be subdivided
+static bool add_intercept(const SkDQuad& q1, const SkDQuad& q2, double tMin, double tMax,
+ SkIntersections* i, bool* subDivide) {
+ double tMid = (tMin + tMax) / 2;
+ SkDPoint mid = q2.ptAtT(tMid);
+ SkDLine line;
+ line[0] = line[1] = mid;
+ SkDVector dxdy = q2.dxdyAtT(tMid);
+ line[0] -= dxdy;
+ line[1] += dxdy;
+ SkIntersections rootTs;
+ rootTs.allowNear(false);
+ int roots = rootTs.intersect(q1, line);
+ if (roots == 0) {
+ if (subDivide) {
+ *subDivide = true;
+ }
+ return true;
+ }
+ if (roots == 2) {
+ return false;
+ }
+ SkDPoint pt2 = q1.ptAtT(rootTs[0][0]);
+ if (!pt2.approximatelyEqual(mid)) {
+ return false;
+ }
+ i->insertSwap(rootTs[0][0], tMid, pt2);
+ return true;
+}
+
+static bool is_linear_inner(const SkDQuad& q1, double t1s, double t1e, const SkDQuad& q2,
+ double t2s, double t2e, SkIntersections* i, bool* subDivide) {
+ SkDQuad hull = q1.subDivide(t1s, t1e);
+ SkDLine line = {{hull[2], hull[0]}};
+ const SkDLine* testLines[] = { &line, (const SkDLine*) &hull[0], (const SkDLine*) &hull[1] };
+ const size_t kTestCount = SK_ARRAY_COUNT(testLines);
+ SkSTArray<kTestCount * 2, double, true> tsFound;
+ for (size_t index = 0; index < kTestCount; ++index) {
+ SkIntersections rootTs;
+ rootTs.allowNear(false);
+ int roots = rootTs.intersect(q2, *testLines[index]);
+ for (int idx2 = 0; idx2 < roots; ++idx2) {
+ double t = rootTs[0][idx2];
+#if 0 // def SK_DEBUG // FIXME : accurate for error = 16, error of 17.5 seen
+// {{{136.08723965397621, 1648.2814535211637}, {593.49031197259478, 1190.8784277439891}, {593.49031197259478, 544.0128173828125}}}
+// {{{-968.181396484375, 544.0128173828125}, {592.2825927734375, 870.552490234375}, {593.435302734375, 557.8828125}}}
+
+ SkDPoint qPt = q2.ptAtT(t);
+ SkDPoint lPt = testLines[index]->ptAtT(rootTs[1][idx2]);
+ SkASSERT(qPt.approximatelyDEqual(lPt));
+#endif
+ if (approximately_negative(t - t2s) || approximately_positive(t - t2e)) {
+ continue;
+ }
+ tsFound.push_back(rootTs[0][idx2]);
+ }
+ }
+ int tCount = tsFound.count();
+ if (tCount <= 0) {
+ return true;
+ }
+ double tMin, tMax;
+ if (tCount == 1) {
+ tMin = tMax = tsFound[0];
+ } else {
+ SkASSERT(tCount > 1);
+ SkTQSort<double>(tsFound.begin(), tsFound.end() - 1);
+ tMin = tsFound[0];
+ tMax = tsFound[tsFound.count() - 1];
+ }
+ SkDPoint end = q2.ptAtT(t2s);
+ bool startInTriangle = hull.pointInHull(end);
+ if (startInTriangle) {
+ tMin = t2s;
+ }
+ end = q2.ptAtT(t2e);
+ bool endInTriangle = hull.pointInHull(end);
+ if (endInTriangle) {
+ tMax = t2e;
+ }
+ int split = 0;
+ SkDVector dxy1, dxy2;
+ if (tMin != tMax || tCount > 2) {
+ dxy2 = q2.dxdyAtT(tMin);
+ for (int index = 1; index < tCount; ++index) {
+ dxy1 = dxy2;
+ dxy2 = q2.dxdyAtT(tsFound[index]);
+ double dot = dxy1.dot(dxy2);
+ if (dot < 0) {
+ split = index - 1;
+ break;
+ }
+ }
+ }
+ if (split == 0) { // there's one point
+ if (add_intercept(q1, q2, tMin, tMax, i, subDivide)) {
+ return true;
+ }
+ i->swap();
+ return is_linear_inner(q2, tMin, tMax, q1, t1s, t1e, i, subDivide);
+ }
+ // At this point, we have two ranges of t values -- treat each separately at the split
+ bool result;
+ if (add_intercept(q1, q2, tMin, tsFound[split - 1], i, subDivide)) {
+ result = true;
+ } else {
+ i->swap();
+ result = is_linear_inner(q2, tMin, tsFound[split - 1], q1, t1s, t1e, i, subDivide);
+ }
+ if (add_intercept(q1, q2, tsFound[split], tMax, i, subDivide)) {
+ result = true;
+ } else {
+ i->swap();
+ result |= is_linear_inner(q2, tsFound[split], tMax, q1, t1s, t1e, i, subDivide);
+ }
+ return result;
+}
+
+static double flat_measure(const SkDQuad& q) {
+ SkDVector mid = q[1] - q[0];
+ SkDVector dxy = q[2] - q[0];
+ double length = dxy.length(); // OPTIMIZE: get rid of sqrt
+ return fabs(mid.cross(dxy) / length);
+}
+
+// FIXME ? should this measure both and then use the quad that is the flattest as the line?
+static bool is_linear(const SkDQuad& q1, const SkDQuad& q2, SkIntersections* i) {
+ if (i->flatMeasure()) {
+ // for backward compatibility, use the old method when called from cubics
+ // FIXME: figure out how to fix cubics when it calls the new path
+ double measure = flat_measure(q1);
+ // OPTIMIZE: (get rid of sqrt) use approximately_zero
+ if (!approximately_zero_sqrt(measure)) { // approximately_zero_sqrt
+ return false;
+ }
+ } else {
+ if (!q1.isLinear(0, 2)) {
+ return false;
+ }
+ }
+ return is_linear_inner(q1, 0, 1, q2, 0, 1, i, NULL);
+}
+
+// FIXME: if flat measure is sufficiently large, then probably the quartic solution failed
+// avoid imprecision incurred with chopAt
+static void relaxed_is_linear(const SkDQuad* q1, double s1, double e1, const SkDQuad* q2,
+ double s2, double e2, SkIntersections* i) {
+ double m1 = flat_measure(*q1);
+ double m2 = flat_measure(*q2);
+ i->reset();
+ const SkDQuad* rounder, *flatter;
+ double sf, midf, ef, sr, er;
+ if (m2 < m1) {
+ rounder = q1;
+ sr = s1;
+ er = e1;
+ flatter = q2;
+ sf = s2;
+ midf = (s2 + e2) / 2;
+ ef = e2;
+ } else {
+ rounder = q2;
+ sr = s2;
+ er = e2;
+ flatter = q1;
+ sf = s1;
+ midf = (s1 + e1) / 2;
+ ef = e1;
+ }
+ bool subDivide = false;
+ is_linear_inner(*flatter, sf, ef, *rounder, sr, er, i, &subDivide);
+ if (subDivide) {
+ relaxed_is_linear(flatter, sf, midf, rounder, sr, er, i);
+ relaxed_is_linear(flatter, midf, ef, rounder, sr, er, i);
+ }
+ if (m2 < m1) {
+ i->swapPts();
+ }
+}
+
+// each time through the loop, this computes values it had from the last loop
+// if i == j == 1, the center values are still good
+// otherwise, for i != 1 or j != 1, four of the values are still good
+// and if i == 1 ^ j == 1, an additional value is good
+static bool binary_search(const SkDQuad& quad1, const SkDQuad& quad2, double* t1Seed,
+ double* t2Seed, SkDPoint* pt) {
+ double tStep = ROUGH_EPSILON;
+ SkDPoint t1[3], t2[3];
+ int calcMask = ~0;
+ do {
+ if (calcMask & (1 << 1)) t1[1] = quad1.ptAtT(*t1Seed);
+ if (calcMask & (1 << 4)) t2[1] = quad2.ptAtT(*t2Seed);
+ if (t1[1].approximatelyEqual(t2[1])) {
+ *pt = t1[1];
+ #if ONE_OFF_DEBUG
+ SkDebugf("%s t1=%1.9g t2=%1.9g (%1.9g,%1.9g) == (%1.9g,%1.9g)\n", __FUNCTION__,
+ t1Seed, t2Seed, t1[1].fX, t1[1].fY, t2[1].fX, t2[1].fY);
+ #endif
+ if (*t1Seed < 0) {
+ *t1Seed = 0;
+ } else if (*t1Seed > 1) {
+ *t1Seed = 1;
+ }
+ if (*t2Seed < 0) {
+ *t2Seed = 0;
+ } else if (*t2Seed > 1) {
+ *t2Seed = 1;
+ }
+ return true;
+ }
+ if (calcMask & (1 << 0)) t1[0] = quad1.ptAtT(SkTMax(0., *t1Seed - tStep));
+ if (calcMask & (1 << 2)) t1[2] = quad1.ptAtT(SkTMin(1., *t1Seed + tStep));
+ if (calcMask & (1 << 3)) t2[0] = quad2.ptAtT(SkTMax(0., *t2Seed - tStep));
+ if (calcMask & (1 << 5)) t2[2] = quad2.ptAtT(SkTMin(1., *t2Seed + tStep));
+ double dist[3][3];
+ // OPTIMIZE: using calcMask value permits skipping some distance calcuations
+ // if prior loop's results are moved to correct slot for reuse
+ dist[1][1] = t1[1].distanceSquared(t2[1]);
+ int best_i = 1, best_j = 1;
+ for (int i = 0; i < 3; ++i) {
+ for (int j = 0; j < 3; ++j) {
+ if (i == 1 && j == 1) {
+ continue;
+ }
+ dist[i][j] = t1[i].distanceSquared(t2[j]);
+ if (dist[best_i][best_j] > dist[i][j]) {
+ best_i = i;
+ best_j = j;
+ }
+ }
+ }
+ if (best_i == 1 && best_j == 1) {
+ tStep /= 2;
+ if (tStep < FLT_EPSILON_HALF) {
+ break;
+ }
+ calcMask = (1 << 0) | (1 << 2) | (1 << 3) | (1 << 5);
+ continue;
+ }
+ if (best_i == 0) {
+ *t1Seed -= tStep;
+ t1[2] = t1[1];
+ t1[1] = t1[0];
+ calcMask = 1 << 0;
+ } else if (best_i == 2) {
+ *t1Seed += tStep;
+ t1[0] = t1[1];
+ t1[1] = t1[2];
+ calcMask = 1 << 2;
+ } else {
+ calcMask = 0;
+ }
+ if (best_j == 0) {
+ *t2Seed -= tStep;
+ t2[2] = t2[1];
+ t2[1] = t2[0];
+ calcMask |= 1 << 3;
+ } else if (best_j == 2) {
+ *t2Seed += tStep;
+ t2[0] = t2[1];
+ t2[1] = t2[2];
+ calcMask |= 1 << 5;
+ }
+ } while (true);
+#if ONE_OFF_DEBUG
+ SkDebugf("%s t1=%1.9g t2=%1.9g (%1.9g,%1.9g) != (%1.9g,%1.9g) %s\n", __FUNCTION__,
+ t1Seed, t2Seed, t1[1].fX, t1[1].fY, t1[2].fX, t1[2].fY);
+#endif
+ return false;
+}
+
+static void lookNearEnd(const SkDQuad& q1, const SkDQuad& q2, int testT,
+ const SkIntersections& orig, bool swap, SkIntersections* i) {
+ if (orig.used() == 1 && orig[!swap][0] == testT) {
+ return;
+ }
+ if (orig.used() == 2 && orig[!swap][1] == testT) {
+ return;
+ }
+ SkDLine tmpLine;
+ int testTIndex = testT << 1;
+ tmpLine[0] = tmpLine[1] = q2[testTIndex];
+ tmpLine[1].fX += q2[1].fY - q2[testTIndex].fY;
+ tmpLine[1].fY -= q2[1].fX - q2[testTIndex].fX;
+ SkIntersections impTs;
+ impTs.intersectRay(q1, tmpLine);
+ for (int index = 0; index < impTs.used(); ++index) {
+ SkDPoint realPt = impTs.pt(index);
+ if (!tmpLine[0].approximatelyPEqual(realPt)) {
+ continue;
+ }
+ if (swap) {
+ i->insert(testT, impTs[0][index], tmpLine[0]);
+ } else {
+ i->insert(impTs[0][index], testT, tmpLine[0]);
+ }
+ }
+}
+
+int SkIntersections::intersect(const SkDQuad& q1, const SkDQuad& q2) {
+ fMax = 4;
+ bool exactMatch = false;
+ // if the quads share an end point, check to see if they overlap
+ for (int i1 = 0; i1 < 3; i1 += 2) {
+ for (int i2 = 0; i2 < 3; i2 += 2) {
+ if (q1[i1].asSkPoint() == q2[i2].asSkPoint()) {
+ insert(i1 >> 1, i2 >> 1, q1[i1]);
+ exactMatch = true;
+ }
+ }
+ }
+ SkASSERT(fUsed < 3);
+ if (only_end_pts_in_common(q1, q2)) {
+ return fUsed;
+ }
+ if (only_end_pts_in_common(q2, q1)) {
+ return fUsed;
+ }
+ // see if either quad is really a line
+ // FIXME: figure out why reduce step didn't find this earlier
+ if (is_linear(q1, q2, this)) {
+ return fUsed;
+ }
+ SkIntersections swapped;
+ swapped.setMax(fMax);
+ if (is_linear(q2, q1, &swapped)) {
+ swapped.swapPts();
+ *this = swapped;
+ return fUsed;
+ }
+ SkIntersections copyI(*this);
+ lookNearEnd(q1, q2, 0, *this, false, &copyI);
+ lookNearEnd(q1, q2, 1, *this, false, &copyI);
+ lookNearEnd(q2, q1, 0, *this, true, &copyI);
+ lookNearEnd(q2, q1, 1, *this, true, &copyI);
+ int innerEqual = 0;
+ if (copyI.fUsed >= 2) {
+ SkASSERT(copyI.fUsed <= 4);
+ double width = copyI[0][1] - copyI[0][0];
+ int midEnd = 1;
+ for (int index = 2; index < copyI.fUsed; ++index) {
+ double testWidth = copyI[0][index] - copyI[0][index - 1];
+ if (testWidth <= width) {
+ continue;
+ }
+ midEnd = index;
+ }
+ for (int index = 0; index < 2; ++index) {
+ double testT = (copyI[0][midEnd] * (index + 1)
+ + copyI[0][midEnd - 1] * (2 - index)) / 3;
+ SkDPoint testPt1 = q1.ptAtT(testT);
+ testT = (copyI[1][midEnd] * (index + 1) + copyI[1][midEnd - 1] * (2 - index)) / 3;
+ SkDPoint testPt2 = q2.ptAtT(testT);
+ innerEqual += testPt1.approximatelyEqual(testPt2);
+ }
+ }
+ bool expectCoincident = copyI.fUsed >= 2 && innerEqual == 2;
+ if (expectCoincident) {
+ reset();
+ insertCoincident(copyI[0][0], copyI[1][0], copyI.fPt[0]);
+ int last = copyI.fUsed - 1;
+ insertCoincident(copyI[0][last], copyI[1][last], copyI.fPt[last]);
+ return fUsed;
+ }
+ SkDQuadImplicit i1(q1);
+ SkDQuadImplicit i2(q2);
+ int index;
+ bool flip1 = q1[2] == q2[0];
+ bool flip2 = q1[0] == q2[2];
+ bool useCubic = q1[0] == q2[0];
+ double roots1[4];
+ int rootCount = findRoots(i2, q1, roots1, useCubic, flip1, 0);
+ // OPTIMIZATION: could short circuit here if all roots are < 0 or > 1
+ double roots1Copy[4];
+ SkDEBUGCODE(sk_bzero(roots1Copy, sizeof(roots1Copy)));
+ int r1Count = addValidRoots(roots1, rootCount, roots1Copy);
+ SkDPoint pts1[4];
+ for (index = 0; index < r1Count; ++index) {
+ pts1[index] = q1.ptAtT(roots1Copy[index]);
+ }
+ double roots2[4];
+ int rootCount2 = findRoots(i1, q2, roots2, useCubic, flip2, 0);
+ double roots2Copy[4];
+ int r2Count = addValidRoots(roots2, rootCount2, roots2Copy);
+ SkDPoint pts2[4];
+ for (index = 0; index < r2Count; ++index) {
+ pts2[index] = q2.ptAtT(roots2Copy[index]);
+ }
+ bool triedBinary = false;
+ if (r1Count == r2Count && r1Count <= 1) {
+ if (r1Count == 1 && used() == 0) {
+ if (pts1[0].approximatelyEqual(pts2[0])) {
+ insert(roots1Copy[0], roots2Copy[0], pts1[0]);
+ } else {
+ // find intersection by chasing t
+ triedBinary = true;
+ if (binary_search(q1, q2, roots1Copy, roots2Copy, pts1)) {
+ insert(roots1Copy[0], roots2Copy[0], pts1[0]);
+ }
+ }
+ }
+ return fUsed;
+ }
+ int closest[4];
+ double dist[4];
+ bool foundSomething = false;
+ for (index = 0; index < r1Count; ++index) {
+ dist[index] = DBL_MAX;
+ closest[index] = -1;
+ for (int ndex2 = 0; ndex2 < r2Count; ++ndex2) {
+ if (!pts2[ndex2].approximatelyEqual(pts1[index])) {
+ continue;
+ }
+ double dx = pts2[ndex2].fX - pts1[index].fX;
+ double dy = pts2[ndex2].fY - pts1[index].fY;
+ double distance = dx * dx + dy * dy;
+ if (dist[index] <= distance) {
+ continue;
+ }
+ for (int outer = 0; outer < index; ++outer) {
+ if (closest[outer] != ndex2) {
+ continue;
+ }
+ if (dist[outer] < distance) {
+ goto next;
+ }
+ closest[outer] = -1;
+ }
+ dist[index] = distance;
+ closest[index] = ndex2;
+ foundSomething = true;
+ next:
+ ;
+ }
+ }
+ if (r1Count && r2Count && !foundSomething) {
+ if (exactMatch) {
+ SkASSERT(fUsed > 0);
+ return fUsed;
+ }
+ relaxed_is_linear(&q1, 0, 1, &q2, 0, 1, this);
+ if (fUsed) {
+ return fUsed;
+ }
+ // maybe the curves are nearly coincident
+ if (!triedBinary && binary_search(q1, q2, roots1Copy, roots2Copy, pts1)) {
+ insert(roots1Copy[0], roots2Copy[0], pts1[0]);
+ }
+ return fUsed;
+ }
+ int used = 0;
+ do {
+ double lowest = DBL_MAX;
+ int lowestIndex = -1;
+ for (index = 0; index < r1Count; ++index) {
+ if (closest[index] < 0) {
+ continue;
+ }
+ if (roots1Copy[index] < lowest) {
+ lowestIndex = index;
+ lowest = roots1Copy[index];
+ }
+ }
+ if (lowestIndex < 0) {
+ break;
+ }
+ insert(roots1Copy[lowestIndex], roots2Copy[closest[lowestIndex]],
+ pts1[lowestIndex]);
+ closest[lowestIndex] = -1;
+ } while (++used < r1Count);
+ return fUsed;
+}
+
+void SkIntersections::alignQuadPts(const SkPoint q1[3], const SkPoint q2[3]) {
+ for (int index = 0; index < used(); ++index) {
+ const SkPoint result = pt(index).asSkPoint();
+ if (q1[0] == result || q1[2] == result || q2[0] == result || q2[2] == result) {
+ continue;
+ }
+ if (SkDPoint::ApproximatelyEqual(q1[0], result)) {
+ fPt[index].set(q1[0]);
+// SkASSERT(way_roughly_zero(fT[0][index])); // this value can be bigger than way rough
+ fT[0][index] = 0;
+ } else if (SkDPoint::ApproximatelyEqual(q1[2], result)) {
+ fPt[index].set(q1[2]);
+// SkASSERT(way_roughly_equal(fT[0][index], 1));
+ fT[0][index] = 1;
+ }
+ if (SkDPoint::ApproximatelyEqual(q2[0], result)) {
+ fPt[index].set(q2[0]);
+// SkASSERT(way_roughly_zero(fT[1][index]));
+ fT[1][index] = 0;
+ } else if (SkDPoint::ApproximatelyEqual(q2[2], result)) {
+ fPt[index].set(q2[2]);
+// SkASSERT(way_roughly_equal(fT[1][index], 1));
+ fT[1][index] = 1;
+ }
+ }
+}
« no previous file with comments | « src/pathops/SkDQuadImplicit.cpp ('k') | src/pathops/SkDQuadLineIntersection.cpp » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698